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GROUPS WITH A (B, N)-PAIR AND LOCALLY
TRANSITIVE GRAPHS

RICHARD WEISS

1. Introduction.

Let I be an undirected graph and G a subgroup of aut (I"). We de-
note by 9(x,y) the distance between two vertices x and y, by E(I") the
edge set of I', by V(I') the vertex set of I', by I'(x) the set of neighbors
of the vertex x and by G(x)"® the permutation group induced by the
stabilizer G(x) on I'(x). For each ie N, let G,(x) = {a|ae G(y) for every
y with d(x,y) <i}. An s-path is an ordered sequence (x,,---,x;) of s + 1
vertices x;, with x,€ I'(x,_) for 1 <i<s and x, %= x,_, for 2<i<s. For
each vertex x, let W (x) be the set of s-paths (x,, - - -, x;) with x = x,. We
say that the graph I is locally (G, s)-transitive if for every vertex x, G(x)
acts transitively on W(x) but not on W, (x) (compare [1], [11]). If, in
addition, G acts transitively on V(I"), then I" is called (G, s)-transitive;
otherwise ' is bipartite with vertex blocks V, and V, and G acts transi-
tively on both V, and V), assuming that I" is connected and s > 1.

Now let G be a finite group with a (B, N)-pair whose Weyl group is a
dihedral group D,, of order 2n (n > 2) and I' be the incidence graph of
the associated coset geometry as defined in [3, p. 129] (or [2, (15. 5. 1)]).
The graph I" has the following properties:

Q) V)=V, UV, with VN V,=2 and I'(x) Z V,_, for every
vertex x€ V; ( =0 and 1). For i =0 and 1 there exists a d,e N such
that |I'(x)| = d; + 1 for every vertex x€ V,. The diameter of I" is n and
the girth 2n.

B) I is locally (G, n + 1)-transitive.

A generalized n-gon of order (d,, d,) is, by definition, an incidence struc-
ture whose incidence graph has the properties listed in (A).

W. Feit and G. Higman have shown in [3] that finite generalized n-gons

of order (d,, d,) with dyd; > 1 exist only for n = 2, 3, 4, 6, 8 and 12, that
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n = 8 is possible only when the squarefree part of d,d; is equal to two
and that n = 12 is possible only when d, or d; = 1. The only known
finite groups with a (B, N)-pair whose Weyl group is isomorphic to D,,
with n = 3 (resp. n = 4, n = 6) and whose generalized n-gon is of order
(dy, d)) with d, = d, are (essentially) the Chevalley groups A.(q) (resp. Bxq),
G(q)) (with ¢ = d,). Let I', , denote the corresponding graph.

We prove here the following theorems:

(1.1) Let p be a prime, r and seN with r>1 and s > 2 and q=p’.
Let I" be a finite undirected connected graph regular of valency q + 1 and
G a subgroup of aut (I') such that I' is locally (G, s)-transitive and PSL
2, 9) < Gx)'®» < PI'L(2, q) for every vertex x. Then s <5 or s="17. Let
(%, - -+, x;) be an arbitrary (s — 1)-path. Then Gyx,) =1 if s=2 and
Gi(x) N Gy(x) N G(x) N -+ N G(x,) = 1 otherwise.

(1.2) Let I', G, etc. be as is (1.1) with ¢ > 3 and se{4,5,7}. In addition,
suppose that s+ 5 if q =3. Let H,, = A\q), H,, = B(q), Hy,, = Gxq)
and G,,= aut(l",,,) = aut (H,,,) for n=3,4,6; H,, is to be considered
as a subgroup of G, ,. Let k= {x,y} be an edge of I', 4, = {w e V(I')|3(, w)
<s5—2 for i=x and y and 4= 4, U 4,. Then there exists a bijective
map ¢: 4— W(I',_,,) mapping edges onto edges such that:

(a) For i= x and y and for each ge G@) (resp. g € G(k), where G(k)
is the stabilizer in G of the unordered pair {x,y}), there exists a unique
element he G,_,((D)p) (resp. he G,_, ((R)p)) such that (wW)h = (w)p~'gp for
every we (4d)p (resp. we (dyp = V(I',_1,,)).

(b) For i = x and y and for each he H,_, (()p) (resp. h e H,_, ((k)p)),
there exists a unique element ge G(i) (resp. ge G(R)) such that (w)h
= (w)p~'gp for each we (d)p (resp. w e (d)p).

In particular, H,_, ((G)¢) < GG) < G,_1,((G)p) for i==x and y and
H,_,(B¢) £ Gk) L Gy o (R)p).

In the following theorem, 04,2 denotes the unique subgroup of
aut (I',,,) = PI'L(2,9) isomorphic to PGL(2,9). The reader can check that
I, is (G,,,, 4)-transitive.

(1.3) Let I', G, etc. be as in (1.1) with g = 2 and s€{4,5,7}. Let (X,Y)
be an arbitrary 1-path of I',_,,. Then there exists a map ¢:k = {x,y}
—{X, Y} such that H,_,((D)p) = G@) for i = x and y. Either H,_,((k)p)
Z G(E) 2 G,_.(k)p) or s =4 and G(k) = G, (K) where K is any edge of

https://doi.org/10.1017/50027763000018420 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018420

GROUPS WITH A (B, N)-PAIR 3

F4,2.

In the first part of the proof of (1.1) we show that s <5 or s€{7,9,13}.
Note the remarkable coincidence with the numbers n = 2,3,4,6,8 and 12
obtained in [3] as the solution to a completely different sort of problem.
To exclude s =9 when p = 2 and ¢ > 4 we construct a generalized 8-gon
of order (g, q), thus obtaining a contradiction from [3]. To proceed in
the case ¢ = 3 (mod 4), we require [6,(8.2.11)] in order to prove that
PGL(2, q) £ G(x)™® for some vertex x. In the proof of (1.2) we use the
characterizations of the graphs I”, , given in [5, Theorem 1.8], [7, Theorem
2] and [12, (4.4)]. Otherwise, the arguments contained in this paper are
elementary and self-contained.

When proving (1.2), we include the case that ¢ = 8 and s = 5, making
the additional assumption that G(x)® = PGL(2, 3) for every vertex x.
The conclusion reached is that G, (X) induces PGL(2, 3) on [',(X) for
every vertex X of I',;. Since this is not so, it follows that G(x)"®
= PGIL(2, 3) does not hold for all vertices x of I" when ¢ =3 and s=5;
in particular, G cannot act transitively on V(I').

Theorems (1.2) and (1.3) imply that G,_, ,((k)p) contains an element
exchanging (x)p and (y)e if G(k) contains an element exchanging x and
y. Thus I',_,, is (G,_,,,, s)-transitive if I" is (G, s)-transitive. For n =4
and 6, I, , is (G,,,, n + 1)-transitive if and only if p = n/2 (see [2]). Hence
we have the following corollary:

(1.4) Let I', G, etc. be as in (1.1). If G acts transitively on V(I') (i.e., if
I' is (G, s)-transitive), then p =2 if s=5and p=3 ifs=1T.

For other relevant results consult [4] and [9] where, however, com-
pletely different methods are used from those developed here.

2. Proof of (1.1): se{2,3,4,5,7,9, 13}

Let I" and G satisfy the hypotheses of (1.1). If W= (x,, ---,%x,) is
any ¢-path (¢ arbitrary), we set G(W) = G(xy, - - -, %) = G(x) N --- N G(x,)
and G(W) = Gx,, - - -, %) = Gx) N - -+ N G(x,) for each ;e N. If be G(x),
x a vertex, we denote by |b|, the order of the permutation that b induces
on I'(x). We will often use integers to denote vertices of I.

For each vertex x, let G(x) be the largest subgroup of G(x) such that
G(x)"® Z PGL(2,9) and f, = [G(x) N G(y, x, 2): G(x)] where y and z are
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any two neighbors of x. A ¢path (0,---,f) will be called good if
[GIW) N GG): G(W) N G(i)] = f; for each i with 1 <i<<t— 1.

