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GROUPS WITH A (B,iV)-PAIR AND LOCALLY

TRANSITIVE GRAPHS

RICHARD WEISS

1. Introduction.

Let Γ be an undirected graph and G a subgroup of aut (Γ). We de-

note by d(x, y) the distance between two vertices x and y, by E(Γ) the

edge set of Γ, by V(Γ) the vertex set of Γ, by Γ(x) the set of neighbors

of the vertex x and by G(x)Γ(x) the permutation group induced by the

stabilizer G(x) on Γ(x). For each i e N, let G^x) = {a \ a e G(y) for every

y with d(x, y) < ϊ). An s-path is an ordered sequence (x0, ••-,#«) of s + 1

vertices xt with xt e jP(Xi_i) for 1 < i < s and ^ ^ xt_2 for 2 < i < s. For

each vertex x, let WS(JC) be the set of s-paths (x0, , xs) with x = x0. We

say that the graph Γ is locally (G, s)-transitive if for every vertex x, G(x)

acts transitively on Ws(x) but not on Ws+1(x) (compare [1], [11]). If, in

addition, G acts transitively on V(Γ), then Γ is called (G, s)-transitive;

otherwise Γ is bipartite with vertex blocks Vo and Vλ and G acts transi-

tively on both Vo and VΊ, assuming that Γ is connected and s > 1.

Now let G be a finite group with a (B, iV)-pair whose Weyl group is a

dihedral group Z)2w of order 2n (n > 2) and .Γ be the incidence graph of

the associated coset geometry as defined in [3, p. 129] (or [2, (15. 5. 1)]).

The graph Γ has the following properties:

(A) V(Γ) = Vo U V1 with Vo Π V1 - 0 and Γ(x) c F ^ for every

vertex x e ^ (ί = 0 and 1). For j = 0 and 1 there exists a dt e N such

that \Γ(x)\ = dt + 1 for every vertex xe Vi% The diameter of Γ is π- and

the girth 2n.

(B) Γ7 is locally (G, τι + l)-transitive.

A generalized n-gon of order (d0, dλ) is, by definition, an incidence struc-

ture whose incidence graph has the properties listed in (A).

W. Feit and G. Higman have shown in [3] that finite generalized ra-gons

of order (d0, dλ) with dod1 > 1 exist only for n = 2, 3, 4, 6, 8 and 12, that
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2 RICHARD WEISS

n = 8 is possible only when the squarefree part of dodχ is equal to two

and that n = 12 is possible only when d0 or dx = 1. The only known

finite groups with a (B, iV)-pair whose Weyl group is isomorphic to D2n

with n = 3 (resp. n = 4, n = 6) and whose generalized n-gon is of order

(d0> di) with d0 = dx are (essentially) the Chevalley groups A2(q) (resp. J32(g)>

^(tf)) (with q = d0). Let Γn,q denote the corresponding graph.

We prove here the following theorems:

(1.1) Let p be a prime, r and ss N with r > 1 and s > 2 and q = pr.

Let Γ be a finite undirected connected graph regular of valency q + 1 and

G a subgroup of aut (Γ) such that Γ is locally (G, s)-transitive and PSL

(2, q) < G(x)Γ(x) < PΓL(2, q) for every vertex x. Then s < 5 or s = 7. Lei

(xl5 , xs) be an arbitrary (s — ΐ)-path. Then Gx(x^) = 1 if s = 2

Π Gxfo) Π G(*3) ΓΊ Π G(#s) = I otherwise.

(1.2) Lei Γ, G, etc. be as is (1.1) with q > 3 and s e {4, 5, 7}. In addition,

suppose that s Φ 5 i/ q = 3. Lei fr8fβ = A2(g), iί 4^ = B2(g), i/6,β = G2(g)

and Gn,a = aut (Γntq) = aut(£Γn,ς) /or n = 3,4,6; iίn,9 is io 6e considered

as a subgroup of Gn>q. Let k = {Λ:,y} 6e an edge of Γ,Δi — {we V(Γ)19(ί, ̂ )

< s — 2} /or i — x and y and Δ = Δx U 4,. ΪTien ίΛere exists a bijective

map ψ\ Δ-> V(Γs_1>q) mapping edges onto edges such that:

(a) For i = x and y and for each g e G(ΐ) (resp. g e G(k), where G(k)

is the stabilizer in G of the unordered pair {x, y}), there exists a unique

element he Gs_hq((i)φ) (resp. he Gs^hq((k)φ)) such that (w)h — (w)ψ~ιgφ for

every w e (Δt)φ (resp. w e (Δ)φ = V(Γ9_Uq)).

(b) For i — x and y and for each h e Hs_1>q((i)φ) (resp. h e Hs_1>q((k)φ)),

there exists a unique element g e G(i) (resp. g e G(k)) such that (w)h

= (w)ψ~ιgφ for each w e (Δ^φ (resp. w e (Δ)ψ).

In particular, Hs_ι>q((i)φ) < G(i) < Gs_ltq((ΐ)φ) for i = x and y and

G(k) < Gs

In the following theorem, G4)2 denotes the unique subgroup of

aut (Γ4,2) s PΓL(2,9) isomorphic to PGL(2,9). The reader can check that

Γ4)2 is (G4,2,4)-transitive.

(1.3) Lei Γ, G, etc. be as in (1.1) with q = 2 and s e {4, 5, 7}. Lei (X, Y)

be an arbitrary l-path of Γs_h2. Then there exists a map φ:k — {x,y}

-* {X, Y} such that H^lι2((i)ψ) = G(i) for ί = x and y. Either Hs_h2((k)φ)

< G(k) < Gs_h2((k)φ) or s = 4 and G(k) = GAf2(K) where K is any edge of
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In the first part of the proof of (1.1) we show that s < 5 or s e {7,9,13}.

Note the remarkable coincidence with the numbers n = 2, 3,4,6,8 and 12

obtained in [3] as the solution to a completely different sort of pϊoblem.

To exclude s = 9 when p = 2 and q > 4 we construct a generalized 8-gon

of order (q,q), thus obtaining a contradiction from [3]. To proceed in

the case q = 3 (mod 4), we require [6,(8.2.11)] in order to prove that

PGL(2, q) < G(x)Γ(x) for some vertex x. In the proof of (1.2) we use the

characterizations of the graphs Γn>q given in [5, Theorem 1.8], [7, Theorem

2] and [12, (4.4)]. Otherwise, the arguments contained in this paper are

elementary and self-contained.

When proving (1.2), we include the case that q = 3 and s — 5, making

the additional assumption that G(x)Γ(x) = PGL(2, 3) for every vertex x.

The conclusion reached is that G4,3(X) induces PGL(2, 3) on Γ4fZ(X) for

every vertex X of Γ4,3. Since this is not so, it follows that G(x)Γ(x>

= PGL(2, 3) does not hold for all vertices x of Γ when q = 3 and s = 5;

in particular, G cannot act transitively on V(Γ).

Theorems (1.2) and (1.3) imply that Gs_Uq((k)φ) contains an element

exchanging (x)φ and (y)φ if G(k) contains an element exchanging x and

y. Thus Γ8_Uq is (Gs_1>q, s)-transitive if Γ is (G, s)-transitive. For n = 4

and 6, Γn,q is (Gn,q, n + Intransitive if and only if p = nj2 (see [2]). Hence

we have the following corollary:

(1.4) Let Γ, G, etc. be as in (1.1). If G acts transitively on V(Γ) (i.e., if

Γ is (G, s)-transίtive), then p — 2 if s — 5 and p = 3 if s = 7.

For other relevant results consult [4] and [9] where, however, com-

pletely different methods are used from those developed here.

2. Proof of (1.1): s e {2, 3, 4, 5, 7, 9,13}

Let Γ and G satisfy the hypotheses of (1.1). E W = (x0, ••-,*«) is

any ί-path (ί arbitrary), we set G(VF) = G(xθ9 .,*,) = G(xQ) Π Π G(xt)

and G,( W) = G,(xo, ••-,*,) = G<(*o) Π Π φ f o ) for each i e N. If 6 e G(x),

x a vertex, we denote by |&U the order of the permutation that b induces

on Γ(x). We will often use integers to denote vertices of Γ.

For each vertex x, let G(x) be the largest subgroup of G(x) such that

G(x)Γ(x) < PGL(2,q) and /, = [G(x) Π G(y, x, z): Gλ(x)] where y and z are
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any two neighbors of x. A 2-path (0, , t) will be called good if

[G(W) Π G(ΐ): G(W) Π GM = ft for each i with 1 < i < t - 1.

(2.1) If W = (0, , t) is a good t-path, then there exists a vertex t + 1

such that (0, , t, t + 1) is a good (t + ϊ)-path.

