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DISTRIBUTION OF MINIMAL PATH LENGTHS WHEN
EDGE LENGTHS ARE INDEPENDENT HETEROGENEOUS
EXPONENTIAL RANDOM VARIABLES

SHELDON M. ROSS,∗ University of Southern California

Abstract

We find the joint distribution of the lengths of the shortest paths from a specified node
to all other nodes in a network in which the edge lengths are assumed to be independent
heterogeneous exponential random variables. We also give an efficient way to simulate
these lengths that requires only one generated exponential per node, as well as efficient
procedures to use the simulated data to estimate quantities of the joint distribution.
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1. Introduction

Consider the complete directed graph on nodes 0, 1, . . . , n, and suppose that, for i �= j , Xi,j

is the time taken to traverse the edge from i to j . With Li equal to the minimal length, measured
in units of traversal time, of a path from node 0 to node i, i = 1, . . . , n, we are interested in
studying the random variables L1, . . . , Ln when Xi,j , i �= j, are independent exponential
random variables, with E[Xi,j ] = 1/λi,j . In Section 2 we show that the joint distribution of
L1, . . . , Ln is the same as the joint distribution of component lifetimes of a certain n component
system. Utilizing this equivalence, we derive the joint distribution of L1, . . . , Ln in Section 2.1.
In Section 3 we give an effective way of simulating L1, . . . , Ln that involves only n random
numbers, each one being used to generate an exponential random variable. Also, in Section 3
we show how to efficiently use simulation to estimate such quantities as the mean and the
probability distribution of Li . Finally, in Section 4 we consider the exchangeable case, which
results when λ0,i = λ and λi,j = µ, i, j = 1, . . . , n.

The problem of finding the distribution of minimal cost paths when the edge costs are
independent exponential random variables has previously been solved in [4] for the symmetric
case where all the λi,j are equal. Other papers dealing with the symmetric case are [1], [2],
and [3]. The heterogeneous case was previously considered in [1] and [5] where approaches for
finding E[Li] were presented. The computational requirements of these approaches, however,
require solving a set of recursive equations whose cardinality grows exponentially in n.

2. The component system model

Consider n components, where component j initially has the failure rate λ0,j . Suppose,
however, that a component failure increases the failure rates of the still working components,
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in that the failure of component i increases the failure rate of the still working component j by
the amount λi,j . That is, if L∗

j is the lifetime of component j then, with F(t) denoting the set
of failed components at time t , we suppose that

P

(
t < L∗

j < t + h

∣∣∣∣ F(t)

)
=

(
λ0,j +

∑
i∈F(t)

λi,j

)
h + o(h), j /∈ F(t).

Moreover, we assume that

P(t < L∗
i < t + h, t < L∗

j < t + h | F(t)) = o(h), i �= j.

As a consequence, {F(t), t ≥ 0} is a continuous-time Markov chain with instantaneous
transition rates

qS,S∪{j} = λ0,j +
∑

i∈N−S

λi,j , j /∈ S,

where S ⊂ N = {1, . . . , n}.
The following lemmas will be used to show that L1, . . . , Ln and L∗

1, . . . , L
∗
n have the same

distribution.

Lemma 1. Assuming that ci,j > 0, i, j = 0, 1, . . . , n, there is a unique solution (y1, . . . , yn)

to the equation

yj = min
(
c0,j , min

i �=j
(yi + ci,j )

)
, j = 1, . . . , n. (1)

Proof. To argue that there is always a solution to the above equation, consider the complete
directed graph on nodes 0, 1, . . . , n in which c(i, j) is the length of the edge (i, j). Then,
if mj represents the minimal distance from node 0 to node j , it follows that (m1, . . . , mn)

satisfies (1). It remains to prove uniqueness, which we do by induction on n. As uniqueness is
immediate when n = 1, assume uniqueness for n − 1. Now, let y1, . . . , yn be a solution of (1),
and suppose that y1 = minj yj . Then

y1 = min
(
c0,1, min

i �=1
(yi + ci,1)

