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CONVERGENCE OF A QUADRATURE FORMULA FOR
VARIABLE-SIGNED WEIGHT FUNCTIONS

H.S. JUNG AND K.H. KWON

A quadrature formula for a variable-signed weight function io(x) is constructed using
Hermite interpolating polynomials. We show its mean and quadratic mean conver-
gence. We also discuss the rate of convergence in terms of the modulus of continuity
for higher order derivatives with respect to the sup norm.

1. INTRODUCTION

We consider a weight function w(x) which is defined on a bounded interval [a, b) such
that all moments

(1.1) / x'w(x)dx, 1 = 0 , 1 , . . .
Ja

are finite and supp(w) has a positive measure.

When w(x) > 0 on [a,b], the theory of the Gauss - Christoffel quadrature formula
is well developed (see [4] for an excellent survey on the subject), using Lagrange in-
terpolation polynomials. In particular, the convergence of the corresponding Lagrange
interpolation polynomials has been studied by many authors [1, 3, 6, 7] in various l?-
spaces.

In this work, we shall consider a variable-signed weight function w(x). That is, we
allow w(x) to change its sign finitely many times in (a,b). There are also many works
on quadrature formulas for variable-signed weight functions (see [8] and [4, Chapter 3]).

We introduce a quadrature formula for variable signed weights, using Hermite inter-
polation polynomials.

For this quadrature formula, we shall prove mean and quadratic mean convergence
of the corresponding Hermite interpolation polynomials in Section 3 and give a speed of
rate of convergence for derivatives with respect to the sup norm in Section 4. Finally, we
give some numerical examples in Section 5.

We refer to [9] and the references therein for weighted IP- convergence of Hermite
interpolation polynomials based on the zeros of Jacobi polynomials.
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2. Q U A D R A T U R E F O R M U L A

For any given m (m ^ 1) distinct points —oo < a < f i < £ 2 < " " - < £ m < & < o o

and any m nonnegative integers {fi}£Li, we let

m

- 6)" i + 1 and v := max{i/j | 1 ̂  i ^ m}.
t = i

For any / £ C[a,b], we let H{<j>\f\x) be the Hermite interpolation polynomial of /
relative to (/>. That is, H(<j>; / ; x) is the unique polynomial of degree < deg(0) - 1
satisfying

) f { ) , 1 ^ i < m and 0

In fact, it is easy to see that

where

From now on, we assume that w(x) is a weight function as in Section 1 for which we

further assume that w(x) changes its sign at m distint points {6}™i m (a,b).

We let
m

s(x) := FT (a; — î) and w*(x) := w{x)s(x).

Then, we may assume that w*{x) ^ 0 on [a,b] and there is a unique monic orthogo-
nal polynomial system •[Pn(u;*;x)}^_0 = {^n(a;)}^.o r e l a*iv e *° *n e positive measure
w*(x)dx on [a,6](see [3]):

/ Pm{x)Pn(x)w'{x)dx = ifn<5mn,
Ja

where Kn > 0. Moreover, Pn{x), n ^ 1, has n real and simple zeros in (a, b).

For any function f(x) € C 1 ^ , b] and any integer n ^ 1, we let

(2.2) Hn(f;x):=H(Pns;f;x)

be the Hermite interpolation polynomial of / relative to Pns. Then, Hn(f;x) is a poly-

nomial of degree ^ n + m — 1 and
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for any zero a of Pn(x)s(x), where j — 0 if a is a simple zero of Pn(x)s(x) and j = 0,1 if
a is a double zero of Pn(x)s(x). Moreover,

Hn{n\x) -ir(x)

for any polynomial ir(x) of degree ^ n + m — 1.
For any fixed integer n ̂  1, we decompose Pn(x)s(x) into

I m-l n-1

Pn(x)S(x) = H(X - d)2 Y[(X- Si) Y[(X - Ifc),
1 1 1

where {ci}'=i are common zeros of Pn{x) and s(x) and { s i } ^ ' an(^ {Vi}?^! a r e zeros of
only s(x) and Pn(x) respectively. Note that / may depend on n. Then, we have from
(2.1)

{£.0) nn(j,x) —

m—l . , , n—l

w h e r e

X o*

I n p a r t i c u l a r , i f / ( Q ) = / ' ( c i ) — Oi 1 ̂  i ^ Z a n d / ( s i ) = 0 , l ^ i ^ m — /, t h e n