@21) If W=, ---,t) is a good t-path, then there exists a vertex t -+ 1
such that 0, ---,t,t + 1) is a good (t + 1)-path.

Proof. Clearly all 1- and 2-paths are good, so that we can assume
t>2. Let W,=(1,---,t). By induction, there exists an element b, ¢ G(W,)
N G(t) with |b,|, =f, and (p,|b.) =1. For 1<i<t¢— 1 there exists an
element b,€ G(W) N G(i) with |b;), =f, and (p,|b;)) = 1. The subgroup
{b, b,) contains an element ¢ with ¢ 'bc = b€ G(0). Let a, = b and
t+ 1 be a fixed point of @, in I'(t) — {t — 1}. For each i with 1 <i <t
— 1 there exists an element c; € (b, a,> with a, = ¢;'b,c;e G(¢t + 1). For
1<i<twehave a,€GO,---,t, t+ 1) N GG and |a;; =f. O

(2.2) Every s-path is good. If (0,---,s,s+ 1) is a good (s + 1)-path, then
GO, ---,8)<G(s+1). If f,+1, then s+ 1 is the only vertex in I'(s)
— {s — 1} such that (0, ---,s, s + 1) is good.

Proof. For every vertex x there exists, according to (2.1), at least
one good s-path beginning at x. Since G(x) acts transitively on W, (x),
the first claim follows. Let ac G(0, ---,s, s + 1) N G(s) be an element with
lal, = f;. Suppose there exists an element b€ G(, - - -,s) — G(s + 1). Then
{a,b) < G(0, - - -, s) acts transitively on I'(s) — {s — 1} (for if f; = 1, then
(b) itself must act transitively on I'(s) — {s — 1}), contradicting the hypo-
thesis that G(0) acts intransitively on W,,,(0). In particular, if (0, ---,s,
y) is a good path and f, # 1, then there exists an element in G(O, - - -, s)
whose only fixed point in I'(s) — {s — 1} is y; thus y =s+ 1. O

If we take any l-path and start extending it to an arbitrarily long
good path, the resulting path, since I" is finite, contains, after a while,
no new vertices. Thus we may choose, once and for all, an infinitely
long path W= (--.,—1,0,1,2, - --) such that for each i there exists an
element A, ¢ G(W) N GG) with |A;|; = f..

23 GA)=1ifs =2 and G(1,2) N GO, ---,s) = 1 otherwise.

Proof. Let A= G\1,2)N GO, ---,s). Since h,e G, ---,8),G(Q, -,
s) acts primitively on I'(s) — {s — 1}. Since G(1)) N G(, ---,8) I GQ, ---,9)
and G,(1) N G@,---,s) < GO, ---, s) acts intransitively on I'(s) — {s — 1},
we have G\(1) N G, - -+, 8) < Gy(s) and in particular G,(1) < A if s = 2.
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Similarly, Gs) N G(s, - -+, 2, %) < Gi(x,), x,€ I'(2) — {1, 3} arbitrary. By
2.2),G0, ---,5) < G(—s + 4, ---,s) and thus A < Gy(x,) N G(x,,2,1,0, - - -,
—5s+4) <G(—s+4), hence A< G(—s+HNG(—s+4,----,3) < G(3).
Choose any yel'(s) —{s—1}. Then A< G(2) N G, ---,s,5 < Gy,
A < G(y) N G(y,s, -+, 3,x3), x;€ I'(8) — {2, 4} arbitrary, thus A < Gy(x;)
N G(x3,8,2, -, —5+5) < G(—s+5),A<G(—s+5NG(—s +5,---,4)
< G(4). Also, ASKGB)NGE, -,y N G(y) < G(2),ze I'(y) — {s} arbi-
trary. It should now be clear that A < G(1, ---,s,¥,2, - - -, w) for every
path (1,---,s,%,2,---,w) of arbitrary length beginning with (1, ---,s).
Since I' is connected, it follows that A = 1. [J

To prove (1.1), we have only to show now that s <5 or s = 7. From
now on we assume that s > 3.

2.4) G(1,2) is a p-group. For each t >3 and each i with 1<i<t— 2,
GG, i+1)NGO,---,0)=G@A, ---,t —1).

Proof. By (2.3), G\(1, 2) acts semi-regularly on the set of s-paths be-
ginning with (0,- - -, 3) and thus |G\(1, 2)||¢°~>. To prove the second claim,
we note that Gy(1,2) < G«(2) < G(2, 3) and thus Gy(1, 2)7® < O,(G(2, 3)"®)
so that Gy(1,2) N G@) = G(1,2,3). [

2.5) If2a<t<s—1,then G(1,---,t— 1) acts transitively on I'(t)— {t — 1}.

Proof. Let x, and x, be any two vertices in I'(f) — {t — 1}. There
exists an element a; € GO, - -, t,x;) N G(t) with |a,, =f, (=1,2). Iff,+#1,
the commutator group {a,, @)’ < G(0, - - -, 1) of {a;, a;y < G(O, - - -, t), there-
fore any p-Sylow group of {a,, @,)’ and therefore G,(1,---,t— 1) act
transitively on I'(t) — {¢t — 1}. If f,=1, then ¢ < 3 so that G(1, - - -, t—1)
e Syl, (GQ, - --,t)) and the claim follows directly from the fact that
G(, - - -, ¢) acts transitively on I'(®) — {t — 1}. [

From now on, we set m = (s/2) — 1 when s is even and m = (s — 3)/2
when s is odd.

(2.6) If s> 4, then ZO,G(,1)) < G.(0,1), where ZO,(G(0,1)) denotes
the center of O,(G(0, 1)).

Proof. By (2.5), G|(0,1) # 1 and thus 0,(G(0,1)) +# 1. Let b be a non-
trivial element in ZO,(G(0, 1)). If we I'(1) — {0} is arbitrary, then Gy(1, w)
< 0,(G(0,1)) and thus G|(1, w) = G(1, (w)b), so that be G(w) by (2.5).
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Thus b € G|(1) and similarly, b € G,(0). Since G,0,1) N GO,---,s — 1) =1,
there exists an n < s such that b€ G, - - -, n) — G(n + 1). By (2.5), there
exists a nontrivial element ae G(1,---,5 — 2) < 0,(G(0,1)). Since b
€ Z0,(G(0, 1)), we have aeGy(s —2,s—3,---,n,(n + 1b, ---, (s — 2)b).
By (2.3), the length of the path (s —2,s—3,---,n;,(n+ 1)b, ---,(s — 2)b)
is at- most s — 3. Therefore s — 1< 2n. [J

(2.7) Suppose s¢1{2,8,4,5,7. Then s is odd, ZO,(G(0,1) < G,..(0) or
ZO,,(G(O, 1)) < G,...(1) and G operates intransitively on the vertex set V(I').

Proof. We assume first that there exists an element be ZO,(G(0, 1))
— G(m + 1). Then [b,Z20,(G(m + 1,m + 2))] < G(—m + 2,---,2m) be-
cause of (2.6). Since s¢{2,3,4,5,7}, the length of (—m + 2, ---,2m) is
at least s — 2. By (2.3), it follows that [b, ZO,(G(m + 1,m + 2))] = 1 and
therefore ZO,(G(m + 1, m + 2)) = ZO,(G(m + 1, (m + 2)b)), so that ZO,
«(Gm + 1, m 4 2)) I(G(m + 1, m + 2), G(m + 1, (m + 2)b)) = G(m + 1).
By (2.6), we have ZO,(G(m + 1,m + 2)) < G,,.(m + 1).

On the other hand, if ZO,(G(0,1)) < G(m + 1), then ZO,(G(O, 1))
< G,..(1) since ZO,(G(0, 1)) < G(0,1) and G(0, 1) acts transitively on the
set of (m + 1)-paths beginning with (0,1). Therefore ZO,(G(0, 1)) < G, ..(w)
for u=0 or 1.