)
≥ min

(
c0,1, min

i �=1
(y1 + ci,1)

)
,

which, since ci,1 > 0, implies that y1 ≥ c0,1 and, thus, by (1), that y1 = c0,1. Consequently,
y2, . . . , yn satisfy

yj = min
(
c0,j , c0,1 + c1,j , min

1<i �=j
(yi + ci,j )

)

= min
(
c∗

0,j , min
1<i �=j

(yi + ci,j )
)
, j = 2, . . . , n,

where c∗
0,j = min(c0,j , c0,1 + c1,j ). The result now follows by the induction hypothesis.

Lemma 2. For i �= j, i, j = 0, 1, . . . , n, let Xi,j be exponential with rate λi,j . Moreover,
assume that these random variables are independent. Let Tj , j = 1, . . . , n, be the unique
solution of

Tj = min
(
X0,j , min

i �=j
(Ti + Xi,j )

)
, j = 1, . . . , n. (2)

Then (T1, . . . , Tn) and (L∗
1, . . . , L

∗
n) have the same distribution.
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Proof. Using the fact that the failure rate function of the minimum of independent random
variables is equal to the sum of their failure rate functions, we can interpret our model as follows.
Each component j, j = 1, . . . , n, has a primary event associated with it, with the primary event
associated with j occurring at time X0,j . The occurrence of the primary event associated with
i causes i, if it is still working at that time, to immediately fail. In addition, the failure of
component i results in the origin of events Ai,j , j �= i, with the event Ai,j occurring after
an exponentially distributed time Xi,j having rate λi,j , j �= i. If Ai,j occurs while j is still
working then it immediately causes j to fail. Moreover, the Xi,j , i �= j, i, j = 0, 1, . . . , n,
are independent random variables. With this equivalent description, if Tj is the time at which
component j fails then the Tj , j = 1, . . . , n, satisfy (2), proving the lemma.

Theorem 1. The random variables L1, . . . , Ln and L∗
1, . . . , L

∗
n have the same distribution.

Proof. It follows from the proof of Lemma 1, and from Lemma 2, that both L1, . . . , Ln and
L∗

1, . . . , L
∗
n satisfy the equation

Tj = min
(
X0,j , min

i �=j
(Ti + Xi,j )

)
, j = 1, . . . , n.

The result now follows from Lemma 1.

Throughout the rest of the paper, although we will use the notation L1, . . . , Ln, in our
analyses we will assume the component model interpretation.

2.1. The distribution of (L1, . . . , Ln)

For a vector t = (t1, . . . , tn), let t0 = 0 and set

rj (t) =
∑

0≤i �=j

λi,j (tj − ti )
+, j = 1, . . . , n,

and

αj (t) =
∑

0≤i �=j

λi,j 1{ti < tj }, j = 1, . . . , n.

Proposition 1. The joint density of L1, . . . , Ln is

f (t1, . . . , tn) =
n∏

j=1

αj (t)e
−rj (t).

Proof. Since we can always renumber components 1, . . . , n, assume without loss of gener-
ality that t1 < t2 < · · · < tn. Note that in this case

rj (t) =
j−1∑
i=0

λi,j (tj − ti ), j = 1, . . . , n,

and

αj (t) =
j−1∑
i=0

λi,j , j = 1, . . . , n.