' ^ ^ <ŝ n^ P'(r)\(rr — n V

We now let

, 6

(2.5) Qn(wJ)~ / Hn{j\x)w{x)dx
J a

for any / ( i ) € C^a, b] and any integer n ̂  1.
Since we have for any polynomial TT{X)

TT(X) - Hn(ir;x) = Pn(x)s(x)Q(x),
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where deg(Q) ^ deg(?r) — n — m,

(2.6) f n(x)w(x)dx-Qn(w,Tr)= f Pn(x)Q(x)w*(x)dx.
J a J a

Since the right hand side of (2.6) vanishes when deg(Q) < n,

fb

/ •n{x)w{x)dx = Q(w; n)
Ja

for any polynomial x(x) of degree ^ 2n+ m - 1. That is, the quadrature formula (2.5)
has degree of exactness 2n + m — 1 and

rb

/
n(x)w(x)dx = lim Qn(w;n)

for any polynomial n(x).
In the following sections, we discuss convergence of the quadrature formula (2.5) for

arbitrary differentiable functions. The quadrature formula Qn(w; f) in (2.5) is essentially
the same as the one in Struble [8], which he expressed it by using the partial fraction
decomposition of

Pn(x)s(x)

(see Theorem 1 and Theorem 3 in part II, [8]).

For later use, we let

II) (*•* T l *

(2.7) \ P(x~)P(x)

be the fundamental Lagrange polynomials at the nodes {ci}'=1 and {%}";!"/, which are
zeros of the orthogonal polynomials Pn(x). We also let

(2-8) S - -.6

\n(w*;d) := / ln(w*\Ci\x)w*(x)dx, 1 < i < I,
b

X n { w ' ; ft) : = / ln(w*;r]i\ x ) w * ( x ) d x , l ^ i ^ n - l
Ja

be the corresponding Christoffel numbers. Then (see [3])

\n(w*; Ci)>0, 1 < i ^ I and \n(w'; T?J) > 0, 1 < i < n - I

and
I n-l

(2.9) ^ A n K ; C i ) +
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3. C O N V E R G E N C E IN MEAN

We now discuss mean and quadratic mean convergence of the quadrature formula
(2.5). We shall use the following, which generalises the well known Bernstein theorem
(see [2]): For any integer k ^ 0 and any function / G C*[0,1], the Bernstein polynomials

j=o

satisfy

lim \\BiJ\f;x)-

where ||-|| denotes the sup norm on [0,1].

PROPOSITION 3 . 1 . Let s(x) be as in Section 1 and leta = O, b= 1. Then for

any f G Ck[0,1] (k ^ 0 an integer) and any e > 0, there is a polynomial TT(Z) such that

( 3 . 1 ) 7 r « ( 6 ) = / ( r ) ( & ) , l ^ i

and

(3.2) |7r(r)(x) - f{r)(x)\ < |s(x)|fc~re,

In particular, /^r '(x), 0 ^ r ^ k, can be uniformly approximated on [0,1] by polynomials
satisfying (3.1).

P R O O F : For any integer n ^ 1, we let

*„(/; x) := Bn{f; x) + H(5*
+1; / - Bn(f, x); x).

Then, deg * „ ( / ; x) ^ max(n, {k + l )m - l ) and

6 ) , 1 < i ^ m and 0 ^ j ^ A;.

That is, ^n( / ;a ;) satisfies condition (3.1) for any n > 1. We now show that ^n(/;a;)

satisfies condition (3.2) for large enough n.

We may express the Hermite interpolating polynomial H(sk+1; f;x) as

k m

(3.3) H(sM;f;x) = ^ E ' ^ M 1 )

where hij(x) is the unique polynomial of degree ^ (k + l)m — 1 satisfying

h\f(Q = M J , , 1 ^ J,P < m and 0 ^ j , 9 < A;.
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Then for any r with 0 $J r ̂  k

k m

j=o i=i

k m

where Cr := J2J2\\hi^\\- Hence'
j=0 t=l

(*) - BP(f;x)\ + |ff('V+1;/ - Bn(f;x);x)
C r ) m a x | W ) # >

so that

(3.4) nlirn | | /W-*W( / ; a ; ) | | =0 , 0 ̂  r <: k,n |

by Bernstein's theorem. We now consider the inequality (3.2) for K{X) = ̂ n(f;x) with

large n.