Suppose that Z0,(G(0, 1)) < G,..(0). Since G,.,(0) < G(—m, ---, m),
we have 2m < s — 3 so that sis odd and G,.,0) N G(m+ 1) =1. If G
contains an element ¢ which exchanges 0 and 1, then ZO,(G(0, 1))
= Z0,G(, 1))’ < G, .,(0 = G, .,(1) and thus Z0O,(G(0, 1)) < G,...(0) N G,(m
+ 1) = 1, a contradiction. Therefore G acts intransitively on V(I"). []

(2.8) se{2,8,4,5,7,9, 13}

Proof. We may assume that s is odd, s > 9 and G,,,(0) = 1. Since
G..1(0)#1, G,..(i) #1 for every even i. There exists an element c € G, ,(0)
— Gy(m + 1). Suppose first that s = 3 (mod 4) and thus G, .,(m + 2) = 1.
Since [¢, Gna(m + 21 < G(—m + 2, -- -, 2m) — G,(2m + 1), we have 3m — 2
< s— 3, hence s < 7. Therefore s =1 (mod 4). It follows that G, ..(m + 3)
# 1 and thus [¢, G,..(m + 3)] < G(—m + 4, ---,2m — 1) — G|(2m) so that
3m —5<s—3, hence s<13. O

Before going on to § 3, we prove more lemmas needed later.

@9) If s€{5,7,9,13}, then G, .(u) < ZOG(O,1) for u=0 and 1 and
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G,.(w) #= 1 for u=0 or 1 (or both); if Gn..(v) + 1, then |G, ..(v)| = q.

Proof. Letu=0or 1. Since G, (v) < O,(G(0, 1)), either ZO,(G(0, 1))
N Gpi(uw) #1 or G,.(v) =1. Suppose that ZO,(G(0, 1)) N G, ,(u) con-
tains a nontrivial element b. Then G, (v) = A} 410h% 00110 J < friusr)
since G, (v) N G(m+u+1) =1 and G, (W ™D L O(G(m + u,m
+ u + pFomrer)y - It follows that |G, .,(w)| = q and G, ..(w) < Z0,(G(0, 1))
since Ay, normalizes ZO,(G(0, 1)).

It remains only to show that G, ., () # 1 for u =0 or 1. Thus we
suppose instead that G, ..(x) = 1 for every vertex x. By (2.7),s=5or T.
Let s =5. Then ZO,(G(8, 4)) < G(2) — Gy(2) since otherwise Z0O,(G(3, 4))
< Gy(3). Since h, normalizes ZO,(G(3, 4)), ZO,(G(3, 4)) acts transitively
on I'(2) — {38}. Since Z0O,(G(8,4)) centralizes G\(1, 2, 3), we have G\(1,2,3)
< Gy(2) = 1, in contradiction to (2.5). Thus s =7 and ZO,GG,i + 1)
acts transitively on I'(i + 3) — {i + 2} for every i. Since ZO,(G(, 2))
centralizes G(1, ---,5), we have G(1,---,5) < G,(4). Since ZO0,(G(0, 1))
centralizes G(1, - - -, 5), it follows that G,(1, ---,5) < Gy(8) = 1, again a
contradiction. [

Thus we may suppose, from now on, that G, ,,(i) # 1 for every even
i whenever se{5,7,9, 13}.

(2.10) Let s€{5,7,9,13} and p = 2. Then there exists an element ac G,
(s — 1/2) N GO, -+, 2(s — 1)) N Gy(3(s — 1)/2) with |a|,., =¢g — L

Proof. We may suppose that q # 2. Let x, and x, be any two ver-
ticesin I'(s — 1) — {s — 2, s}. By (2.5), there exists for j = 1,2 an element
8;€ O)(G(x;,s — 1)) such that ())g, =2(s — 1) —i for s —1<i<2(s—1).
Since O,(G(x;, s — 1)) induces an elementary abelian 2-group on I'(s — 1),
we have (s — 2)g; = s. Therefore both (0,---,2(s — 1)) and 2(s — 1), - - -,
0g; =, ---,s,(s —3sg,, - - -,(0)g,) are good paths. By (2.2), (B)g, = 2(s — 1)
—ijalso for 0<i<s—3 Let a=gg,. Then |a|,.,=q— 1. By (29),
G, .i(s — 1) < ZO(G(x,, s — 1)) N ZO(G(x,, s — 1)) and thus [a, G, ,.(s — 1)]
=1. Since s —1 is even, G,,(s — 1) acts transitively on I'((s — 1)/2)
— {(s + 1)/2}. Since ae G((s — 3)/2), a € G((s — 1)/2). Similarly, a e G,(3(s
- 1/2). O

It is in the proof of the next lemma that we require [6, (8.2.11)].
211) If p # 2 and s > 4, then |GW)| = |G(---,— 1,0,1,2, ---)| is even.
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Proof. We first suppose that we can choose u ¢ {0, 1} such that f, is
even. The reader should check the following simple fact:

*) Let ¢ —1=2*w with w odd. If ¢ is an arbitrary element in the
stabilizer PI'L(2, q).. of « € PG(1,q) but not in PGL(2,q) whose order
is a power of two, then |o||2* and either 2 = 2, |¢| = 4 and ¢’ € PGL(2, q)
or k> 3 and ¢** e PGL(2, q).

We choose an odd n € N such that |A,|/n is a power of two. It follows
from (*) that A2« or h%/»e G(W) — {1}.

It remains to show that f, is even for © = 0 or 1. To show this, it
will be necessary to make only a few minor changes in the proof of [8,
(6.3)]: Suppose that both f, and f; are odd. Then q = 3 (mod 4), G(u)" ™
= PSL(2,q) for v =0 and 1 and |G(0, 1)| is odd. Thus a 2-Sylow group
of G(u) is isomorphic to a 2-Sylow group of PSL(2, q), so that G(u) is p-
stable for ¥ =0 and 1 (see [6, (2.8.3),(8.1.2)]). Let u=0 or 1 and C
= C5u,(0,(G(w))), the centralizer of O,(G(v)) in G(u), and ce C. Let w
e I'(u). Since G(u, w) < 0,(G(w)), we have G,(u, w) = G(u, (w)c). By (2.5)
and the hypothesis s > 4, Gi(u, w) £ G(2) for ze I'(u) — {w}. Therefore
ce G(u), since w was arbitrary. Now let z and w be any two neighbors
of u. Since G,(u, w)'® = O0,(G(u, 2)"®), we have CT® < O0,(G(u, 2)"?).
Therefore we can find elements de G(u,w) and ee G,(u,z) such that
cd = e and thus ¢ = ed™' € 0,(G(w)), so that C < O,(G(w)). Thus O, (G(w))
=1 and G(u) is p-constrained (see [6, p. 268)).

Let SeSyl,(G(0). By [6,(8.2.11)], we have J(S) < G(0). We may
assume that S < G(1) and thus Se Syl, (G(1)). Therefore J(S) < (G(0),
G(@)). Since I' is connected, {G(0), G(1)> acts transitively on the set of
edges of I' and thus J(S) = 1, a contradiction. []

(2.12) If s=3, then q(g — D/(g — 1,2)||G(w) N G — w)| for u =0 and 1.

Proof. Let u=0 or 1 and A =<{Gw)|lwel'(w). Let yel'(u).
Then [Gi(w), G(y)] < Gi(u,y) and thus, by (2.3), [A, G(v)] = 1. By (2.5),
Gy(y) acts transitively on I'(u) — {y}, so that AT® S PSL(2, q). Let a be
an element in A N G(u) N G(y) such that |a|, = (¢ — 1)/(g — 1,2) and
(al,p) = 1. Since [e, G\(v)] < [4, G,(w)] = 1 and G,(u) acts transitively on
I'(y) — {u}, we have ae G\(y). O

(2.13) Lets=3,q9 = 3,G(x)"™ = PGL(2, 3) and |G(x)| = 38 for every vertex
x. Let u=0 or 1 and y, and y, be vertices such that (u,u + 1, u + 2, y,
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¥,) is a good 4-path. Then (v, y, u + 2, u + 3, u + 4) is also good.