Proof. Clearly all 1- and 2-paths are good, so that we can assume

t > 2. Let Wi = (1, , t). By induction, there exists an element bt e G{W^)

Π G(t) with \bt\t = Λ and (p, |6 t |) = 1. For 1 < i < t - 1 there exists an

element bteG{W) Π G(i) with 16,1, = /, and (^16,1) = 1. The subgroup

<&!, 6ί> contains an element c with c r ^ c = 6? e G(0). Let at = 6j and

t + 1 be a fixed point of αέ in Γ(t) — {t — 1}. For each i with 1 < ί < t

— 1 there exists an element ct e (bu at} with at = c^biCi e G(t + 1). For

1 < i < t we have α, e G(0, , ί, ί + 1) Π G(i) and |α,| f = U D

(2.2) Euery s-path is good. If (0, , s, s + 1) is α good (s + ϊ)-path, then

G(0, , s) < G(s + 1). If fs Φ 1, ^eτι s + 1 is */*e orcZy vertex m Γ(s)

— {s — 1} such that (0, , s, s + 1) is good.

Proof. For every vertex # there exists, according to (2.1), at least

one good s-path beginning at x. Since G(x) acts transitively on Ws(x)9

the first claim follows. Let a e G(0, , s, s + 1) Π G(s) be an element with

\a\s = fs. Suppose there exists an element b e G(0, , s) — G(s + 1). Then

(a, b) < G(0, , s) acts transitively on Γ(s) - {s - 1} (for if /s = 1, then

<6> itself must act transitively on Γ(s) — {s — 1}), contradicting the hypo-

thesis that G(0) acts intransitively on Ws+1(0). In particular, if (0, ,s,

y) is a good path and fs Φ 1, then there exists an element in G(0, , s)

whose only fixed point in Γ(s) — {s — 1} is y; thus y = s + 1. •

If we take any 1-path and start extending it to an arbitrarily long

good path, the resulting path, since Γ is finite, contains, after a while,

no new vertices. Thus we may choose, once and for all, an infinitely

long path W = ( , — 1, 0,1, 2, •) such that for each ί there exists an

element ht e G(W) Π G(ΐ) with |Λ,|i = Λ

(2.3) Gi(l) = 1 i/ s = 2 ami Gχ(l, 2) Π G(0, , s) = 1 otherwise.

Proof. Let A = G^l, 2) Π G(0, , s). Since Λs e G(l, , s), G(l,

s) acts primitively on Γ(s) - {s - 1}. Since Gx(l) Π G(l, . . . , « ) < G(l, , s)

and Gx(l) Π G(l, , s) < G(0, , s) acts intransitively on Γ(s) — {s — 1},

we have G^l) Π G(l, , s) < Gx(s) and in particular Gx(l) < A if s = 2.
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Similarly, G^s) Π G(β, , 2, x2) < G ^ ) , x2 e Γ(2) - {1, 3} arbitrary. By

(2.2), G(0, •••,*)< G ( - s + 4, ••-,$) and thus A < G ^ ) Π G(*2, 2,1,0, ,

- s + 4) < G x (-s + 4), hence A < G ^ - s + 4) Π G(-s + 4, . - ,3) < Gx(3).

Choose any y e Γ(s) - {s - 1}. Then A < Gx(2) Π G(2, - , s, y) < Gx(y),

A < G,(y) Π G(y, s, , 3, * 3), * 3 € Γ(3) - {2, 4} arbitrary, thus A < G ^ )

Π G(*3,3,2, , - s + 5) < G x (-s + 5), A < G x (-s + 5) Π G(-s + 5, ,4)

< GX4). Also, A < Gtf) ΓΊ G(3, , s, y) Π G^y) < Gj^), 2 6 Γ(y) - {s} arbi-

trary. It should now be clear that A < Gi(l, , s, y, z, , w) for every

path (1, , s, y, z9 , w) of arbitrary length beginning with (1, , s).

Since .Γ is connected, it follows that A = 1. •

To prove (1.1), we have only to show now that s < 5 or s = 7. From

now on we assume that s > 3.

(2.4) Gi(l, 2) is α p-group. For each t > 3 and eacΛ £ a iίA 1 < ί < ί — 2,

Gχ(ί, i + l) n G(o, ••-,«) = d a , . -, ί - l).

Proof. By (2.3), G^l, 2) acts semi-regularly on the set of s-paths be-

ginning with (0, , 3) and thus |Gχ(l, 2)||gs~3. To prove the second claim,

we note that GX{19 2) < Gx(2) <. G(2, 3) and thus Gx(l, 2)Γ(3) < OP(G(2, 3)Γ<3))

so that Gχ(l, 2) Π G(4) = G^l, 2, 3). D

(2.5) // 2 < t < s - 1, £&erc Gχ(l, , t - 1) αcte transitively on Γ(t) — {t — 1}.

Proof. Let xx and x2 be any two vertices in Γ(t) — {t — 1}. There

exists an element at e G(0, , t,xt) Π G(t) with |σf|ί = ft (i = 1, 2). If ft Φ 1,

the commutator group <α1? α2>
r < G(0, , t) of <αb α2> < G(0, , έ)> there-

fore any p-Sylow group of (au a2}' and therefore Gi(l, , t — 1) act

transitively on Γ(t) - {t - 1}. If ft = 1, then q < 3 so that Gχ(l, , t-ΐ)

e Sylp (G(0, ••-,£)) and the claim follows directly from the fact that

G(0, . . . ,*) acts transitively on Γ(t) - {t - 1}. D

From now on, we set m = (s/2) — 1 when s is even and m = (s — 3)/2

when s is odd.

(2.6) // s > 4, ί/ie/z ZOP(G(0,1)) < Gm(0,1), where ZOP(G(0,1)) denotes

the center of Op(G(0,1)).

Proof. By (2.5), G^O, 1) Φ 1 and thus Op(G(0,1)) Φ 1. Let 6 be a non-

trivial element in ZOP(G(0,1)). If w e Γ(l) - {0} is arbitrary, then G^l, w)

< O,,(G(0,1)) and thus G^l, w) = G^l, (w)b), so that b e G(w) by (2.5).
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Thus 6 e Gi(l) and similarly, 6 e G^O). Since Gx(0,1) Π G(0, , s - 1) = 1,

there exists axi n<s such that be G(0, — , ή) — G(n + 1). By (2.5), there

exists a nontrivial element a e Gi(l, , s — 2) < O^GίO, 1)). Since b

e ZOP(G(0,1)), we have a e Gx(s - 2, s - 3, , n, (n + 1)6, , (s - 2)6).

By (2.3), the length of the path (s - 2, s - 3, -,n,(n + 1)6, , (s - 2)6)

is at most 5 — 3. Therefore s — 1 < 2n. Π

(2.7) Suppose s £ {2, 3, 4, 5, 7}. ΪTMJTI s is odd, ZOP(G(0,1)) < Gm+1(0) or

ZOp(G(0,1)) < Gm+1(l) and G operates intransitively on the vertex set V(Γ).

Proof. We assume first that there exists an element 6 6 ZOP(G(0,1))

-GχOτι + 1). Then [b,ZOp(G(m + 1, m + 2))] < G1(-m + 2, , 2m) be-

cause of (2.6). Since s ^ {2, 3, 4, 5, 7}, the length of (-m + 2, • , 2m) is

at least s - 2. By (2.3), it follows that [6, ZOp(G(m + 1, m + 2))] = 1 and

therefore ZOp(G(m + l,m + 2)) = ZOp(G(m + 1, (m + 2)6)), so that ZOV

•(G(m + 1, m + 2)) <. <G(m + 1, m + 2), G(m + 1, (w + 2)6)> = G(m + 1).

By (2.6), we have ZOp(G(m + 1, m + 2)) < Gm+1(m + 1).

On the other hand, if ZOP(G(0,1)) < G^m + 1), then ZOP(G(0,1))

< Gm+1(l) since ZOP(G(0,1)) <L G(0,1) and G(0,1) acts transitively on the

set of (m + l)-paths beginning with (0,1). Therefore ZOP(G(0,1)) < Gm+ι(u)

for u = 0 or 1.

Suppose that ZOP(G(0,1)) < Gm+1(0). Since Gm+1(0) < Gx(-m, - , m),

we have 2m < s - 3 so that s is odd and Gm+1(0) Π Gx(m + 1) = 1. If G

contains an element c which exchanges 0 and 1, then ZOP(G(0,1))

= ZOP(G(0, ΐ)Y < Gm+1(0)c = Gm+1(l) and thus ZOP(G(0,1)) < Gm+1(0) Π Gx{m

+ 1) = 1, a contradiction. Therefore G acts intransitively on V(Γ). Π

(2.8) s e {2, 3, 4, 5, 7, 9,13}.

