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FORCED CUBIC SCHRODINGER EQUATION WITH ROBIN
BOUNDARY DATA: CONTINUOUS DEPENDENCY RESULT
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(Received 30 May 1996)

Abstract

For the cubic Schrodinger equation iu, = uxx + k\u\2u, 0 < x, t < oo, initial data
K(JC,O) = uo(x) e H2[0, oo), and Robin boundary data u,(0, t) + au(0, t) = R(t) e
C2[0, oo) (where a is real), we show that the solution u depends continuously on «0

andfl.

1. Preliminaries

In recent years, a vast amount of work has been done on pure initial value problems
for important nonlinear evolution equations such as NLS and KdV. No comparable
attention has been given to mixed initial boundary-value problems for these equations.
Yet in many cases of physical interest, the mathematical models lead precisely to
problems where boundary data is non-zero (sometimes called "forced problems").
For example, the launching of solitary waves in a shallow water channel, and the
excitation of ionacoustic solutions in a double plasma machine, belong to this class.
In ionospheric modification experiments, one directs a radio frequency wave at the
ionosphere. At the reflection point of the wave, a sufficient level of electron-plasma
wave is excited to make the nonlinear behavior important [9]. This may be described
by the cubic NLS equation with Dirichlet boundary conditions

iu, = uxx±2\u\2u, 0<x, t < oo, (1.1)

u(x,O) = uo(x), u(O,t)=Q(t).

Under the assumption that u0 e H2[0, oo), Q e C2[0, oo), global existence, well-
posedness and blow-up of the solution to (1.1) were established in [2,4,6]. The
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following forced nonlinear Schrodinger equation is also important:

iu, = uxx +k\u\2u, 0<x, t < oo, (1.2)

u(x, 0) = uo(x), MO, 0 + au(0, t) = R(t),

where a and k are real. This problem has significant physical implications. It arises
from the propagation of optical solitons [5]. Also, it models water waves [1] when
there is an additional term ux on the right-hand side and a ->• oo. We notice that the
boundary condition is of Robin type.

It was shown in [3] that for this equation, there exists a unique classical solution
u e C°(H2) n Cl(L2) provided that u0 e H2[0, oo), R e C2[0, oo). In this article,
we will show that the solution u depends continuously on the initial and boundary
data.

The following notation will be used throughout:

= u(O,t), R(O,t) = P(t) + ctQ(t), (1.3)
i/2

(1.4)
r /-oo -ii/2

l|M'll2 = n |«,(*, r)|2<fc I ,
1/4

, (1-5)

Wm.p
\a\<m

1/P

(1-6)

\\R\\oio.Ti = sup [\R(t)\ + \R'(t)\]. (1.7)
0<r<r

In addition, we need the following Gagliardo-Nirenberg estimates [7] where A. is a
constant:

There are three interesting identities for (1.2):

\\2
- 23 (j2 = llulll 23 (j P(r)gWdrj (1.9)

l - 29? ( 7 (1.10)

/

OO />O0 / • /

uic'dx= uouodx - Q(r)Q'(z)dr (1.11)
Jo Jo

f°° k f
+ i / \P(X)\2dt + -i / \Q(T)\4dt.

Jo *• Jo
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Based on these identities and Gagliardo-Nirenberg estimates, the following lemma
can be derived directly from [3].

LEMMA 1. For any T > 0, assume R(t) e C1, u0 € H1 and the initial-boundary
data satisfy necessary compatibility conditions at x = t = 0. If |[ «o II 1,2 < M,
\\R\\c<[o,T) < M, then there exists A. > 0 which only depends on M, T such that
IMI1.2 < iforO < t < rom/Hiilloo < c||M'||f||M||'/2 < k0.

We will consider (1.2) for 0 < / < T and ||MO||I,2 < M (M, T < 00, arbitrary).

2. Continuous dependency result

Throughout this section we shall assume that u, v solve (2.1) with data (R, u0)
and (/?i, Ho) lying in C2[0, T] x H2[0, 00) = X. According to the global existence
theorem in [3], the map

/ : X - • Y = Cl(L2, [0, T]) n C°(H2, [0, T]) (2.1)

via (R, M0) ->• M is well-defined. To prove continuous dependency, we shall fix
z = (R,u0) € Xandz, = (/?,,u0) 6 X. Let ||z||x = max {||/?||c»[o,7T II"0II2.2} < M,

\\z\\\x < M and

w = AM = v — M, Az = Z\ — z = (A/?, w0) = (/?i — R,v0 — u0). (2.2)

Since i» = w + u solves the forced NLS (1.2), we have

i(w, + u,) = wxx + uxx + k\w + u\2(w + M) (2.3)

= u>xx + uxx + k(w + u)2(ui + u)

= wxx + uxx + k(\w\2w + 2u\w\2 + u2w + 2\u\2w + uw2 + |M|2M).