Proof. Let u = 0 (the proof is the same when u = 1), A = {(G(w)|
wel'(2)) and B = (A, G{(2)); we have [A, G,(2)] = 1 and | B| = | B"®|-|G|(2)|
=36. Let G,(2)=<h)and g, =1,g,, ---, g, be elements of B inducing dif-
ferent permutations on 7'(2) which we may choose such that |g;| = 2 for
2< i< 4. Then three divides the order of every element in B = {g;h’|1
<1<12; 0<j< 2} except g; for 1 <i< 4. Thus B contains just one
2-Sylow group S. It follows that A = (S, G,(1)), therefore |A| = |S|-|G,(D)]
=12 and, in particular, A N G(2) = 1.

Since (0, - - -, 4) is good, there exists an involution be G0, - --,4). For
i =1 and 3, there exists an element c;, € G,({) mapping 4 — i to y,. Since
©, - -, dec; = ((0)cs, 4, 1, 2, 3) is good, we may assume that (0)c; = y,. On
the other hand, since both (0, - - -, 4)c; = (0, 1, 2, y,, (4)c;)) and (0, 1, 2, ¥, ¥,)
are good, we have (4)c, =y, by (2.2). Let ¢ be the element in Gy,
mapping 1 onto 3 and d = ccr'(eces?)’e;e. Then de AN G(2) = 1. But
b e G2, y,y) and b%°e G(2,y, (0)c;) so that d = bc7'b%° ¢ G(y,), 2
contradiction. []

3. The case s =9

Since G(2) < ZO,(G(2, 3)) and G(2) acts transitively on I'(6) — {5}, it
follows that G,(2,- - -, 8) < G,(6). Choose an arbitrary element b, & G,(10)*
= G(10) — {1}. For any b;e Gi(2, - - -, 8%, we have [b;, byl € G|(5, - --,11)
— G((12), therefore [b,, b,) 2 G(4) and hence b,z G,((4)by}). Let b, be the
element in G,(2) with (5)b;'b, = 7. Since [G(2), G/(2, ---,8)] = 1, b, = b;®
€ G2, - -+, 8) — Gi((4)bi'b,). Thus G,(2, ---, 8 N Gi((4)by'by) = 1.

(8.1) a) There exist elements b,e G(i — 3, ---,i + 3)* for i = 3,4 and 5
such that [b,, b;] = b,.

b) If b,e G(4)* and by,e G|(6, - - -, 12)*, then there exists an element b,
€ G(6)* such that [b,, b)] = b;.

c) If b,e G(4)* and by, e G(10)*, then there exist elements b€ G,(6)*, b,
€ G4, - --,10) and bse G(8)* such that [b,, b,] = bsb;bs.

d) If b,e G4, ---,100* and b, e G(8, - - -, 14)*, then there exist elements
by G,(8)*, bye Gy(6, - -, 12) and by, e G(10)* such that [b;, b,] = bsbsby.

Proof. a) We have seen that there exists a vertex x € ['(7) such that
G2, ---,8 N G(x) = 1. Let b, be the element in G0, - --,6) such that
(8)b;' = x. Then [b,, b;] € G(4)* for every bye G2, ---, 8)*. b) is left to
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the reader. c) We have [b,, bl € Gi(5, - - -,9) — G(4) — G,(10). There exist
elements b, € G(6)* and b;e G(8)* such that [b,, b,)bs'bs* € G4, - - -, 10).
Since [G(6), G,(8)] = [G(B6), G\(4, - - -, 10)] = 1, the claim follows. d) is now
clear. [J

We now suppose that p = 2. By (2,11), G(W) contains an involution
a. Let (@) = (—1)*"**! for each i.

(8.2) For every even i:

A) L6 =L6—1E+ 1)
B) () =G — 2)¢CE + 3)
O E+6)=CE+2=CC+49

Proof. A) Choose b;, b, and b, as in (3.1.a). Since Gi(2, - -, 8)"®
= 0,(G(1, 2)"V), Gy(2, - - -, 8)"® = O,(G8, N™) and G,(1, - --,8) = G2, - - -,
9) = 1, we have b2 = b{® = b{® and, in particular, {(1) = &(9). Similarly,
by = b = bj® and bf = b} = bi®. We have [b}'™, bi"] = [bs, bs]**@
because [b;, b)] = [by, bs] = 1. Therefore biV¢"P = b = bi® and thus
£(Q)¢(—1) = ¢(0). For arbitrary even i, we find, as in (3.1.a), elements
bi,;€Gi+j—38,---,i+j+ 3)* for j =38,4 and 5 such that [b;,s, b,
= b,,, and proceed as before. B) follows analogously from (3.1.b). C)
Choose b, for i=4,6,7,8 and 10 as in (3.1.c). Then b®bi®bi*
= (byb,b)® = [bS, b%] = [B5©, Bi®] = (bﬁb7bs)c(0)c(6> = DEOUOBHLOXOHLOX®  gince
[G()), G(k — 8, - -+, k + 3)] = 1 whenever j is even and |j — k] < 4. Thus
by owo-t®» e G(10). It follows that £(0)((6) = £(2). Similarly, £(0)¢(6) = &(4).

O

By (3.2.0),&(i) = ¢(0) for every even i. By (3.2.B), it follows that
Z@) = 1 for i odd. Therefore, by (3.2.A), £(2) = 1 and thus a € G(1, 2). By
(2.4), it follows that ¢ = 1, a contradiction.

Thus p = 2. First let ¢ = 2. For each i let b, be the nontrivial
element in G,(i — 3, ---,1 + 3). Since there exists a vertex xe I'(7) such
that Gy(2, ---,8) N Gi(x) = 1 and |I'(7)] = 3, it follows that b; e G\((6)b,y).
Similarly, b, ¢ G,((10)b;). Thus [b;, b,] € Gi(7, 8, 9) — G(6) — G(10), so that
bgby[by, byl € Gi(6, - - -, 10) and (beby[bs, bul)? e Gi(5, - - - 11).  Since [G.(3),
G(7,8,9] =1 for i =6 and 10, (bsby[bs, b.,1])* = [bs, b1  If [bs, ) = 1,
then [b;, [b;, bu]] =1 and therefore bye Gy(2, - - -, 6, (5) [bs, bil, - - -, (2)[bs,
b)), in contradiction to (2.3). Therefore [by, b,,]° #+ 1 and, in particular,
[b5,b1)* 2 G(3). Since [G4(2), G/(2, - - -, 8)] = 1, we have b, e G,((8)b,). If (8)b,
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= (4)[bs, b,,], then b, € G((3)[b;, by]) and thus (3)[b;, b1,]* = (3)[b5,01,16,,b5b,, = 3.
It follows that (8)b,  (4)[b;, bi]. Since [b;, by] € G4, - - -, 12) — G(13), we
have [b;, by] 2 G(3), so that b, ¢ G((4)b,;) and therefore (4)b,, = (8)b,. Thus
(4)byy = (4)[b;, byy]. Hence (by[bs, b,])’ € G(3). Since [by, Gi(6,7,8)] =1,
[bs, b11)* € G(8), a contradiction.

When g > 2, a different argument is required.

(8.3) Let p= 2. For every i there exists an element e, e G,(i) N GQ, - - -,
i+ 8 N GG + 8) with |e;|; =q — 1 for i <j<i+8

Proof. By (2.10), there exists an element a € G,(4) N G4, - - -,12) N G,(12)
< G(W) with |als = ¢ — 1. Thus q — 1||a|l. Since @'*"* € Gi(4, 5), we have
la| =lal, by (2.3). If oe PI'L(2,q). and g — 1||o|, then |o|=q — 1. It
follows that |a|; = ¢ — 1. Similarly, |a|;, = ¢ — 1.

For each i let a; = ¢'*. Then [a;, Gi(i + 1, ---,i + 7)] = 1 and thus
a; € G(i + 8). It follows that a; € Gi(j) whenever j = i (mod 8).