Proof. We may assume that s is odd, s > 9 and Gm+1(0) =£ 1. Since

Gm+i(0) Φ 1, Gm+1(i) Φ 1 for every even i. There exists an element c e Gm+1(0)

— Gx{m + 1). Suppose first that s = 3 (mod 4) and thus Gm+1(τn + 2) =£ 1.

Since [c, Gw+1(m + 2)] < G ^ - m + 2, , 2m) - Gχ(2m + 1), we have 3m - 2

< s - 3, hence s < 7. Therefore S Ξ I (mod 4). It follows that Gw+1(m + 3)

Φ 1 and thus [c, Gw+1(m + 3)] < Gλ(-m + 4, • , 2m - 1) - G^m) so that

3/n — 5 < s — 3, hence s < 13. •

Before going on to § 3, we prove more lemmas needed later.

(2.9) // se {5, 7, 9,13}, then Gm+1(u) < ZOP(G(0,1)) for u = 0 and 1
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Gm+i(u) Φ 1 for u = 0 or 1 (or both); if Gm+1(w) =£ 1, then \Gm+1(ύ)\ = q.

Proof. hetu = 0 or 1. Since Gm+1(u) <L Op(G(0,1)), either ZOP(G(0,1))

Γl Gm+1(w) ΐ l or Gm+1(u) = 1. Suppose that ZOP(G(0,1)) Π Gm+1(w) con-

tains a nontrivial element b. Then Gm+1(u) = (K{u+1bhi+u+110< jf < /w+ω+i>

since Gn+ι(u) Π Gi(m + a + 1) = 1 and Gm + 1(w)Γ ( m + w + 1 ) < O ^ m + u, m

+ u + i)Γ(m+tt+i))β I t follows that |GW + I(κ)| = ςr and Gm+ι{u) < ZOP(G(0,1))

since hm+u+ι normalizes ZOP(G(0,1)).

It remains only to show that Gm+1(u) Φ 1 for u = 0 or 1. Thus we

suppose instead that Gw+i(x) = 1 for every vertex x. By (2.7), s = 5 or 7.

Let 8 = 5. Then ZOP(G(3, 4)) < 0(2) - Gx(2) since otherwise ZOP(G(3, 4))

< G2(3). Since h2 normalizes Z0p(G(3,4)), ZOP(G(S9 4)) acts transitively

on Γ(2) - {3}. Since ZO,(G(3,4)) centralizes Oχ(l, 2, 3), we have Gχ(l,2,3)

< G2(2) = 1, in contradiction to (2.5). Thus s = 7 and ZOp(G(i9 i + 1))

acts transitively on Γ(i + 3) — {ί + 2} for every i. Since ZOP(G(1, 2))

centralizes G^l, , 5), we have G^l,- , 5) < G2(4). Since ZOP(G(0,1))

centralizes G^l, , 5), it follows that G^l, , 5) < G3(3) = 1, again a

contradiction. •

Thus we may suppose, from now on, that Gm+1(i) Φ 1 for every even

i whenever s e {5, 7, 9,13}.

(2.10) Let s € {5, 7, 9,13} and p = 2. Then there exists an element aeGλ

<(s - l)/2) Π G(0, , 2(s - 1)) ΓΊ Gι(β(8 - l)/2) with | α U = g - 1.

Proo/. We may suppose that q Φ 2. Let ^ and x2 be any two ver-

tices in Γ(s — 1) — {s — 2, s}. By (2.5), there exists for j = 1, 2 an element

^ e O2(G(x,, s - 1)) such that (Oft = 2(s - 1) - i for s - 1 < i < 2(s - 1).

Since O2(G(xό, s — 1)) induces an elementary abelian 2-group on Γ(s — 1),

we have (s - 2)gό = s. Therefore both (0, , 2(s - 1)) and (2(s — 1), ,

0)ft = (0, , 8, (s - 3)ft, , (0)ft) are good paths. By (2.2), (ΐ)gj = 2(s - 1)

- i also for 0 < i < s - 3. Let a = g1g2. Then |α|,_i = q - 1. By (2.9),

Gw+1(s - 1) < ZO2(G(xl9 s - 1)) ΓΊ ZO2(G(x2, s - 1)) and thus [α, Gm+1(s - 1)]

= 1. Since s — 1 is even, Gm+1(s — 1) acts transitively on Γ((s — l)/2)

- {(s + l)/2}. Since a € G((s - 3)/2), a e Gx((s - l)/2). Similarly, a e Gχ(3(s

D

It is in the proof of the next lemma that we require [6, (8.2.11)].

(2.11) If pΦ2 and s > 4, then \G(W)\ = |G( , - 1, 0,1, 2, )l is even.
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Proof. We first suppose that we can choose u e {0,1} such that fu is

even. The reader should check the following simple fact:

(*) Let q — 1 = 2kw with w odd. If σ is an arbitrary element in the

stabilizer PΓL(2, q)^ of oo e PG(1, q) but not in PGL(2, q) whose order

is a power of two, then \σ\\2k and either k = 2, M = 4 and <y2 e PGL(2, ρ)

or fe > 3 and <72*"2 6 PGL(2, q).

We choose an odd neN such that | Λtt \/n is a power of two. It follows

from (*) that hn/«/2 or htf e G(W) - {1}.

It remains to show that fu is even for u = 0 or 1. To show this, it

will be necessary to make only a few minor changes in the proof of [8,

(6.3)]: Suppose that both f0 and fx are odd. Then q = 3 (mod 4), G(u)Γ(u)

^ PSL(2, q) for u = 0 and 1 and |G(0,1)| is odd. Thus a 2-Sylow group

of G(u) is isomorphic to a 2-Sylow group of PSL(2, q), so that G(u) is Te-

stable for w = 0 and 1 (see [6, (2.8.3), (8.1.2)]). Let u = 0 or 1 and C

= CG{U)(OP(G(U))), the centralizer of Op(G(u)) in G(w), and ce C. Let w

e Γ(w). Since G^u, w) < Op(G(u)), we have G^w, w) = Gλ(u, (w)c). By (2.5)

and the hypothesis s > 4, G^w, κ;) ^ G^z) for 2 e Γ(u) — {w;}. Therefore

c e Gi(w), since ^ was arbitrary. Now let z and w be any two neighbors

of u. Since G^w, ^ ) Γ ( ^ = Op(G(u, z)Γ(z)), we have CΓ ( 2 ) < Op(G(w, ^)Γ ( 2 )).

Therefore we can find elements d e Gγ{u, w) and e e Gγ{u, z) such that

cd = e and thus c = ed"1 e Op(G(u)), so that C < Op(G(u)). Thus Op,(G(κ))

= 1 and G(u) is p-constrained (see [6, p. 268]).

Let SeSylp(G(0)). By [6,(8.2.11)], we have J(S)<LG(0). We may

assume that S < G(l) and thus S e Sylp (G(l)). Therefore J(S) <. <G(0),

G(l)>. Since Γ is connected, <G(0), G(l)> acts transitively on the set of

edges of Γ and thus J(S) = 1, a contradiction. •

(2.12) If s = 3, then q(q - l)/(g - 1, 2 ) 1 1 ^ ) Π G(l - w)| /or M = 0 and 1.

Proo/. Let u = 0 or 1 and A = <G1(u;)| we Γ(w)>. Let y z Γ(u).

Then [GX(M), G ^ ) ] < Gχ(u,y) and thus, by (2.3), [A, G^u)] = 1. By (2.5),

Gχ(y) acts transitively on Γ(u) - {y}, so that AΓiu) > PSL(2, q). Let a be

an element in A Π G(w) Π G(^) such that \a\u = (q — l)/(g — 1, 2) and

(|α|,p) = 1. Since [α, Gx(w)] < [A, G^w)] = 1 and G^u) acts transitively on

{u}> w e h a v e « e Gi(y) •

(2.13) Let s = 3, q = 3, G(x)Γ(x) ^ PGL(2, 3) and | G2(x) | = 3 for every vertex

x. Let u = 0 or 1 and y1 and y2 be vertices such that (u, u + 1, u + 2, yl9
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y2) is a good 4-path. Then (y2, yu u + 2, u + 3, u + 4) is also good.

Proof. Let u = 0 (the proof is the same when u = 1), A =

II; e Γ(2)> and £ = <A, ^(2)) ; we have [A, ^(2)] = 1 and |B | = | £ r ( 2 ) |

= 36. Let Gi(2) = <Λ> and gι = 1, g2, - - , gu be elements of B inducing dif-

ferent permutations on Γ(2) which we may choose such that \gt\ = 2 for

2 < i < 4. Then three divides the order of every element in B = {gihj 11

< i < 12; 0 < 7 < 2} except g* for 1 < i < 4. Thus B contains just one

2-Sylow group S. It follows that A = <S, Gx(l)>, therefore |A| = ISMdί l ) !