If x = &, 1 ̂  i ̂  m, then the left hand side of inequality (3.2) is equal to 0. Choose

6 > 0 such that 0 < 5 < min{(fi+i - &)/2 | 0 < i ̂  m}, where £0 = 0 and £m+1 = 1. Let
m

A{ = [£ - (5, £ + S], l ^ i ^ m , A = [JA{, and B = [0,1] \ Int {A) (Int (A) denotes the
I

interior of A ). Then ^ n {£,j}f=x = {^}, 1 ̂  i < m, and B D (0}^=i = 0-
If a; € Ai \ {^} for some i = 1,2, • • • , TO, then we have, by using (3.1) and repeated

applications of the mean value theorem,

(3.5) |/M(z)-^r)(/;*)| =

< MA\\fW-¥»(f;x)\\\s(x)\k-\

where x is some point in Ai and MA •'= max max{|(a; — £i)/(s(i))| r } -

If x e B, then

(3.6) |/W(x) - ^ r ) ( / ; a : ) | < MB||/W - *l r ) ( / ;x) | | |s(x)|fc-r

where MB := max{|s(x)|r~* | a; € B).

Therefore, we have the inequality (3.2) for ir{x) = <&n(/;z) if n is large enough by

(3.4), (3.5), and (3.6). D

Note that while Bernstein polynomials Bn(f; x) approximate f(x) uniformly on [0,1]
with /(0) and /(I) fixed, polynomials \I>n(/;z) approximate f(x) uniformly on [0,1] with
/^ te )> 1 ̂  * ̂  m a n d 0 ̂  j ^ k, fixed. When m = 0, Proposition 3.1 becomes
Bernstein's theorem by taking s(x) = 1.

We are now ready to prove mean and quadratic mean convergence of the quadrature
formula (2.5).
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THEOREM 3 . 2 . (Mean convergence) For any / G C1 [a, b],
rb

limQB(iu;/)= / f(x)w(x)dx.
J a

PROOF: We may assume that a = 0 and 6 = 1 . Then for any polynomial n(x)
satisfying (3.1) with k = 1, we have by (2.4) and (2.7)

so that (see (2.8))

(3.7) 'Qn(v>;*-f) =

Hence

f f{x)w{x)dx - Qn{wJ) = f [f(x)-ir{x)]w{x)dx + Qn{v>;n-
Jo Jo

provided that deg(?r) ^ n + m — 1 and so (see 3.7)

\[ f{x)w{x)dx-Qn(w;f) ^ f \f(x)-ir(x)\\w(x)\dx
' ^ o Jo

n-l

For any e > 0, we may take by Proposition 3.1

n(x) = *„(/; x) = Bp(/; x) + H(s2; f - Bp(f; x); x)

where p is so large that

\f^(x)-^T)(x)\ ^ \3(x)\l~re, r = 0,l a n d O ^ i ^ 1.

Then

\[ f(x)w(x)dx-Qn(w;f) < [ \f(x)-K(x)\\w(x)\dx
iJo Jo

M

1=1

f1

Jo W'{x)dX

/ w*(x)dx
Jo

^ 2e

(see (2.9)) if n is so large that deg(Tr) = deg(^p(/;a;)) ^ n + m - 1. Since e > 0 is
arbitrary, the conclusion of the theorem follows. D
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THEOREM 3 . 3 . (Quadratic mean convergence) For any f e CY[a, b]

lim f [f(x) - Hn{f-x)}2 \w{x)\ dx = 0.
J a

PROOF: We may assume that a = 0 and 6 = 1 . Then for any polynomial ir(x) of
degree ^ n + m — 1, we have

[/(*) - #„(/; x)]2 \w(x)\ dx= f [f{x) - Trix)]2 \w(x)\ dx
Jo

+ f Hli-K - f;x) \w(x)\ dx + 2 f [fix) - n(x)]Hn^ - f-x) \xo{x)\ dx
Jo Jo

so that

f [fix) -Hn(f; x))2 \wix)\ dx
Jo

Now, for any e > 0, choose 7r(x) as

*(x) = *„(/; x) = Bp(/; x) + H(s2; f - Bp{f; x); x)

so that (3.1) and (3.2) hold with k = 1. Then

/ [fix)-nix)]2\wix)\dx^e2 f |s(x)|2 |«;(a:)| dx ^ e2 \\s\\ f w*ix)dx
Jo Jo Jo

(here ||s|| = max |s(x)|) and

f H2in-f-x)\wix)\dx = f fe7^, (^Iniw'w,!)) s2ix) \io{x)\ dx
Jo Jo \ i = 1

 s\r)i) )