But M solves the forced NLS (1.2) as well, therefore w solves the following initial-
boundary value problem:

iw, = wxx + k\w\2w + 2£M|U;|2 + ku2w + 2k\u\2w + kuw2, (2.4)

wx(0, t) + aw(0, t) = AR, wo = vo- uo. (2.5)

We have the following lemma.

LEMMA 2. There exists m > 0 such that supO5,<r ||t> — u\\2 < m\\zi — z\\]l^ where
Xo = C[0, T] x L2[0, 00).
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PROOF. Write AR = /?,(0 - R(t), AP = Px(t) - P(t) = vx(0, 0 - u,(0, t),
AQ= Qi(t)- Q(t). We calculate

id,\w\2 = iw,w + iww, (2.6)

= [wxx + k\w\2w + 2k\w\2u + ku2w + 2kw\u\2 + kw2u\ w

- w [wxx + k\w\2w + 2k\w\2u + ku2w + 2kw\u\2 + kw2u]

= wxxw — wwxx + 2&|u>|2 (wu — uw) + k(u2w2 — u2w2}

+ k\w\2(uw — uw)

= 2J '3 (WXXW + 2k\w\2wu + ku2vb2 + k\w\2uw).

Thus, by applying Lemma 1, we get

/•OO

/ \w\2dx (2.7)
./o

= H100II2 + 23 / / (wxxw + 2k\w\2wu + ku2w2 + k\w\2uw) dx dx

= ll̂ olll — 23 I APAQdx
Jo

/

' r°°
/ (2k\w\2wu + ku2w2 + k\w\2u2w)dxdr
Jo

< \\wo\\l-2X [ (AR-aAQ)AQdr
Jo

+ 2|Jk| / / (3|u;|3|M| + |M|2|u;|2)^dT
Jo Jo

<\\wo\\
2
2 + 2(j |Afl(r)|2Jr) (f\\2 + 2(j |Afl(r)|2Jr) (f )\\2 + 2(j

2|Jk| / / (3\w\3\u\ + \u\2\w\2)dxdr.
Jo Jo

Direct calculation shows

/•OO />OO

/ u0u0dx-d\ uu'dx (2.8)
Jo Jo

/ Uii'dx
Jo

<co+\\u\\2\\u'\\2
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and, from Lemma 1, we also get the following

vov'odx-fftl vv'dx (2.9)
Jo

/•oo

= \vo(O)\2 + Hh\\voh-W / vv'dx
Jo

<c'0 + \\v\\2\\v'\\2
<c'0 + l2.

Thus
l/2 r . , -.1/2

| f l (2.10)a,

Substitute (2.10) in (2.7):

/

OO / » / /»OO

|iu|2rfx < ||u;oll̂  + c|[A/?||C[o,r,+ c / / \w\2dxdr. (2.11)
Jo Jo

Apply the Gronwall lemma to (2.11):
f |« ; | 2^<( | | i ( ;o^ + a||A/?||C[o,r1)^' (2.12)

Jo + £\\AR\\clQ,T1)e
iT.

Therefore,

sup ( 7 M2rfx) <7(Nolli + c||Ai?||cB).ri)ef7' (2-13)
o<«<r \Jo /

= m0

+

= m\\Az\\l£

This proves the lemma.
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LEMMA 3. There exists c > 0 such that \\v - u\\Y2 < c\\z\ - z||j/2 where Y2 =
C'(L2,[0, T]).

PROOF. ThenormofMony2issup0<,<7.(||M,||2 + ||w||2)- SincesupO2,£T ||M||2,2 < oo,
it is clear that RHS of (2.4) satisfies the local-Lipschitz condition on win H2. Similar
to the technique in [3], we show that w — v — u is the unique global solution satisfying
(2.4).