= 12 and, in particular, A Π Gχ(2) = 1.

Since (0, , 4) is good, there exists an involution b e G(0, , 4). For

ί = 1 and 3, there exists an element ct e Gx{i) mapping 4 — ί to yx. Since

(0, , 4)c3 = ((0)c3, yu 1, 2, 3) is good, we may assume that (0)c3 Φ y2. On

the other hand, since both (0, , 4)cx = (0, 1, 2, yl9 (4)cλ) and (0, 1, 2, 3Ί, J 2 )

are good, we have (4)cx = ^2 by (2.2). Let c be the element in G^y^

mapping 1 onto 3 and d = ccϊ^cc^Yc^c. Then d e A Π Gi(2) = 1. But

δClC-16G(2,^1,y2) and δe β e G(2, yα, (0)c3) so that d = b^b0*0 £ Gfa), a

contradiction. •

3. The case s = 9

Since G4(2) < ZOP(G(2, 3)) and G4(2) acts transitively on Γ(6) - {5}, it

follows that ^(2,- , 8) < G2(6). Choose an arbitrary element 610€ G4(l0)*

= G4(10) - {1}. For any b5 e G1(29 , 8)*, we have [65, 610] € Gx(5, , 11)

- Gx(12), therefore [65, 610] g Gx(4) and hence 65 g G^&Γo1). Let 62 be the

element in G4(2) with (5)6Γo162 = 7. Since [G4(2), GX2, , 8)] = 1, b5 = 65

δ2

e G,(2, . , 8) - Gxίφ&Γo'W. Thus G,(2, , 8) Π d ^ W W = 1.

(3.1) a) There exist elements bt e Gγ{i — 3, , i + 3)* for i = 3, 4 αnrf 5

swcΛ Z/m* [63, 65] = 64.

b) 7/ 64 e G4(4)* and 69 e G^θ, , 12)*, ίΛeτι ί/iere exists an element 6&

e G4(6)* such that [b4, 69] = 6β.

c) 7/ 64 e G4(4)* and 610 € G4(10)*, then there exist elements b6 e G4(6)*, bτ

e Gi(4, , 10) and 68 e G4(8)* such that [64, 610] = beftrbs.

d) 7/ 67 € Gx(4, , 10)* and bn e GX8, , 14)*, then there exist elements

b8 e G4(8)*, b9 e Gtf, , 12) and 610 e G4(10)* SMCA ίΛσί [67, 6n] - 68&96io.

Proof, a) We have seen t h a t there exists a vertex x 6 7T(7) such t h a t

Gx(2, , 8) Π Gx(x) = 1. Let 63 be the element in G^O, , 6) such t h a t

(8)63-
1 = x. Then [&3, 65] e G4(4)* for every b6e Gx(2, , 8)*. b) is left to
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the reader, c) We have [64, 610] 6 G^δ, , 9) - G4(4) - G4(10). There exist

elements b5eG,(6)^ and&8eG4(8)* such that [64, bφ^bϊ1 e Gχ(4, , 10).

Since [G4(6), G4(8)] = [G4(6), Gx(4, , 10)] = 1, the claim follows, d) is now

clear. •

We now suppose that p Φ 2. By (2,11), G(W) contains an involution

a. Let ζ(i) = ( - l ) | α ' ί + 1 for each /.

(3.2) For every even ί:

A) « 0 = ζ(i - l)C(i + 1)
B) ζ(0 = ζ(i - 2)ζ(i + 3)

C) ζ(ΐ)ζ(i + 6) = ζ(ί + 2) = ζ(i + 4)

Proo/. A) Choose 63, 64 and 65 as in (3.1.a). Since ^ ( 2 , - ,8) Γ ( 1 )

= OP(G(1, 2)™>), ^ ( 2 , ,8)™> = O,(G(8, 9)™>) and G^l, , 8) = Gι(29

9) = 1, we have bi = b l(1) = bζ

b

(9) and, in particular, ζ(l) = ζ(9). Similarly,

bt = 6^(-1} = bl(7) and b\ = b[(0) = 6f8). We have [&S(-1}, 6^(1)] = [ό3, 65]ζ ("1 ) c ( 1 )

hecause [63, 6J = [64, &J = 1. Therefore 64

c(1)C(-υ = 6f = 6f(0) and thus

ζ(l)ζ(—1) = ζ(0). For arbitrary even /, we find, as in (3.1.a), elements

bί+j e Gλ(i + j - 3, , i + j + 3)* for j = 3, 4 and 5 such t h a t [6,+3, bί+5]

= bί+4 and proceed as before. B) follows analogously from (3.1.b). C)

Choose bt for i = 4,6,7,8 and 10 as in (3.1.c). Then bl(2)bζ

7

(3)bζ

8

U)

= (b6bAY = [&?, &ίo] = [^(0), bin = (b,bA)mc(Q) = 6̂ o>^6>6?(θ)c(6)6αo)c(6) g i n c e

[G4(;), Ĝ yfe - 3, , k + 3)] = 1 whenever j is even and \j - k\ < 4. Thus

όc(0)c(6)-c(2) e G i ( 1 0 ) I t fouows t h a t ζ(0)ζ(6) = ζ(2). Similarly, ζ(0)ζ(6) = ζ(4).

D
By (3.2.C), ζ(0 = ζ(0) for every even L By (3.2.B), it follows that

ζ(ΐ) = 1 for i odd. Therefore, by (3.2.A), ζ(2) = 1 and thus a e G^l, 2). By

(2.4), it follows that a = 1, a contradiction.

Thus p = 2. First let q = 2. For each £ let 6̂  be the nontrivial

element in G^i — 3, * , i + 3). Since there exists a vertex x e Γ(7) such

that Gi(2, , 8) Π dfr) = 1 and |Γ(7)| = 3, it follows that 65 <s G ^ δ π ) .

Similarly, bn ί G1((10)65). Thus [6β, bn] e Gx(7, 8, 9) - Gx(6) - G^IO), so that

bAo[b59 bn] e Gx(6, , 10) and (&6&io[&5, &n])2 6 G^δ, 11). Since [G4(0,

^(7, 8, 9)] = 1 for / = 6 and 10, (66610[65, bn])2 = [b5, bn]\ If [6β, bn]
2 = 1,

then [66, [&β, 6n]] = 1 and therefore 65e Gx(2, , 6, (5) [65, 6Π], , (2)[65,

&n]), in contradiction to (2.3). Therefore [65, &n]2 Φ 1 and, in particular,

[b5,bn]
2 £ G(3). Since [G4(2), Gx(2, , 8)] = 1, we have b5 e G1((S)b^ K (8)6a
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= (4)[6β, &„], then 65 e G((3)[65, 6n]) and thus (3)[6β, bn]
2 = (3)[65,611]61165611 = 3.

It follows t h a t (8)62 φ (4)[65, 6Π]. Since [65, bl0] e G(4, , 12) - G(13), we

have [66, 610] e G(3), so t h a t 65 0 G ^ f r ^ ) and therefore (4)610 Φ (8)62. Thus

(4)610 = (4)[65, 6Π]. Hence (610[65, 6n])2 e G(3). Since [6 ,0 ,0 , (6 ,7 ,8)1-1,

[65, bnY e G(3), a contradiction.

When g > 2, a different argument is required.

(3.3) Let p = 2. For ei βry £ ί/iere exists an element et e G^ΐ) Π G(£, ,

i + 8) Π Gx(£ + 8) wίίΛ |e t | , = q - 1 /or i < j < i + 8.

Proo/. By (2.10), there exists an element a e Gx(4) Π G(4, , 12) Π Gx(12)

< G(W) with |α | 8 = q - 1. Thus <? - l | | α | . Since α l α l 5 e Gi(4, 5), we have

\a\ = |o|β by (2.3). If σ e PΓL(2, g ) . and q - l\\σ\, then \σ\ = q - 1. It

follows t h a t \a\6 = q — 1. Similarly, |σ|n = q — 1.

For each £ let α, = α l α | ΐ . Then [α,, G^i + 1, , i + 7)] = 1 and thus

at e Gλ(i + 8). It follows t h a t at e GiO") whenever j = i (mod 8).

By (3.1.c), we can find elements bt e G4(£)* for i = 0, 2,4 and 6 and an

element 63 e G^O, , 6) such t h a t [60, 66] = 626364. Since [60, 66] = [6?10, 6?10]

= 6j lo6f °&?10, όf^όΓ1 e Gχ(O) and thus [64, α10] = 1. Since [64, a
j] = 1 implies

|β|β = £ — l | i\ we conclude t h a t |α | 1 0 = g — 1. Similarly, \a\Q = q — 1.