By (3.1.c), we can find elements b, € G(i)* for i = 0,2,4 and 6 and an
element b, € G,(0,- - -, 6) such that [b,, bj] = b,b;b,. Since [b,, bs] = [b5*, b3*]
= byrbgbgo, byob;' € Gy(0) and thus [b,, a,)] = 1. Since [b,, a’] = 1 implies
laly = q¢ — 1|j, we conclude that |a|, =gq — 1. Similarly, |al;=q — 1.
By (3.1.b), we can find b;e G(i — 3,---,i + 3)* for i = 8, 10 and 13 such
that [bs, b,;] = b,. Then b% = [b%, b%] = [bs, bis] = by and therefore |al,
=q — 1|laf. It follows that |a|, = ¢ — 1 and similarly |a|, = ¢ — 1. Thus
the claim is proven for i even.

Let ¢ be an element in G,(2) N G, - - -, 10) N G(10) with |[c¢|, =¢q¢ — 1
for 3<i<9. We can choose ¢ such that d = ace G,(3); let d, = d'* for
each i. Since [d, Gi(4,-- -, 10)] = 1, d € G,(11). Since a € G,(4) and c € G,(10),
we have |d|, = |d|, = g — 1. By (3.1.a), we can find elements b; € G(i — 3,
.., i+ 8* for i =17, 8 and 9 such that [b,, b)] = bs. Then b¥ = [b¥, b¥]
= [b;, b)] = by and thus |d|, = ¢ — 1||d|; so that |d|, = ¢ — 1. Similarly,
ldl; = ¢ — 1. By (8.1.b), we can find elements b,e G(i — 3, ---,i + 3)*
for i = 7,10 and 12 such that [b,, b))] = b,,. Then b% = [b%, b%] = [b, b))
= b,, and so |d|;||d};. Similarly, we have |ds||d|, and therefore |d|; = [d .
If we pick b, (i = 4,6,7,8,10) as in (3.1.c), then (bsb,b)*® = [b%, bis] = [bs,
byl = bbb, and so b*b,e G(6) N G(10) = 1, thus |d|, = q¢ — 1||d|; = |d .
Finally, let b; with 7 < i < 11 be as in (3.1.d). Then (b:b,b,)*" = [b¥, b
= [b,, b,] = bbb,y and therefore bi'b,e G(8) N G,(12) =1, so that |d]|,
=q — 1Hd17- O
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We are now in a position to obtain a contradiction by constructing
a generalized 8-gon of order (g, q). We will save space, however, by post-
poning this until later, where we include it as one case in the construc-
tion crucial to the proof of (1.2).

4. The case s = 13

This time we suppose first that p = 2. If b,€ G,(0)* and b, € G(10)%,
then [b,, b)) e Gi(8, - - -, ) — G,(2) — G(B8). If —2 < i < 6, then 3(0, (i)[b,, b))
< 6, so that ()[by, bi]b, = (B)[by, byy] and thus [by, bpl? e GG). If 4 < i< 12,
then 3(10, (D)[by, by]) < 6, so that (2)bbiby = (Db, bi]byy = (D)[by, by] and
thus [b,, by]* € G(@F). Therefore [b,, by)’e G(—2, ---,12) NGB, ---,7) = 1.
It follows that [by, [by, by]] = 1 and hence b,e G(—5, ---, 1,2, (1)[bo, b,
-+, (—8)[by, by]) = 1. Contradiction.

Thus p > 3.

(4.1) a) If bye G[0)* and b,c G\(2, - - -,12)*, then there exists an element
b, € Gy(2)* such that [b,, b;] = b..

b) If bye G0)* and bsc G4(8)*, then there exists an element b,e Gy(4)*
such that [b,, b;] = b..

c¢) If bye G(0)* and bye G4, - - -, 14)¥, then there exist elemenis b; € G\(i
—b5,---,1+b) for i =2, 3,4,5 and 6 with b, + 1 such that [b,, b,] = b,b,
b,b;b;.

Proof. We leave a) and b) to the reader and turn to part c¢). Since
[G4, ---,14), G(12)] =1 and Gy 12) acts transitively on I'(6) — {7}, we
have G|(4, - - -,14) < G,6). Thus [b, b,] € G, ---,7T) — G(0). There exist
b,c G(—3,---,7 and b, e G(1, - - -, 11)* such that [b,, b,]b;'b;* € G,(0, - - -,
8) and thus b,¢G(i— 5, ---,i+ 5) for i = 3,4 and 5 such that [b,, by
-b;b;b; bt = b,. Since [b,, b;] = [b, b;] = 1 for 2 < i < 6, we have [b,, b]
= b,b;bbsb. [

By (2.11), there exists an involution a in G(W). Let (i) = (—1)!*!«**
for each i.

(4.2) For every even i:

A) (E—1) =L+ D+ 6) and LG+ T) = LOLE + 2)
B) @) =L@+ DLE + 8)

O w=C+6ifli+3) =1

Proof. A) We may take i =2. If b, b, and b, are as in (4.1.a),
then B =bg = [bf, ] = (B, '] = [by, bIV< since [b,, bi] = [b, b] =1
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Thus £(8) = ¢(1)¢(6). By (3.1.a), we can find elements b,¢ G,(i — 5, -,
i+ 5)* for i = 3, 8 and 10 such that [b,, b)) = b;. Then b5® = [b,, b,]*
= [B5®, b5P] = b5@*®, B) follows analogously from (4.1.b). For C) we
assume { =0 and {B8)=1. If b, withi=0,2,3,4,5,6, and 9 are as in
(4.1.c), then (b,b:b,b;by)* = [bg, b3] = [b5®, by] = [b,, b]*® since [b,, b;] =1
for 2<i<6. Since [b;,b] =1 for 2<i<5b, we have (b,b;b,b;b;)*®
= (bbb, b,)*®b5® and therefore by” 4 = biby*® € (b, by, by, b;) < G(0), so
that {(0) = {(6). O

Suppose that £(3) = 1. By (2.4), we have {(2) = {(4) = —1. By (4.2.0),
£(0) = £(6). By (4.2.B),L(8) = £(0)c(4) = —£(0) and £(10) = {(2)¢(6) = —(0).
By (4.2.A), (9 =124 =1, 1) =L6)®) = —1 and {(11) = {(4)L(6)
= —¢(0). Since a2 G.8,9), we have {(8) = —{(0) = —1 and therefore
{(6) = 1. Since a2 G(5,6) and ae G(6,7), we have {(5) = {(7) = —1.

We now choose elements b, with i = 0,2, ---,6,9 as in (4.1.c). Since
£3) = &(6) = 1, we have b, - - - b, = [by, by] = [b5, b§] = (b, - - - by)* = bFVDE®
SBSIOBEBEY = bbb b b, Thus bie (b, bs, b,) < Gy(—1), so that b, = 1.
Therefore b€ (b,, b;y < G(—2), so that b, =1 and thus b, = 1. There
exists an element ge G with (0, ---,13)g = (2, - - -, 15). Since {(1) = £(2)
= —1,f, > 1 for every i and thus, by (2.2), ()g =i + 2 for every i. If
¢ = gag™!, then b;'b;' = bsbg = [bS, bS] = [b5Y, b7']. From [b,, b] = byb, it
follows that [b;?, by'] = bybybsbsby'by!. Since [bg, b;] =1 fori=0 and 9
and [by, b;] = 1, we have b;'b;' = [b;1, by'] = b,b;b;'by and thus b;2b;?
= b;'bb,byt € Gy(9). Therefore b;’e G(—2,---,9) =1, so that b, = 1, b;2
= byb;' =1 and thus b; = 1. Contradiction. It follows that {(3) = —1
and thus ¢(i) = —1 for every odd i.

From (4.2.A) we have that (@) = —{(E + 2) for every even i. Thus
either &(6) = &(10) = ¢(14) = —1 or {(8) = {(12) = {(16) = —1, in contra-
diction to (4.2.B).