For a real, AR e C2[0, oo), u e H2[0, oo), write

w = W - S(t)e-bx, b = \a\ + 1 > 0, S(t) = M ^ . (2.14)
a — b

One has W e H2[0, oo) and Wx = wx + bS(t)e-bx. Thus

Wx(0, t) + aW(0, t) = wx(0, t) + bS(t) + a(w(0, t) - S(t)) (2.15)

= AP(t) + bS(t) + a A Q(t) - aS(t)

= AR(t) + (b-a)S(t)

= 0

and (2.4) becomes

W, = -iWxx - ik\W\2W+ Go + G, + G2. (2.16)

It might be cumbersome to write exactly what those Go, G\, G2 are, but for now we
only need to indicate that

.T], (2-17)

l |G,(0)| | 2<c2| |W0| |2 , 7 = 1,2, (2.18)

and

1, (2.19)

; W,||2), 7 = 1 , 2 . (2.20)

From Wo = W(x, 0) = wo(x) - S(0)e-bx we see that W0(0) = wo(O) - 5(0) = 0.
Generally GX,G2& D(A) but Go i D(A). But since S e C\ Go = G0(e~bx, S, S'),
G'0(t) is continuous. By [3,8], one has

N(t - s)Go(s) ds € D(A), (2.21)
./oJo

where

a2c4

A = -iDl
x + ia, a > — - , (2.22)
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with D(A) = {W, Wxx e L2[0, oo); W(0) = 0} and N(t) = e\p{At] being a
strongly continuous contraction semigroup in L2. Here c denotes the coefficient in
the Gagliardo-Nirenberg estimate llwlloo < C||W'||2||M||2- One then converts (2.16) into
an integral equation

W(t) = N(t)W0 + f N(t- s)Gods + I ( d + G2 - ik\W\2W) ds (2.23)
Jo Jo

= N(t)W0+ [ N(t-s)G(s)ds
Jo

= N(t)W0+ I N{s)G(t-s)ds.
Jo

Now ||w|| 1,2 along with ||if||oo are bounded, because by Lemma 1 one has

IIwII i.2 < II«II i.2 +II«II i.2 < 2 l , (2.24)

IMIoc < Mice + Nloo < 2*o, (2.25)

and hence ||iu||i,2 and || W||oo are bounded as well. By using Gagliardo-Nirenberg
estimates, one obtains

W||2,2 < coll WWlW W\\2,2 < c\\W\\2,2. (2.26)

Note

IIA/Jll^ian < ll^illt?[o.n + ll^llc?io.n < 2M- (2-27)

Since Wo e D(A), one has (N(t) Wo), = N(t)A Wo. By (2.23)

W,(t) = (N(t) Wo), + N(t)G(0) + f N(t)G'(t - s) ds (2.28)
Jo

= N(t)(AW0) + N(t)G(0) + I N{t-s)G\s)ds.
Jo

Here

G(0) = G0(0) + G,(0) + G2(0) - ik\ Wo\
2 Wo. (2.29)

Since N (/) is a contraction semigroup on L2 one has

\\N{t)(AWo)\\2<c5\\Wo\\2,2. (2.30)

Put (2.17), (2.18), and (2.26) in (2.29):

l|G(0)||2 < co (|| ARWcio.n + II W0II2.2) • (2.31)
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From (2.16)

G'(t) = G'0(t) + G\ (t) + G'2{t) - ik (2| Wf W, + W2 W,). (2.32)

Put (2.19) and (2.20) in (2.32) (note || W||oo is bounded):

l|G'(r)||2 < c6 (||AR\\CIO.TI + II W\\i + II W,h) • (2-33)

Since N(t) is a contraction semigroup, one can use (2.30), (2.33) in (2.32)

HW,||2<ll^(O(AWo)ll2 + l|G(0)||2+ f \\N(t-s)G'(s)\\2ds (2.34)
Jo

< c5|| W0II2.2 + co (||A/?|lc.[0,ri + || W0II2.2)

+ [ c6(||Atf||c*lo,r] + II W\\2 + || W,\\2)ds.
Jo

By the Gronwall lemma,

II Wt||2 < cs | | W0II2.2 + Co (II A/?| |C . [ O.T ] + || W0II2.2) (2-35)

+ C6(T\\&R\\C2[O,T] + j \\W\\2ds\exp{c6T}

< d (|| A*||C*[O.T] + II V^olb.2) + c I || W||2rf*.

Since w=W+ S(t)e-bx, w, = W, + S'{t)e-bx, one has

II w , I I 2 < II W , | | 2 + 1 1 A / f | | c . [ e n ( 2 - 3 6 )

< d (|| A f l U c s w . n + IN0 I I2 .2 + 4 l )

f / (||jtf||2

[o,ri + IKIi2,2) + c /
^0

Now we can use Lemma 2

= sup (||u),||2 + IIHI2) (2.37)
0<t<T

< sup
0<[<7" \ Jo

l + l|woll2.2)+crm||Az||J

and Lemma 3 is proved.

< c||Az||j/2
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THEOREM. The map f : X —> Y is continuous and thus (1.2) is well-posed.