By (3.1.b), we can find 6, e G^ί - 3, , i + 3)* for i = 8, 10 and 13 such

that [δ8, 613] = 610. Then 6?0

9 = [6?9, &£?] = [68, 613] = 610 and therefore |α | β

= g — l | | α | 9 . I t follows t h a t \a\9 = q — 1 and similarly |α | 7 = g — 1. Thus

the claim is proven for i even.

Let c be an element in Gx(2) Π G(2, , 10) Π G^IO) with \c\t - q - 1

for 3 < £ < 9. We can choose c such t h a t d = ace Gx(3); let d, = c P u for

each £. Since [d, Gx(4, , 10)] = 1, d e G^l l ) . Since a e Gx(4) and c e G^IO),

we have \d\A = \d\l0 = q — 1. By (3.1.a), we can find elements bt e G(£ — 3,

• , £ + 3)* for £ - 7, 8 and 9 such that [&7, 6J - 68. Then 6^5 = [6?5, 69

d5]

= [67, 69] = 68 and thus | d |4 = q — 111 d |β so t h a t | d |5 = g — 1. Similarly,

]cί ]9 = q — 1. By (3.1.b), we can find elements 6, e Gx(i — 3, , i + 3)*

for £ = 7,10 and 12 such t h a t [67, 612] = 610. Then 6ί0

8 = [6?8, 6f|] = [67, 612]

= 610 and so | d |β 11 d |8. Similarly, we have | d |811 d |6 and therefore | d |6 = | d |8.

If we pick 6, (£ = 4, 6, 7, 8,10) as in (3.1.c), then (bφAY9 = [6ίβ, 6foβ] = [64,

610] = 666768 and so bξ% e G4(6) Π Gx(10) = 1, thus |d | 1 0 = q - l | | d | β = |d | 8 .

Finally, let 6, with 7 < £ < 11 be as in (3.1.d). Then (bsbAoY7 = W\ &fί]

= [67, &„] = 6869610 and therefore &£7&8 e G4(8) Π Gx(12) = 1, so t h a t \d\4

D
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We are now in a position to obtain a contradiction by constructing

a generalized 8-gon of order (q, q). We will save space, however, by post-

poning this until later, where we include it as one case in the construc-

tion crucial to the proof of (1.2).

4. The case s = 13

This time we suppose first that p = 2. If bQe G6(0)* and 610e G6(10)*,

then [60, 610] e Gx(3, , 7) - Gα(2) - Gx(8). If - 2 < i < 6, then 3(0, (i)[b0, 610])

< 6, so that (i)[6o, blo]bo = (O[&o, 610] and thus [60, 619]
2 e G(i). If 4 < ί < 12,

then 3(10, (i)[6o> bw]) < 6, so that (ΐ)b0b10b0 = (0[&o, ί>io]&io = (Ot̂ o, &io] and

thus [60, bl0]
2 e G(i). Therefore [60, 610]

2 e G(-2, , 12) Π Gx(3, , 7) = 1.

It follows that [60, [bo, bl0\] = 1 and hence boe Gx(—5, , 1, 2, (l)[60, b10],

- -, ( — 5)[60, bl0\) = 1. Contradiction.

Thus p > 3.

(4.1) a) If boe G6(0)* and b7e Gγ{2, , 12)*, then there exists an element

b2 e G6(2)* such that [60, 67] = b2.

b) // 60 6 G6(0)* a n d 68 e G6(8)*, ^/ιen ί/iere βxisίs an element b4 e G6(4)*

swc/i that [b0, b8] = 64.

c) // 60 e G6(0)* and 69 6 Gi(4, , 14)*, then there exist elements bt e Gλ(i

— 5, , ί + 5) for i = 2, 3,4, 5 and 6 with b6 Φ 1 SMC/I 2/ιa£ [60, &9] = b2b3

b4bδbΰ.

Proof. We leave a) and b) to the reader and turn to part c). Since

[Gχ(4, , 14), G6(12)] = 1 and G6(12) acts transitively on Γ(6) - {7}, we

have GX4, , 14) < G2(6). Thus [60, 69] e G^l, , 7) - G^O). There exist

b2 e G t (-3, , 7) and b6e G^l, , 11)* such that [60, b,]b^b^x e G^O,

8) and thus bt 6 Gλ(ί — 5, , i + 5) for i = 3, 4 and 5 such that [b0, 69]

-bς'b^b^bς1 = δ4. Since [62, b%] = [64, 6J = 1 for 2 < i < 6, we have [60, 69]

By (2.11), there exists an involution a in G(W). Let ζ(i) = (-~l) | α | ί + 1

for each i.

(4.2) For every even i:

A) ζ(i - 1) = ζ(ί + 4)ζ(ί + 6) αnrf ζ(i + 7) = ζ(0C(i + 2)

B) C(0 = C(i + 4)C(i.+8)

C) ζ(0 = ζ(i + 6) if ζ(i + 3) = 1.

Proof. A) We may take ί = 2. If δo> b2 and 67 are as in (4.1.a),

t h e n 6?« = 6 ? = [6?, 6?] - [&S(6), 6^(1)] = [60, 67]
ζ ( 1 ) ζ ( 6 ) since [62, b0] = [62, 67] = 1.
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Thus ζ(8) = ζ(l)ζ(6). By (3.1.a), we can find elements b^G^i - 5, ,

i + 5)* for i = 3, 8 and 10 such that [63, 610] = b8. Then b\{2) = [b3, blo]
a

= [bϊ9), b[^] = bfKii\ B) follows analogously from (4.1.b). For C) we

assume i = 0 and ζ(3) = 1. If bt with i = 0, 2, 3, 4, 5, 6, and 9 are as in

(4.1.c), then (b2bAbδbe)
a = W, bζ] = W\ 6J = [b0, 69]

ζ(6) since [b0, bt] = 1

for 2 < i < 6. Since [bi9 b6] = 1 for 2 < ί < 5, we have (62&3&A&6)
ζ(6)

= (b2bAh)wW6) and therefore ^ ( 0 )" c ( 6 ) = 6?66'
ζ(6) e <62, 63, 64, 6δ> < G^O), so

that ζ(0) = ζ(6). D

Suppose that ζ(3) = 1. By (2.4), we have ζ(2) - ζ(4) = - 1 . By (4.2.C),

ζ(0) = ζ(6). By (4.2.B), ζ(8) = ζ(0)ζ(4) = -ζ(0) and ζ(10) = ζ(2)ζ(6) = -ζ(0).

By (4.2.A), ζ(9) = C(2)C(4) = 1, ζ(l) = ζ(6)ζ(8) = - 1 and ζ(ll) = ζ(4)ζ(6)

= -ζ(0). Since α g Gx(8, 9), we have ζ(8) = -ζ(0) = - 1 and therefore

ζ(6) = 1. Since a £ G^δ, 6) and a <Z ^(6, 7), we have ζ(5) = ζ(7) = - 1 .

We now choose elements bt with ί = 0, 2, , 6, 9 as in (4.1.c). Since

ζ(3) = C(6) - 1, we have 62 6β = [bOί b9] = [bl b%] = (62 66)
α = 6^8)63

C(9)

.6αio)6c(π)6c(θ) = 61-i636Γi6-i6β. Thus ble(b2,b3, 64> < ^ ( - 1 ) , so that 65 = 1.

Therefore 64

2e <62, 63> < G^-2), so that b4 = 1 and thus 62 = 1. There

exists an element g e G with (0, , lS)g = (2, , 15). Since ζ(l) = ζ(2)

= — 1, ft > 1 for every ί and thus, by (2.2), (i)g = ί + 2 for every ί. If

c = gag'1, then fta"1^1 = W>1 - [6g, 69

C] = [&o~\ 69"1]. From [60, &J = 6366 it

follows that [60"1, &9"1] = bAbAb^bξ1. Since [6β, 6,] = 1 for ί = 0 and 9

and [60, &3] = 1, we have 63~
166~

1 = t&o"1, K1] = b^b^b^ and thus 63~
2&6~

2

= 63-
16963&9-

1 e Gλ(9). Therefore 63~
2 6 G x (-2, , 9) = 1, so that 63 = 1, &6"

2

= 6969"1 = 1 and thus bό = 1. Contradiction. It follows that ζ(3) = — 1

and thus ζ(i) = — 1 for every odd i.

From (4.2.A) we have that ζ(ι) = — ζ(i + 2) for every even i. Thus

either ζ(6) = ζ(10) = ζ(14) - - 1 or ζ(8) = ζ(12) = ζ(16) = - 1 , in contra-

diction to (4.2.B).