— \\S\l

= \\s\\
i=l

since / /„(«;*;7^; i)Zn(iy*; r/,;i)u;'(x)da; = An(iw*;7/i)<Jy (see [3]). Hence

f Hli-K-f;x)\wix)\dx < e ' ^

e2\

https://doi.org/10.1017/S0004972700031658 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031658


[9] Convergence of a quadrature formula 283

(see (2.9)) if n is so large that deg(Tr) = deg(\Pp(/; x)) ^ n + m — 1. Therefore, we have

f [f(x) - Hn(f; x)}2 \w(x)\ dx < 4e2 ||s|| /* w*(x) dx.
Jo Jo

Since e > 0 is arbitrary, the conclusion of the theorem follows. D

4. CONVERGENCE IN SUP NORM

Now, we investigate the convergence speed of derivatives of the Hermite interpolation
polynomials Hn(f;x) with respect to the sup norm. For the sake of convenience, we
assume a = - 1 and 6 = 1 and use

Il/H := sup |/(x)|.
[-Li]

We need the following two facts.

LEMMA 4 . 1 . (Markov's inequality) For any polynomial irn{x) of degree ^ n

and any integer r ^ 0

(4.1) | | 7rM(z)| |=O(l)n2 '>n | | .

LEMMA 4 . 2 . (Gopengauz's theorem [5]) Let f € C*[-l,l], k ^ 0 an integer.
Then for any integer n ^ 4/c + 5, there is a polynomial Gn(x) of degree ^ n such that

(4.2)

\f^(x) - G^(x)\ = O(l)r?-k{\ - z2)(fc-r>/2
W(/(*>; i ) , 0 ^ r < fc and - 1 ^ x ^ 1,

where w(<?; /i) := sup \g{x) — g(y)\ is the modulus of continuity for g.
\x-y\£h

The following theorem is motivated by results of Balazs and Kilgore [1].

THEOREM 4 . 3 . Let f e C*[ - l , l ] , k > 0 an integer. Then for any integer

n ^ max{4/c + 5,2m — 1},

1 n-i

where Ln :— v\^\lni{w*\Ci\x)\ + ^TJ|£nj(u;*;77j;:E)| is the Lebesgue constant for the

positive weight function w*(x).

PROOF: Assume n ^ max{4fc + 5,2m — 1} and let

I := Gn( i ) + H(s2; f — Gn; x),
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where Gn(x) is a polynomial as in Gopengauz's theorem. Then deg(Rn) ^ n so that

Hn(Rn;x) = Rn(x) and I%%) = /<»(&), 1 < i ^ m and j = 0,1

and

(4.3) | |itf >(/;x) - /W(x)|| < ||tf <'>(/ - i^;z) | | + ||/#> - / « | | 0 £ r < k.

By (3.3) and (4.2), we have

(4.4)

Jo(l)n1-*a;(/( f c);i) if r = 0

| ; - j if l ^ r

O n t h e o t h e r h a n d , s i n c e ^ ( 6 ) = / 0 ) t e ) . 1 < i ^ m a n d j = 0 , 1 , we h a v e (see (2 .4 ) )

We can easily see that

1/(1) - Rn(x)\ = O(l)nl-ku(fM; 1) |s(x)|, -1 ^ x

(the proof is the same as the one for Proposition 3.1: replace <J>n(f;x) by Rn{x) and set
r = 0, k = 0 in (3.5) and (3.6) and then apply (4.4)), so that

Therefore, by Markov's inequality and (4.4), we have

n-l f(Vi) - fl.fa

(4.6) \2r

{ln(w';rji;x)s(x))

n-l

(>•)

E /fa) -
«fa)

n-l

Now, the conclusion follows from (4.3), (4.4), and (4.6) since Ln ^ 1. D
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5. NUMERICAL EXAMPLE

In this section, we illustrate our quadrature formula (2.5) by estimating

J-i
(5.1) / /(a;) tan 1.5a; da;

in two different ways. First, we view the integral (5.1) as an integral of f(x) with respect
to the sign changing weight function tan 1.5x and approximate it by using the quadrature
formula (2.5). Secondly, we view the integral (5.1) as an integral of f(x) tan 1.5a; with
respect to the Legendre weight 1 on [—1,1] and approximate it by the classical Gauss-
Legendre quadrature formula (see [3]).