PROOF. By Lemma 3, it suffices to show that there exists M > 0 such that

ll« - " Ik < M\\zi - z\\¥ where Y3 = C° (H\ [0, T]). From (2.4)

\\wxx\\2 < \\w,h + |*| {\\w3\\2 + 2\\uw2\\2 + \\u2w\\2 + 2||M2U;||2 + \\uw2\\) (2.38)

< \\w\\Y2 + |*| (||^3|l2 + 3||M2U;||2 + 3||u,2a||2).

Put (2.13) and (2.37) in (2.38):

\\wxx\\ < c||Azllj/2 + |*| (||itfIlLlklb + 3 | | « O u ; | | 2 + 3||«;||oo||M||0O||^||2) (2.39)

< c\\Az\\]!2 + |*| ((2c)2||«;||2 + 3c2||u;||2 + 3(2c)c||«;||2)

<e\\Az\\2
x+m'm\\Az\\l£

< c\\Az\\l,l2.

By (2.13) and (2.39)

\\v-u\\Y,= sup (Uu^lh + ||i«||2) (2.40)
0<t<T

<c-\\Az\\)!2 + m||Az||yo
2

< M\\Az\\lJ2.

Hence (2.40) combined with Lemma 3 shows tha t / : X —>• Y — Y2 D Y3 is continuous
at z. The proof of well-posedness of (1.2) is complete.

3. Some remarks

We wish to make a few remarks about possible blow-up situations for the forced
NLS with Robin boundary data. First we give the following definition.

DEFINITION. A solution to the forced NLS (1.2) blows up at T if sup[0 T] \\u\\Hi - •
oo as t —*• T~.

For T > 0 consider

iu, = uxx + k\u\2u, 0 < x < o o , 0 < r < 7 , (3.1)

u(x, 0) = uo(x), «x(0, t) + ««(0, 0 =

where R(t) e C2[0, T). The following proposition is a direct consequence of the
local existence theorem in [3].
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PROPOSITION 1. Assume u0 e H2[0, oo), R e C2[0, T). Then there exists a unique
classical solution for (3.1), u e C ([0, rM), L2) n C° ([0, rM), / / 2 ) , swcfc that either
TM = T orTM < T and \\u\\H2 ->• oo as t -> 7 ^ .

Similarly, by the global existence theorem in [3], we conclude that TM — T. We
are interested in the conditions on R that would trigger a blow-up at T. For the same
problem with Dirichlet boundary data, it was suspected in [2] that a necessary and
sufficient for such blow-up is fQ \Q(r)\2dr = oo. This conjecture was proved by
Guo and Wu [6].

For (3.1) we do have the following proposition.

PROPOSITION 2. Assume that u0 e H2[0, oo), R e C2[0, T). Then the solution to
(3.1) blows up at T if sup[Ol] \R(r)\ —>• oo as t -> T~.

PROOF. If sup[Ol] \R(t)\ ->• oo as t -» T~, then either sup | £>(0l or sup \P(t)\ must
approach to oo as t —> T~, regardless ofthe value of a. Suppose lim sup|Q(r) | = oo.
By the Gagliardo-Nirenberg estimate [ o r i

12(01 = |u(0, t)\ < \\u\\oo < CIIM'H^ \\u\\2 = C | | M | | H I ; (3.2)

thus sup[0 fj || M || «i —• oo as t —> T~ and u must blow up at T.
On the other hand, assume that \\m,^T- sup[0,j | P ( T ) | = oo. By the Gagliardo-

Nirenberg estimate again

1^(01 = l«x(0, 01 < llMjrlloo < c ||u ||2' ||M||2' = C||M||W2; (3.3)

thus sup[0 r] \\u\\H2 —> 00 as t —> T~. In fact, by the local existence theorem in [3],
this implies that ||M||W2 —> 00 as t -> T~. If \\u\\H\ remains bounded on [0, T), a
re-examination of the proof of the global existence theorem in [3] reveals that || u \\ H2
must be bounded as well. Thus ||M||W2 —> 00 as t -> T~ implies that \\u\\H> -* 00
as t —>• T~. Again, this means that the solution u blows up at T. Either way our
proposition is proved.

Evidently, /0' \R(r)\2 dr — 00 implies that sup[0/] \R(t)\ —> 00 as / -*• T~, since

R 6 C2[0, T). Therefore, if fj \R(r)\2dr = 00 then u blows up at T. The reverse

might be true as well.

CONJECTURE. The necessary and sufficient condition for the solution to (1.3) to
blow up at T is /„' \R(r)\2 dx — 00.
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