5. Proof of (1.2): Preliminaries

(5.1) Let qφ2, se {4, 5, 7}, p Φ 2 if s = 4 and G(x)Γ U ) = PGL(2, 3) for

every vertex x when s = 5 απd g = 3. Let u = 0 or 1. TTierc G ẑ̂ ) Π G(VF)

Π G(w + i) ^ Gi(w + i) for every i with 1 < i < s — 2 excluding i = (s — l)/2

if q = 3 and s — 5 or 7 α îd i = 2 α îcί 4 if q = 4 and s = 7.

Proo/. Suppose G^α) Π G(VF) ^ Gj(w + i) for some ί. Since Λw+i

normalizes GX(M) Π G(W), it follows that Gx(w) Pi G(W) Π G(u + i) £ Gx{u
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+ i). It thus suffices to prove Gx(u) Π G(W) £ Gx(u + /) to conclude that

Gx{u) Γ\ G(W) Γi G(u + i) £ Gλ{u + ί). We choose, once and for all, an

element ge G such that (0, , s)g — (2, , s + 2) and, in case p Φ 2,

an involution αe G(W0; let ζ(i) = (-l)'α '*+ 1 for every i.

Suppose first that 5 = 4 and p Φ 2. Then 6? = feξu+2) for every i and

every &* € G^i, ί + 1). For each w there exist elements bt e Gλ{i, i + 1)*

for i = w, M; + 1 and w + 2 such that [&„,, 6w+2] = 6ω+1. Then 6^+ 3 ) = ba

w+1

ΓL Z, la \Uζ(w + 2) Lζ (w + 4n \U U lζ(w + 2)ζ(w + 4) Qinr»P ΓΛ h i \h

— [Ow, ow+2\ — [Ow 5 θw+2 J — 1°W9 θw+2i s i n c e iow+uow\ — [ow+ι,

hw+2] = 1. Thus ζ(α; + 3) = ζ(w + 2)ζ(iϋ + 4). Thus there exists a k such

that ζ(0 = 1 iff i = k (mod 3). In particular, ft > 1 for every i so that,

by (2.2), (i)g = i + 2 for every i. Therefore ag-ιageGλ{i) iff J Ξ H I

(mod 3).

Now let s = 5. Since, by assumption, ft > 1 for every i, we have

(i)g — ί + 2 for every z\ We claim that it would suffice to show that

G(W) Π G^u) Φ 1 for u = 0 or 1 when g > 3 and for ι/ = 0 and 1 when

q = 3. Let, for instance, £Γ= G(W) Π G^O) and suppose that JEf =̂ 1. If

a e H, then [α, G^l, 2, 3)] = 1 and thus a e Gi(4). Thus i ϊ < G^i) for every

ί = 0 (mod 4). By (2.4), we. have H £ G^i) for every odd i. Let H = H

Π G(l). By the remarks at the beginning of this proof, H Φ 1. Since for

each i, [H, AJ < G^O, 1) Π G(W) = 1, ff < G(W0 and thus H = H Π G(W)

= H (Ί G(i) for each odd i. Suppose that # > 3 and H < Gx(2) so that H

= G(W) (Ί G^i) for every even i. Let Σ be the graph with V(Σ) = {(0)n|n

eNG(H)} and £(^) - {{x, }̂ | x, y e y(^) and d(x,y) = 2} and let S be the

subgroup of aut (Σ) induced by NG(H). Since G(ί, , i + 4) < iVσ(ff) for

every even /, Σ is (S, 3)-transitive and PSL(2, q) <ί_ S(x)Σix) for every x

e V(2). By (2.12), (q - ΐ)l(q - 1, 2) divides 1(^(0) Π S(2) Π S(4))J ( 2 ) | and

hence |(iϊ Π G(2))Γ(2)|, too. Choose an element d in H Π G(2) with \d\2

= to - l)/to - 1, 2). Then dreHΠ G(W) (where g = p r) and, since r< \d\29

dr & Gi(2). This contradicts the assumption that H < Gi(2). It follows that

there exists an element ceH not in Gi(2). By (2.3), \c\ = |c|_χ = \c\ι and

so IcU = \g~ιcg\λ. Since G(Wr)Γ(1) is cyclic, <c> and (g~ιcg} induce the

same permutation group on Γ(ΐ). Hence there exists an integer j relatively

prime to \c\ such that cjg~ιcge Gλ(l). Since g~ιcge Gx(2), \cjg'ιcg\2 = \c*\2

Φ 1. Hence G^l) Π G(W) φ 1 and we can proceed as before. If we start

by assuming Gx(l) Π G(W) φ 1, the proof is the same.

When p = 2, H φ 1 follows from (2.10). Let p Φ 2. There exist ele-

ments ft* e Gλ{ί — 1, i, ί + 1)* for 0 < i < 3 such that [60, 63] = bxb2. Let

https://doi.org/10.1017/S0027763000018420 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000018420


GROUPS WITH A (B, N)-PAIR 15

c2 = [bu 63] e Gi(l, 2, 3) = G2(2). Suppose that ζ(i) - - 1 for every i. Then

cj 1 = c? = [&!, 63]
α = [&Γ1, 63"1] = [61, 63] since [c2, bt] = 1 for i = 1 and 3.

Thus c2 = 1. It follows that [bi9 [bθ9 b3]] = 1 for i = 0 and 3, so that ftr^i1

= [&0, b3]
a = [bo\ &3"1] = [60, 63] = 6162. Therefore bxb2 = 1, so that bγ e Gι

• (0, 1, 2, 3) = 1, a contradiction. We are thus finished with the case s = 5

when q > 3. Let g = 3. If ζ(l) = 1, then b[(2)bζ

2

w = tfba

2 = [b0, bz]
a

= [&$«>, 6 j = [&o> 6j«2) = fec(2)6c(2) s i n c e [&o> 6 j = 1 for / = 1 and 2. Thus

ζ(0) = ζ(2) - ζ(3). Since α £ G^O, 1), ζ(0) = - 1 . Therefore ag-ιageGx{2)

— Gt(3). Thus we may suppose that G(W) (Ί G^i) = 1 for every odd i.

Since W is good and, by assumption, f0 = 2, we may, by replacing a if

necessary, assume that ζ(0) = — 1. Then c^1 = c\ = [6f, 63] = [bϊι, b^1}

= [6χ, 63] so that [6l7 6J = 1. Thus b^bi1 = [6?, 6?] = [&S(2>, ftβ"1] = [60, b,Yw

= 6rζ(2)62"
ζ(2), so that ζ(2) = 1. Therefore ag~ιag e Gλ(ί) - Gx(2), a contradic-

tion.

Now let s = 7. This time we claim that it suffices to show that

Gx(u) ΓΊ G(W) Φ 1 for u = 0 or 1 when g = 3 or g > 5 and for M = 0 and

1 when q = 4. Let, for instance, ZZ" = G(VF) Π G^l) and suppose that H

Φ 1. Since [H, Gx(2, , 6)] - 1, H < ^(7) and thus H = G( W) Π G^i) for

every i = 1 (mod 6) and H £ G^i) for every i = 0 or 2 (mod 6). If i ί < ^(4)

and thus ί ί = G(W) Π Gi(i) for every ί = l(mod 3), we obtain a contradic-

tion from (2.12) as in the case s = δ (when q Φ 3). Let H = H ΓΊ G(2).

As in the case s = 5,H = H Γ\ G(W) = HΓ\ G(i) for every £ Ξ 0 O Γ 2 (mod 6).

Suppose that H < Gi(3). Let c be an element with (ί)c = 8 — ί for 1 < i

< 7. Since F = G(l, , 7) Π G^l) = G(l, , 7) Π ̂ (7), c normalizes F .

Thus ^ < Gx(5) and hence H= G(W) Π Gx(0 for every odd ΐ. Let 21 be

the graph with V(Σ) = {(ΐ)n\n s NG(H)} and ^(I7) - {{x,y}\x,ye V(Σ) and

9(Λ;, y) = 2} and let S be the subgroup of aut (Σ) induced by NG(H).

Then PSL(2,q)<[S(xy(x) for every x e V(Σ) and J is locally (S, ̂ -transi-

tive. We may thus conclude that (q - ΐ)/(q - 1, 3) divides 1(^(1) Π S(3)

(Ί S(5))J(3) | from the very theorem (i.e., (1.2)) we are busy proving, paying

attention that we never use the case s = 7 in the proof of the case s — 4.

This contradicts the assumption that H < Gx(3) as in the case s = 5 if

^ ^ 4 . In particular, ft > 1 for every £ and thus (ί)g = i + 2 for every i.

Exactly as in the case s = 5, we can find an element ce H and an integer

j such that cjg~ιcg € G0) ΓΊ G( W)* (if g =£ 4). Thus we can proceed as be-

fore.