In the following, we let

w(x) := tanl.5x, w*(x) := i tan 1.5a;,

Ln{x) := n — th Legendre polynomial,

Pn{x) := n — th orthogonal polynomial relative to w*(x) on [—1,1],

{•zn*}*=i := zeros of Ln(x) for n ̂  1.

It is well known that Legendre polynomials {Ln(x)}^_0 and {Pn(x)}™_0 satisfy the three
term recurrence relations:

(5.2) (n+l)Ln+1(x) = {2n+l)xLn(x)-nLn.1(x),n^0,(L.l=Q,LQ{x) = l),

(5.3) Pn+l(x) = XPn(x) - CnPn-^x), U > 0, (P_! = 0, P0(x) = l ) ,

where

We note that Pn{x) is even or odd if n is even or odd respectively since w*(x) is even.

The Gauss-Legendre quadrature formula is given by

QL := Qn+1(ljw)
n+l

where HL,n+i,k are Christoffel numbers with respect to the Legendre weight 1, that is,

1 W*)f1
= /J-

dx-f
-l (X - Zn+ltk)l->n+l\Zn+l,k)

On the other hand, the quadrature formula with respect to w(x) is given by

QS:=Qn(w;f)= I Hn{f;x)w(x)dx.
J-l
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If n is even, then Pn(x) is even and / = 0, m = 1, si = 0, and {»7,}"=1 are zeros of Pn(x).
Then we have from (2.3)

so that

n \ / * \

E M ™ -,T]i)E M ™ -,T]i)
f(Vi) =

t = l ^ »=1

where /*,,„,,- = An(iu*; vJ/Vi, i = 1,2, • • • ,n.
If n is odd, then Pn(x) is odd so that Pn(0) = 0 and I = m = 1, cx = 0, and {^i}"^1 are
non-zero zeros of Pn(x). Then we have from (2.3)

H (f.x) _ / ( Q ) P (x) , / ' (Q) P ( l ) l r / f a ) r f l >

so that

i = 1 Vi

n-1

where

M5,n,i := ———-, i = 1,2, • • • , n - 1,

and

/ Pn(x)w(x)d2
J-i

We used Maple V Release 4 for the numeric computations below. In Table I, %,
zn+i,k and fj,3<n<k, fj,L,n+i,k are given for n = 9. Zeros % and zn+iifc for Pn(a;) and Ln+l(x)

are computed using the three term recurrence relations (5.2) and (5.3). For comparison,
we set

ES:=\ f f{x)w(x)dx - QS ; EL-=\f f{x)w(x)dx - QL

Table II gives numerical results of the comparison between QS and QL for several choices
of function f(x). Here, / is rounded off in the true value of / ^ f(x) tan l.5xdx.
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k

1

2

3
4

5

6

7

8

9

10

Legendre
zl0,k

.97390653

.86506337

.67940957

.43339539

.14887434

-.14887434

-.43339539

-.67940957

-.86506337

-.97390653

weight

Mi.lO,*

.06667135

.14945134

.21908636

.26926672

.29552422

.29552422

.26926672

.21908636

.14945134

.06667135

w(x) :=

Vk
.98101119

.88715108

.70328452

.43963347

-.43963347

-.70328452

-.88715108

-.98101119
.00000000

tan(1.5x)

.51196269

.56855905

.39919132

.23197168

-.23197168
-.39919132

-.56855905

-.51196269

.01474570

TABLE I (n=9)

/(*) QS QL ES EL
X

X5

X11

X15

X21

sin(x)

tan(x)

sin(5 x)

sinh(5x)

ex

1
1.2 + x

2.7934786
1.7001891

1.1505534
.9607962

.7771238

2.4610620

3.8356255

-1.9418394

132.6488405

3.1542388

-4.4159041

2.7934787
1.7001891

1.1505534

.9607962

.7770607
2.4610621

3.8356257

-1.9418395
132.6488421

3.1542388

-4.4158277

2.7804519
1.6845234

1.1298938

.9359513

.7443576

2.4502890

3.8140796

-1.9310664

131.4800797

3.1386971

-4.3780213

T A B L E II (n=9)
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.0000000

.0000000

.0000000

.0000000

.0000631

.0000001

.0000002

.0000001

.0000016

.0000000

.0000763

.0130268

.0156657

.0206596

.0248448

.0327662

.0107730

.0215459

.0107730

1.1687608

.0155417

.0378828
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