5. Proof of (1.2): Preliminaries

(5.1) Let q+2, sc€{4,5,7}, p+2 if s=4 and Gx)"™ = PGL(2, 3) for
every vertex x when s =5 and g =3. Let u=0o0r1l. Then G(v) N G(W)
N G(u + i) £ G(u + i) for every i with 1 < i< s — 2 excluding i = (s — 1)/2
ifgq=3and s=5o0orTandi=2and 4if =4 and s=T1.

Proof. Suppose G(u) N G(W) £ G(u + i) for some i. Since h,,;
normalizes G\(x) N G(W), it follows that Gy(uw) N G(W) N G(u + i) £ Gi(u
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+ ). It thus suffices to prove G,(u) N G(W) £ G\(u + i) to conclude that
G(w) N GIW) N G(u + i) £ Gy(u + i). We choose, once and for all, an
element g€ G such that (0, ---,8)g = (2, ---,s+ 2) and, in case p # 2,
an involution a ¢ G(W); let {(i) = (—1)"“*! for every i.

Suppose first that s = 4 and p ++ 2. Then b? = bi“*® for every i and
every b,e Gy(i,i + 1). For each w there exist elements b, e G\(i,i + 1)*
for i = w, w + 1 and w + 2 such that [b,, b,,.] = b,.;. Then b5%;® = b2,
= [bu, byy1]® = [B52, BT = [buy by o5 since [by.1,00] = [Buss
byl = 1. Thus {w + 3) = {w + 2)¢(w + 4). Thus there exists a k& such
that {(i) = 1 iff i = k (mod 3). In particular, f; > 1 for every i so that,
by (2.2), ()g =i+ 2 for every i. Therefore ag™lage G\(i) iff i=k+ 1
(mod 3).

Now let s = 5. Since, by assumption, f; > 1 for every i, we have
()g =1+ 2 for every i. We claim that it would suffice to show that
GW) N G(u) 1 for u=0 or 1 when ¢ >3 and for u =0 and 1 when
g = 3. Let, for instance, H = G(W) N G,(0) and suppose that H = 1. If
ac H, then [a, G(1, 2, 3)] = 1 and thus a € G,(4). Thus H < G,(i) for every
i =0(mod4). By (2.4), we.-have H £ G,(i) for every odd i. Let H=H
N G(1). By the remarks at the beginning of this proof, H # 1. Since for
each i, [H, h] < G,(0,1) N GW) =1, H< G(W) and thus H= H N G(W)
= HN G(@) for each odd i. Suppose that ¢ > 3 and H < G,(2) so that H
= G(W) N G(i) for every even i. Let X be the graph with V(3) = {(O)n|n
e Ny(H)} and E(2) = {{x, y}|x,y€ V() and (x,y) = 2} and let S be the
subgroup of aut (2) induced by N H). Since G@, ---,i + 4) < Ny(H) for
every even i,2 is (S, 8)-transitive and PSL(2, q¢) J S(x)*® for every x
e V(3). By (2.12), (¢ — /(g — 1, 2) divides [(S,(0) N S(2) N S(4))*®| and
hence |(H N G(2))"®|, too. Choose an element d in H N G(2) with |d|,
=(q— D/(g—1,2). Then d” e HN G(W) (where g = p") and, since r<|d|,
d" ¢ G(2). This contradicts the assumption that H < G,(2). It follows that
there exists an element c € H not in G,(2). By (2.3), |c| =|c|., = |c|, and
so |cl, = |g7'cgl. Since G(W)'™® is cyclic, {¢) and {(g~'cg) induce the
same permutation group on I'(1). Hence there exists an integer j relatively
prime to |c| such that c/’g7'cge G,(1). Since g lcge G(2), |cig'cgl, = |c/|,
+ 1. Hence G,(1) N G(W) + 1 and we can proceed as before. If we start
by assuming G,(1) N G(W) = 1, the proof is the same.

When p = 2, H # 1 follows from (2.10). Let p = 2. There exist ele-
ments b,€ G(i — 1,i,i + 1)* for 0 < i < 3 such that [b, b;] = b,b,. Let
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¢, = [by, bl € Gi(1, 2, 83) = G(2). Suppose that {(i) = —1 for every i. Then
et = ¢ = [by, b)]® = [b?, b;'] = [by, by] since [c, b,] =1 for i =1 and 3.
Thus ¢, = 1. It follows that [b,, [b,, b;]] = 1 for i = 0 and 3, so that b;'b;*!
= [b,, b;]® = [b;, b5'] = [by, bs] = b:b,. Therefore b,b, = 1, so that b, ¢ G,
-(0,1,2,3) =1, a contradiction. We are thus finished with the case s =5
when ¢ >3. Let g =3. If (1) = 1, then b®b" = bib; = [b,, b;]*
= [b§®, b;] = [by, bs]*® = b¥Pbi® since [by, b;] =1 for i =1 and 2. Thus
Z(0) = ¢(2) = £(3). Since a2 Gy(0,1),%(0) = —1. Therefore ag'age G,(2)
— G3). Thus we may suppose that G(W) N G,(i) = 1 for every odd i.
Since W is good and, by assumption, f, = 2, we may, by replacing a if
necessary, assume that £(0) = —1. Then ¢! = ¢§ = [b%, b5] = [b71, b5']
= [b,, b;] so that [b,, b;] = 1. Thus b;'b;* = [b2, b5] = [b5®, b;'] = [by, b:]*®
= b;*®p;%?, so that £(2) = 1. Therefore ag~'ag € G,(1) — G(2), a contradic-
tion.

Now let s = 7. This time we claim that it suffices to show that
GuyNGW)+#1for u=0o0or 1 when g=3 or ¢ > 5 and for u = 0 and
1 when q = 4. Let, for instance, H = G(W) N G1) and suppose that H
#+ 1. Since [H, G(2, ---,6)] = 1, H < G(7) and thus H = G(W) N G,@) for
every i = 1(mod 6) and H « G,(i) for every i = 0 or 2(mod 6). If H < G,(4)
and thus H = G(W) N Gi(i) for every i = 1(mod 3), we obtain a contradic-
tion from (2.12) as in the case s =5 (when q = 3). Let H = H N G(2).
Asinthecase s = 5, H = HN G(W) = HN G(@) for every i = 0 or 2 (mod 6).
Suppose that H < Gy(3). Let ¢ be an element with (i)c =8 — i for 1 < i
< 7. Since H=G(@, ---,7N G@) = GQA, ---, 7 N G«(7), ¢ normalizes H.
Thus H < G,(5) and hence H = G(W) N G,() for every odd i. Let X be
the graph with V() = {(1)n|n e Ny(H)} and E(X) = {{x, y}|x,ye V() and
d(x,y) = 2} and let S be the subgroup of aut(2) induced by N, (H).
Then PSL(2, q) < S(x)*® for every xe V(3) and I is locally (S, 4)-transi-
tive. We may thus conclude that (g — 1)/(q@ — 1, 8) divides [(S,(1) N S(3)
N S(5))*®| from the very theorem (i.e., (1.2)) we are busy proving, paying
attention that we never use the case s = 7 in the proof of the case s = 4.
This contradicts the assumption that H < Gy(3) as in the case s = 5 if
q #+ 4. In particular, f; > 1 for every i and thus ({)g =i + 2 for every i.
Exactly as in the case s = 5, we can find an element c ¢ H and an integer
J such that c’g7'cg e G(0) N G(W)* (if ¢ #+ 4). Thus we can proceed as be-
fore.

If p =2, G()NG(W) =~ 1 follows from (2.10). Suppose g = 4. If a = (h)’,
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then ae G(W) and a ¢ G(1). There exists an element be G(1) N G(W)
such that ab e Gy(0). Hence G,(0) N G(W) = 1. Finally, suppose that p + 2.
Suppose (i) = —1 for every i. There exist elements b, € G;(i)* for i = 0,
2 and 4 such that [b, b, =b,, Thus b5® = b¢ = [b, b]* = [b5®, bi"]
= [by, bJ***” since [b, b;] =1 for i =0 and 4. Thus —1 = ¢(5) = &(8)
-¢(7) = +1. Contradiction. [J

In the next lemma, we include the case s=9,p =2 and q > 4,
continuing from where we left off in § 3.