If p = 2, Gi(l) Π G ( l f ) ΐ l follows from (2.10). Suppose q = 4. If α = (ΛJ2,
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then aeG(W) and a φ Gx(l). There exists an element 6e G^l) Π G(W)

such that ab e G^O). Hence G^O) Π G ( f ) ^ 1. Finally, suppose that p Φ 2.

Suppose ζ(i) = — 1 for every /. There exist elements bt e G3(i)* for i = 0,

2 and 4 such that [60, 64] = b2. Thus 6<(5) = &ϊ = [&o 6Jβ = [6?3), 6?7)]

= [6o, 64]
C(3)C(7) since [62, 6J = 1 for i = 0 and 4. Thus - 1 = ζ(5) = ζ(3)

. ζ ( 7 ) = + l . Contradiction. Π

In the next lemma, we include the case s = 9, p = 2 and g > 4,

continuing from where we left off in § 3.

(5.2) Let q > 2, s e {4, 5, 7} or s = 9 and p = 2 and G(x)Γ(a;) = PGL(2, 3)

for every vertex x when g = 3 and s = 5. Let w = 0 or 1 and 3Ί, ,y,_i

be vertices with yγΦ u + s such that (u, u + 1, , u + s — 1, yl9 ,yβ_i)

is α good 2(s — l)-path. Then (ys.u , yl9 u + s — 1, u + s, , w + 2(s — 1))

is α good 2(s — ί)-path.

Proof. By (2.1), there exist vertices y'2, ,yLi such that ( yLi, ,

^2, JΊ, u + s — 1, u + 5, , u + 2(s — 1)) is a good 2(s — l)-path.

We first assume that s = 4 and p = 2. By (2.5), ( G ^ J Ί , y2), G2(3 + u,

3Ί)> contains an element a with (1 + w, 2 + α)α = (5 + u, 4 + ύ). Since

[Gάyuyd, Gι(3 + u, yj\ < G:(3 + u, y» y2) = 1, α is an involution. By (2.2),

a exchanges w and 6 + u. Thus a exchanges y2 and yS But a e G^y^

so that y2 = yί. Now taking (6 + w, 5 + u, 4 + u, 3 + u,yl9 y2,y£) in place

of (u, u + 1, - ,u + 6), 2 + w in place of JΊ and 1 + u in place of j 2 > we

conclude that (I + u, 2 + u, 3 + u, yl9 y2 yi) is good. Since (1 + u, 2 + u,

3 + uy yl9 y29 y2) is also good, it follows from (2.2) that yz = y'z.

We may thus assume that p Φ 2 if s = 4. By (3.3) and (5.1), there

exists an element ae Gx{u + s — 1) Π G(JΊ) Π G(y2) — G ^ J Ί ) with (|α|,p)

= 1. Since (\a\,p) = 1, there exists an (s — l)-path (XU,XU+D * ,Λα+,_2,

Λtt+,_i) with xu+s_χ = u + s - 1, xu+s-2 φ yγ and α e G(xu, xu+l9 , xw+s_2,

#α+*-i) Since .Γ is locally (G, s)-transitive, we may assume that xt = i

for u + 1 < i < w + s — 2. By (2.2), xw = w since /^ > 1 for every vertex

x, by assumption when s = 5 and by (5.1) when s e {4, 7}. Since a e G(u,

• , u + s), ae G(w, , u + 2(s — 1)) and thus ae G(y'^). But y2 is the

only fixed point of a in Γ{yΐ) — {u + s — 1}. Thus y2 = yj. Again using

(3.3) and (5.1), we can find an element in G(u, , u + s — 1) Π G^w + s

- 1) Π G(yl9 y2, y3) Π G(y2) - G^^), so that y3 = yj. Continuing, we obtain

3/. = 3/̂  for 1 < i < s — 1 except when q = 3 and s e {5, 7} or q = 4 and

s = 7.
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If q = 3 and s e {5, 7}, we have only yt = y\ for 1 < ί < υ where υ

= (s - l)/2 from (5.1). If we knew that G^a) £ G(W0 Π Gλ(u + ι>) (which,

however, a posteriori is not the case), we would be finished as before.

Thus we may assume that Gx{u) Π G(W) = G^ί) Π G(W) for every i = u

(modi;). Let H= Gx(u) Π G(W), S = NG(H)!H and 2* be the graph with

V(2) = {(M)n|n6iNΓσ(fl)} and £(£) = {{x, y}Ix, y e V(Σ) and d(x, y) = υ}.

The graph Σ is locally (S, 3)-transitive. Since S(x)Σlx) = PGL(2, 3) and

|SI(JC)| = 3 for every vertex, there exists, by (2.13), an involution in S(y2Ό9

yυ, u + 2v, u + 3u, u + Aυ). Thus there exists an element in G(yΌ9 , yl9

u + s — 1, u + s, , u + 2(s — 1)) whose only fixed point in Γ(JV) — {y^}

is 3>ϋ+i. Thus yΌ+1 = yϋ+1. Using (5.1), we can then conclude that yt = y't
for 1; + 2 < i < s - 1.

If g = 4 and s = 7, we may assume that Gx(u) Π G(W) = G^i) D G(W)

for every i = u (mod 2). Let i ί = G^u) Π G( WO, S - NG(H)/H and I7 be

the graph with V(£) = {(u)n\ne NG(H)} and £(i;) = {{x,y}\x,ye V(Σ) and

^(^? y) = 2}. The graph 21 is (S, 4)-transitive. By the case s = 4 of the

lemma we are busy proving, (y0, yi9 y2, u + 6, u + 8, u + 10, zz + 12) is a

good 6-path in Σ. It follows that (y6, yδ9 , y29 yl9 u + 6, u + 7, , u + 12)

is a good 12-path in Γ. •

6. Proof of (1.2): The construction

We assume that q Φ 2, fx = 2 for every vertex Λ; when s = 5 and q — 3

and s e {4, 5, 7} or s = 9 and p = 2. For each ί e N and each vertex x,

let Γ*(x) = {y\d(x,y) < £}• We point out that the girth of Γ is at least

2(s - 1) (see, for instance, [10, p. 61]). Let F = Γs_2(0) U Λ_2(l) and Π be

the undirected graph with vertex set V(Π) = F and {x, y) e E(Π) iff x or

y or both are in Γs_3(0) U Γs_3(ϊ) and x e Γ(y) or there exists a good

(2s — 3)-path (x0, , x2s_3) with xs_2 = 0, xs_i = 1 and either x0 = x and

%2s_z = 3/ or x0 = y and x2s_3 = x. By (2.2), 77 is regular of valency q + 1.

Let P = aut (77).

Let a be any element in G(l) — G(0). We define a permutation a of

F as follows: If x e Γ,_2(l), we set (x)α - (x)ά. If x e F - Γs_2(l), we set

(x)α = (x2(s-i))α, where (xo, , x2(s-i)) is the uniquely determined 2(5 — 1)-

path with x0 = x, xs_2 = 0, xs_! = 1 and xs = (O)α"1. It is straightforward

to check, using (5.2), that a is an element of P. Thus P(l) £ P(0).

Similarly, P(0) £ P(l).

If a e G({0,1}), then clearly the permutation which a induces on F is
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an element of P. Since, for u = 0 and 1, P(ύ) £ P ( l — u), it follows

that P(u) acts transitively on Π(u). Since Π is connected, P acts transi-

tively on E(Π). Thus the girth of Π is 2(5 — 1) and Π is the incidence

graph of a generalized (s — l)-gon of order (q, q). By [3], s e {4, 5, 7}.

Since, by (2.5) and (2.9), P contains sufficiently many "generalized elations",

it follows from [5, Theorem 1.8], [7, Theorem 2] and [12, (4.4)] that Π

^ Γs_hq and P = Gs_hq.

Let u = 0 or 1. We have seen that for each a e G(u) there exists an

element a e P(u) such that a and α agree on Γs_2(u). The map τ mapping

a onto a is an injective homomorphism from G(u) into P(u). For each

w e Γ(u), an element a e G(w, w) lies in Op(G(u, w)) iff for £ = iz and w, a

induces a permutation on Γ(i) contained in Op(G(u, w)Γ(i)). Thus τ maps

Op(G(u, w)) into Op(P(tt, α;)). But, by (2.3) and (2.5), \Op(G(u, w))\ = qs~ι

= \Op(P(u, w))\. Theorem (1.2) follows now from the next lemma whose

proof is left to the reader:

(6.1) Let n = s — 1 and (X, Y) be a l-path in Γn>q. For U = X and Y,

let Gn,q(U) = <Op(Gn,Q(U, W))\WeΓn,q(U)y. Then Gn,q{V) < HnJU) for

U=Xand Y and Hn,q(X, Y) = φn.q(X) Π Gn,q(Y), Gn,q{X) Π Gn,q(Y)).