(5.2) Let g >2,sc{4,5 7 ors=9 and p=2 and Gx)"® = PGL(2, 3)
for every vertex x when g =3 and s=5. Let u=0o0r 1 and y, ---,y,_,
be vertices with y, #+ u + s such that (u,u+ 1, -, u+s—1,y, - ,¥_1)
is @ good 2(s — 1)-path. Then (y,_y, -,y +s—1,u+s,---,u+ 2(s—1))
is a good 2(s — 1)-path.

Proof. By (2.1), there exist vertices y;, ---,y:., such that (y,_, ---,
Yoy, +s—1lu+s,---,u+ 2s— 1)) is a good 2(s — 1)-path.

We first assume that s =4 and p = 2. By (2.5), {G\(y,, ¥,), G:(8 + u,
y)) contains an element a with 1+ ©,2 + wa =05+ u,4 + u). Since
[Gi(y, y2), Gi(B + u, )] < Gi(8 + u,y,y,) = 1, a is an involution. By (2.2),
a exchanges u and 6 + u. Thus a exchanges y, and y;,. But ae G(y,)
so that y, = y;,. Now taking (6 + ©,5 + u, 4 + u, 3 + u,y,, ¥,, ¥s) in place
of (u,u+1,---,u + 6), 2+ u in place of y, and 1 + u in place of y, we
conclude that (1 + v, 2+ u,3 + u, ¥, y,y:) is good. Since (1 + u,2 + u,
3 4+ u, ¥, ¥, ¥, is also good, it follows from (2.2) that y, = y:.

We may thus assume that p = 2 if s = 4. By (8.3) and (5.1), there
exists an element ac G,(u + s — 1) N G(y) N G(y,)) — G(y,) with (lal, p)
= 1. Since (la|,p) = 1, there exists an (s — 1)-path (xy, Xy.1, * -, Xuss_ss
Xypsor) With 2y v =u+8—1, %y #F ¥ and a€ Gy, Xuyy, * 5 Xusyooss
Xu.s-). Since I' is locally (G, s)-transitive, we may assume that x; =i
foru+1<i<u+s—2 By (22), x, = u since f, > 1 for every vertex
x, by assumption when s =5 and by (5.1) when se{4,7}. Since ac¢ G(u,
e u+98),aeGu, -, u+ 2(s — 1)) and thus ae G(y;). But y, is the
only fixed point of @ in I'(y,) — {u + s — 1}. Thus y, = y;. Again using
(3.3) and (5.1), we can find an element in G(u, ---,u +s—1) N G(u + s
— 1N Gy, ¥, ¥) N G(y,) — Gi(y,), so that y, = y;. Continuing, we obtain
¥, =y for 1<i<s—1 except when ¢ =3 and se€{5,7} or ¢ =4 and
s=1.
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If g=3 and se{5,7}, we have only y, =y for 1 <i < v where v
= (s — 1)/2 from (5.1). If we knew that G,(v) £ G(W) N G,(u + v) (which,
however, a posteriori is not the case), we would be finished as before.
Thus we may assume that Gy(v) N G(W) = G,@) N G(W) for every i = u
(mod v). Let H= G(u) N G(W), S = Ny(H)/H and ¥ be the graph with
V() = {(Wn|ne Ny(H)} and EQ) = {{x, y}|x, ye V(&) and d(x, y) = v}.
The graph X is locally (S, 3)-transitive. Since S(x)*“ = PGL(2, 3) and
|Si(x)| = 3 for every vertex, there exists, by (2.13), an involution in S(y,,,
Yo, U + 20, u 4+ 3v, u + 4v). Thus there exists an element in G(y,, - - -, ¥,
u+s—1u+s, --,u+ 2(s — 1)) whose only fixed point in I'(y,) — {y,_.}
is ¥y,:. Thus y,,.; = ¥,,,- Using (5.1), we can then conclude that y, = y;
forv+2<i<s—1

If ¢ =4 and s = 7, we may assume that G,(x) N G(W) = G,(i) N G(W)
for every i = u (mod2). Let H= G/(u) N G(W),S = N,(H)/H and X be
the graph with V() = {(W)n|n e Ny(H)} and E(2) = {{x, y}|x,ye V(Z) and
d(x,y) = 2}. The graph 2 is (S, 4)-transitive. By the case s = 4 of the
lemma we are busy proving, (Vs ¥s ¥ ¥ + 6, u + 8 u + 10,z + 12) is a
good 6-path in X. It follows that (ye, ¥s - s Y Yo ¥ + 6, u+ 7, -, u + 12)
is a good 12-path in I'. [J

6. Proof of (1.2): The construction

We assume that g # 2,f, = 2 for every vertexx when s =5 and g = 3
and s€{4,5,7 or s=9 and p =2. For each ie N and each vertex x,
let I'y(x) = {y|d(x,y) < i}. We point out that the girth of I" is at least
2(s — 1) (see, for instance, [10, p. 61]). Let F' = I",_,(0) U I',_,(1) and /7 be
the undirected graph with vertex set V(II) = F and {x, y} € E(Il) iff x or
y or both are in I',_4(0) U I',_y(1) and x€/'(y) or there exists a good
(2s — 3)-path (xy, - - -, %5_3) With x,_, =0,%,_, =1 and either x, = x and
X3 =3y Or X, =y and x,,_; = x. By (2.2), I is regular of valency g + 1.
Let P = aut (I]).

Let a be any element in G(1) — G(0). We define a permutation ¢ of
F as follows: If xel',_ (1), we set (x)a = (x)d. If xe FF — I',_,(1), we set
(x)d = (%xy,_1))a, Where (x,- - -, X;,_1)) is the uniquely determined 2(s — 1)-
path with % = x, x,., = 0,x,_, =1 and x, = (0)a™’. It is straightforward
to check, using (5.2), that 4 is an element of P. Thus P(1) £ P(0).
Similarly, P(0) £ P(1).

If a e G({0, 1}), then clearly the permutation which ¢ induces on F is
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an element of P. Since, for u =0 and 1, P(v) £ P(1 — u), it follows
that P(u) acts transitively on I7(u). Since /I is connected, P acts transi-
tively on E(II). Thus the girth of /7 is 2(s — 1) and I/ is the incidence
graph of a generalized (s — 1)-gon of order (g,q). By [3], s€{4,5, 7}
Since, by (2.5) and (2.9), P contains sufficiently many “generalized elations”,
it follows from [5, Theorem 1.8], [7, Theorem 2] and [12, (4.4)] that I
=I,,,and P=G,_,,.

Let u=0 or 1. We have seen that for each a € G(u) there exists an
element 4 e P(u) such that a and d agree on I',_,(u). The map r mapping
a onto 4 is an injective homomorphism from G(z) into P(u). For each
we I'(u), an element a € G(u, w) lies in O,(G(u, w)) iff for i = v and w, a
induces a permutation on I'(f) contained in O,(G(u, w)"*). Thus r maps
0,(G(u, w)) into O,(P(u, w)). But, by (2.3) and (2.5), |0,(G(u, w))| = ¢**
= |0,(P(u, w))|. Theorem (1.2) follows now from the next lemma whose
proof is left to the reader:

6.1) Letn=s—1 and (X,Y) be a 1l-path in I',,. For U= X and Y,
let G, (U)=<0G,.(U W)|WeTl, (U)). Then G, (U)<H,(U) for
U=Xand Y and H, (X, Y) = (G..o(X) N G,,(Y), G,.o(X) N G, (¥)).

7. Proof of (1.3)

When g = 2, we are in the unfortunate situation that every path is
a good path, so that the construction used in the proof of (1.2) does not
work. We leave undecided the question whether (1.2)—with an appropriate
clause for the exceptional case s =4 and G(k) = CA¥4,2(K)—nevertheless
remains true when g = 2.