7. Proof of (1.3)

When q = 2, we are in the unfortunate situation that every path is

a good path, so that the construction used in the proof of (1.2) does not

work. We leave undecided the question whether (1.2)—with an appropriate

clause for the exceptional case s = 4 and G(k) = G4f2(K)—nevertheless

remains true when q = 2.

First let s = 4 and, for every i, bt be the nontrivial element in

GXί, i + 1). Then [bi9 bi+2] = bί+1 for every L We have |6063|2 = 3. Thus

(bAY e Gx(2) = <&!, 62> and therefore (60b3)
6 = 1. Suppose (6063)

3 Φ 1. Let

α e G be an element with (0, , 4)α = (0, 1, 2, (1)63, (0)63). Then bt = bb

Q*

and hence ((60&s)3)a = (&0&3&0&3)3 = (&0&3)6 = 1, a contradiction. Thus G(x)

= <ίo, ίi, t2, U\t\ = 1 for 0 < i < 3; [ί,, t3] = 1 if |ί - j | = 1; [ί4, ί,+2] - tί+1 for

i = 0 and 1 (t0t3)
3 = 1) for every vertex x. If Γ is (G, 4)-transitive, then

there exists an element ce G with (0,1, , 4)c = (5, 4, , 1). Thus c2

eG(l, •• ,4) = <62> and cbtc = 64_, for 1 < i < 3. We have G({2, 3})

^ G3,2({X, Y}) if c2 = 1 and G({2, 3}) s G4i,(JK:) otherwise.

Let s = 5 and, for every i, bt be the nontrivial element in G^i — 1,
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i, ί + 1). Then [bt, bί+3] = 6 i + 16 ί + 2. Since Gλ{i - 1, i, i + 1) = G2(i) for

every even i, we have [bί9 bj] = 1 when \ί — j \ < 2, i even. Suppose [bub3]

= 62. Then [60, 63] - (6063)
2 = bλb2 = b^bA)2 = bzbλbz and thus bobA = 636i.

Squaring both sides, we have 1 = (636i)2 = b2, a contradiction. Thus [bu bj]

= 1 when | i — j | < 2, £ arbitrary. If Γ is (G, 5)-transitive, then there

exists an element ceG with (0, , 5)c = (5, , 0) and thus c2 = 1 and

cbtc = bA_i for 1 < i < 4. Thus the structure of G({2, 3)} is completely

determined. We have (bAΪ e G1(3) = <fc2, 63, 64> and thus (6165)
6 = 1. Sup-

pose that (&A)3 Φ 1. Let 65 = bjbxbh. Then (&1&5)3 = 1. There exists, how-

ever, an element aeG with (1, , 5)α = (1, 2, 3, (2)65, (1)65) and thus 6? = bx

and 65 = 65 since [bu bί+2] = 1 and thus G2(i) = <64) for every i. Thus

(&!&,)« = bφί. Contradiction. It follows t h a t (&Λ)3 = 1. Similarly, (b0b4)
3

= 1. Thus G(x) = (t0, , U\t\ = 1 for 0 < i < 4; [ί4, t3] = 1 if |ί - j | < 2,

[ί*» ^+3] = ti+ιtί+2 for i = 0 and 1; (tQt4)
3 = 1) for every vertex x.

Now let s = 7 and, for every i, 6έ be the nontrivial element in

Gi(i — 2, , i + 2). For every even i, G^i — 2, , i + 2) = G3(£) and thus

[bi, bj] = 1 when |£ — jl < 3 and [6t, bi+4] = 6 i + 2. Also, there exist u and

1; e {0, 1} such t h a t [60, bδ] = 616^6364. Hence 6560&5 = bob^blb^. Squaring

both sides, we have (bob^blb,)2 = 1. Since (6064)
2 = 62, [62, 6J = 1 for

0 < ί < 4 and [bu bj] = 1 for j e {1, 3} and j e {0, 4}, we have hφMY = 1.

Thus 1; = 1 and (6i&3)
2 = 62 Therefore (6iδ ί + 2)

2 = fe^+i for every odd i. In

particular, &* g G2(i — 1) and bt £ G2(i + 1) whenever i is odd. It follows

t h a t [&!, 66] e G(l, , 5) - G^l) - G^δ) and thus [6^ 65] = b2b\% with M;

e {0, 1}. Therefore 656165 = 61626?64. Squaring both sides, we have 1 = (6i6?)2

and thus w = 0.

Suppose (bobβ)
3 e G^S) = <61? , 65) has even order. Let fyj = b6b0b6.

Then Ifro&el =.|Z>o2>βl/2. There exists, however, an element aeG with (0, ,

6)a = (0, , 3, (2)6β, , (0)6β) and thus (60δ6)
α = b0b'6. Contradiction.

Let (x0, , x8) be an arbitrary 8-path. Since | G(xu , xΊ) \ = 2, there

exist exactly two elements gλ and g2 such t h a t (xu , x 7 ) ^ = (x7, , xx)

for i = 1 and 2. If d is any involution in G(x4) — Gι(x4), then there exists

a 6-path (yl9 , y7) with y4 = x4 such t h a t (y^d = y$_i for 1 < i < 7. Since

G contains an element mapping (yu , y7) onto (x1? , x7), gt and ̂ 2 must

be involutions. If (x8)gi = (xs)g29 then gxg2 e G(x0, , xB) = 1, a contradic-

tion. Thus (x0, , Λ8)ft = (x8, , x0) for / = 1 or 2.

Thus there exists an element g mapping (—1, , 7) onto (7, , —1).

Since Gx(i - 2, , i + 2) = G3(i) for even i, Gλ{i - 2, , ί + 2)g = Gx(4 - ί,

https://doi.org/10.1017/S0027763000018420 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000018420


20 RICHARD WEISS

• , 8 - i) for 0 < i < 6 and thus [bl9 b6] = [b69 bo]
g = (bfabibύ9 = b2b3bΐbδ.

Therefore, for u = 0 or 1, G(3) = <60, , &6> = Hu where fΓtt = <*0,

U\t\ = 1 for 0 < i < 6; [ti913] = 1 for |ί - j \ < 3, i even; fo, ί<+4] = ί<+2 for

ί = 0 a n d 2; [ti9tt+2] = tt+1 for i = l a n d 3 ; [tl915] = t2t4; [t0, t5] = UIUU\

[tu Q = t2mU\ (toteY = 1>. T h e m a p ξ: {t0, , U) -> Ho g i v e n b y ( O f = kU

and (Qξ = tt for 0 < i < 6, ί Φ 1, induces an isomorphism from fli. onto i70

Thus the structure of G(3) (and therefore also that of G(2, 3) = <60, , &β»

is uniquely determined. Since bγ & G2(0) and G3(l) < G :(—1, , 3) = <&!>,

G3(l) = 1. Thus Γ cannot be (G, 7)-transitive.

Let h be the involution mapping (0, , 8) onto (8, , 0). Let xt = i

for 0 < i < 9, x_x = (9)Λ and cέ be the nontrivial element in G^Λ;^, , xί+2)

for j = 1 and 7. Suppose that (cxc71 is even. If we set yt = ^ for — 1 < i

< 4, yt = (Λ:8-0C7 f° r 5 < i < 9 and let d̂  be the nontrivial element in

Gi(^_2, ,y<+2) for i = 1 and 7, then |dxcẐ 'l = |cxci71 = \c1c7\/2. In addition,

(ydc7 = y%-i for —1 < ί < 9. Repeating, if necessary, we obtain a 10-path

(z_u , zg) with z4 = 4 such that there exists an involution a with (^)α

= 28_i for — 1 < i < 9 and |βiβ7| = 3 where eέ is the nontrivial element in

Gι(Zi_2, , zi+2) for 1 < i < 7. There exists a M; 6 {0, 1} such that [e2, e7]

= e3e?e5e6. Thus [e^ e6] = [e7, e2]
a = (e6e5<e3)

α = e2e3e^5. Therefore G(4)

= <e1? , e7} s J w where J w = <ίlf , tΊ\t\ = 1 for 1 < i < 7; fc, ί j = 1

for | Ϊ - j | < 3, ί even; [£2, ί6] = U\ [tu tί+2] = ti+i for i = 1, 3 and 5; fo, ίί+4]

= ί<+A+3 for i = 1 and 3; [tl916] = ί2ί3ί?ί5; [ί2, ί7] = ίsff^; (^ί7)
3 = 1>. The

map θ: {tl9 ••-9t7}-*J0 given by (tδ)θ = W5 and (ί,)^ = U for 1 < i < 7, i ^ 5,

induces an isomorphism from Jλ onto </0. Thus the structure of G(4) is

uniquely determined.
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