First let s =4 and, for every i, b, be the nontrivial element in
G(,i+ 1). Then [b, b,,,] = b,,, for every i. We have |bb;|, = 3. Thus
(boby)* € Gy(2) = (b, b,y and therefore (byb;)* = 1. Suppose (bb;)* = 1. Let
ac G be an element with (0, ---, 4)a = (0, 1, 2, (1)b;, (0)b;). Then b = b¥*
and hence ((byb.)")* = (bobsbob;)® = (beb;)* = 1, a contradiction. Thus G(x)
=y, by b, blEE=1 for 0<i<3;[t,t]=1if|i—j|=1; [t, t;..] = ¢, for
i=0 and 1; ({f,)° = 1) for every vertex x. If I' is (G, 4)-transitive, then
there exists an element ce G with (0,1, ---,4)c = (5,4, ---,1). Thus ¢
eG(, ---,4) =<b,y and cbc=0b,_; for 1<i<3. We have G({2,3})
= G (X, YD) if =1 and G({2, 3}) = CA?M(K) otherwise.

Let s =5 and, for every i, b, be the nontrivial element in G, — 1,

https://doi.org/10.1017/50027763000018420 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018420

GROUPS WITH A (B, N)-PAIR 19

i,i +1). Then [b, b;,;] = b;,.0,,,. Since Gy(i — 1,1, i+ 1) = G,i) for
every even i, we have [b,, b,] = 1 when |i — j| < 2, i even. Suppose [b,,b;]
= b,. Then [b,, b;] = (bybs)* = bib, = by(b,b,)* = b;b,b; and thus bbb, = b;b,.
Squaring both sides, we have 1 = (b;b,)* = b,, a contradiction. Thus [b,, b,]
=1 when |i —j| < 2, { arbitrary. If I is (G, b)-transitive, then there
exists an element ce G with (0, ---,5)c = (5, - - -, 0) and thus ¢ =1 and
cbic = b, , for 1 <i< 4. Thus the structure of G({2, 3)} is completely
determined. We have (b,b,)’ € G,(3) = {b,, b;, b,> and thus (b;b;)' = 1. Sup-
pose that (b,b,)° # 1. Let b; = b;b,b;,. Then (b,b;)* = 1. There exists, how-
ever, an element ¢ € G with (1, - - -, 5)a = (1, 2, 3, (2)b;, (1)b;) and thus b7 = b,
and b¢ = b; since [b;, b;,,] = 1 and thus G,i) = {(b,> for every i. Thus
(b,b,)* = byb;. Contradiction. It follows that (b,b,)° = 1. Similarly, (b:b,)
=1. Thus G(x) = by, -, | =1 for 0 < i< 4;[t,t]=1if |i —j| <2,
[t tiss]l = tipatie for i = 0 and 1; (4t,)° = 1) for every vertex x.

Now let s =17 and, for every i, b, be the nontrivial element in
G(i—2,---,i+2). Foreveryeveni, Gi — 2, ---,i+ 2) = Gs(i) and thus
[b;, b,] = 1 when |i —j| < 3 and [b,, b;,,] = b;,,. Also, there exist v and
ve {0, 1} such that [b,, b;] = b,byb3b,. Hence bbb, = b,b,byb%b,. Squaring
both sides, we have (b,b,byb3b,)* = 1. Since (bb,) = b,, [b,, b;] = 1 for
0<i<4 and [b,b;] =1 for ie{1, 3} and je{0, 4}, we have b,(b,b})* = 1.
Thus v =1 and (b,b;)* = b,. Therefore (b;b,,,)* = b;,, for every odd i. In
particular, b, ¢ G,(i — 1) and b, ¢ G,(i + 1) whenever i is odd. It follows
that [b, bl e G(, ---,5) — G(1) — G«(b) and thus [b, b;] = b,b¥b, with w
€ {0, 1}. Therefore b;b,b, = b,b,b¥b,. Squaring both sides, we have 1 = (b,b¥)*
and thus w = 0.

Suppose (b.by)* € Gi(3) = (b, ---, b,y has even order. Let b; = b:b,b;.
Then |b,b;| = |bybsl/2. There exists, however, an element a e G with (0, - - -,
6)a = (0, ---, 3, (2b,, ---, (0)by) and thus (b,b;)* = b,bs. Contradiction.

Let (xy,- -, x;) be an arbitrary 8-path. Since |G(x,, - - -, x;)| = 2, there
exist exactly two elements g, and g, such that (x,, ---, x)g; = (x;, - - -, x)
for i =1 and 2. If d is any involution in G(x,) — Gy(x,), then there exists
a 6-path (y,, - - -, y;) with ¥, = x, such that (y)d = y,_; for 1 <i < 7. Since

G contains an element mapping (y,, - - -, y,) onto (x,,-- -, x,), g and g, must
be involutions. If (x5)g = (xs)g., then g.g,¢ G(x,, - - -, x) = 1, a contradic-
tion. Thus (xy, -, X8 = (%5, -+, x,) for i =1 or 2.

Thus there exists an element g mapping (—1,---,7) onto (7, ---, —1).
Since G,(i— 2, ---,i+ 2) = Gy(i) for even i, G,(i — 2, ---,1 + 2 = G,(4 — i,

https://doi.org/10.1017/50027763000018420 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018420

20 RICHARD WEISS

---,8—1) for 0<i< 6 and thus [b, b)) = [b;, by]° = (b,b;b}b,)? = b,b,byb;.
Therefore, for u =0 or 1, G(3) = (b, - - -, byy = H, where H, = {t, - - -,
Liti=1for 0<i<6;[t,t,]=1 for |i —j| <38, i even;[t, ;] = ¢, for
i=0 and 2;[{,¢.,.] =t for i=1 and 3;[t, t;] = t:t,; [, ] = Lititsts;
[t, t:] = ttstits; (4t:)° = 1). The map &:{¢, - - -, t;} — H, given by (2)¢ = tt,
and (¢,)¢ = ¢, for 0 < i< 6,7 # 1, induces an isomorphism from H, onto H,.
Thus the structure of G(3) (and therefore also that of G(2, 3) = (b, - - -, bsy)
is uniquely determined. Since b, ¢ G,(0) and G;(1) < G(—1, - - -, 8) = (b,
G 1) = 1. Thus I" cannot be (G, 7)-transitive.

Let 2 be the involution mapping (0, ---, 8) onto (8, ---,0). Let x;, =1
for 0 <i<9,x_, = (9h and ¢, be the nontrivial element in Gy(x;_,, - - -, X;.5)
for i =1 and 7. Suppose that |c,c;| is even. If we set y, = x, for —1 < i
<4,y = (xs_)c; for 5 <i<9 and let d;, be the nontrivial element in
Gi(Yizss -+ ¥iuo) for i = 1 and 7, then |d\d;| = |cic’| = |ei¢;|/2. In addition,
(v)er = ¥, for —1 < i< 9. Repeating, if necessary, we obtain ¢ 10-path
(z_1, -+, 2,) with 2z, = 4 such that there exists an involution ¢ with (z)e
=25_; for —1<i<9 and |ee,| = 3 where e; is the nontrivial element in
G(2i_3 -+, 2:40) for 1< i< 7. There exists a we {0, 1} such that [e, e;]
= ee¥ee;.  Thus [e), e] = [e;, €,]® = (eeseve;)® = eeeve;,  Therefore G(4)
={ey, -,ey=dJ, where J,=C{t, -, 4|ti=1 for 1 <i<T[t, ;] =1
for |i — j| < 38, i even; [t,, &] = & [t ti.2] = ¢, for i = 1,3 and 5; [£,, ¢;.4]
=t .ty for i =1 and 3;[t, t)] = Ltt%E; [L, ] = Gtk (8E) = 1. The
map 0:{t, ---,t;} — J, given by (£,)0 = t,¢; and (¢,)0 = ¢, for 1 <i<7,i # 5,
induces an isomorphism from ; onto J,. Thus the structure of G(4) is
uniquely determined.
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