In order for Lj to equal tj for all j = 1, . . . , n, there must be no failures before time t1,
component 1 must fail at time t1, no failures must occur for the next t2 − t1 time units,
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component 2 must fail at time t2, and so on. Consequently, for t1 < t2 < t3 < · · · < tn,
the joint density of L1, . . . , Ln is

f (t1, . . . , tn) = α1(t) exp

[
−t1

n∑
i=1

λ0,i

]
α2(t) exp

[
−(t2 − t1)

n∑
i=2

(λ0,i + λ1,i )

]

× α3(t) exp

[
−(t3 − t2)

n∑
i=3

(λ0,i + λ1,i + λ2,i )

]
· · ·

× αn(t) exp

[
−(tn − tn−1)(λ0,n + λ1,n + · · · + λn−1,n)

]
. (3)

To show that the right-hand side is equal to
∏n

j=1 αj (t)e−rj (t), we use induction on n. As the
proof is immediate for n = 1, we assume that the equation holds for n − 1. Noting that

rj (t1, . . . , tn) = rj (t1, . . . , tn−1), j = 1, . . . , n − 1,

αj (t1, . . . , tn) = αj (t1, . . . , tn−1), j = 1, . . . , n − 1,

it follows from (3) and the induction hypothesis that, for t1 < · · · < tn,

f (t1, . . . , tn) = αn(t)e
−A(t)

n−1∏
j=1

αj (t)e
−rj (t),

where
A(t) = t1λ0,n + (t2 − t1)(λ0,n + λ1,n) + · · · + (tn − tn−1)(λ0,n + · · · + λn−1,n)

= tnλ0,n + (tn − t1)λ1,n + (tn − t2)λ2,n + · · · + (tn − tn−1)λn−1,n

= rn(t).

This completes the proof.

3. Efficient simulation procedures

Using the component model interpretation, we now present an efficient way to simulate the
vector L1, . . . , Ln. The following algorithm requires only the generation of n exponentials.

1. Let θi = λ0,i , i = 1, . . . , n. Let F be the null set.

2. Generate X1, . . . , Xn independent exponentials with respective rates θ1, . . . , θn.

3. Let w = argmini /∈F Xi .

4. Lw = Xw, F = F ∪ {w}.
5. If F = {1, . . . , n} stop.

6. For j /∈ F , reset Xj = Xw + θj (Xj − Xw)/(θj + λ(w, j)).

7. For j /∈ F , reset θj = θj + λ(w, j).

8. Go to step 3.

The key step to understanding the preceding is step 6, which uses the fact that if the Xj ,

j /∈ F , are independent exponentials with respective rates θj then, conditional on Xw being
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the smallest among them, Xj − Xw is, for j �= w, independent of Xw and is exponential with
rate θj . Consequently, θj (Xj − Xw)/(θj + λ(w, j)) is exponential with rate θj +λ(w, j), and
is independent of Xw.

Suppose now that we want to use simulation to estimate quantities related to the Lj .
For instance, we might be interested in such quantities as E[Lj ], P(Lj > t), E[LiLj ], or
P(Li > s, Lj > t). Rather than directly using the simulated values of the Lj , we can
improve the estimates by letting I1, . . . , In be the order in which the components fail, and
then using a conditional expectation estimator by conditioning on I1, . . . , In. To obtain these
conditional expectation estimators, suppose that we are given I1, . . . , In. Let XIk

be exponential
with rate

∑
j /∈{I1,...,Ik−1}(λ0,j + ∑k−1

r=1 λIr ,j ), k = 1, . . . , n, and take these exponentials to be
independent. Now use the fact that, given I1, . . . , In, the vector LI1 , LI2 , . . . , LIn has the same
distribution as XI1 , XI1 + XI2 , . . . , XI1 + XI2 + · · · + XIn . Consequently, given I1, . . . , In,
the lifetimes Lj are all distributed as hypoexponential random variables. (Hypoexponential
random variables are defined as sums of independent heterogeneous exponentials. The density
and distribution functions of a hypoexponential random variable can be found in Section 5.2.4
of [6].)

For instance, suppose that n = 4 and that the simulated failure order was I = 4, 1, 3, 2. Then
we could estimate P(L1 > s) by P(X4 +X1 > s), where X4 is exponential with rate

∑4
j=1 λ0,j

and X1 is an independent exponential with rate
∑3

j=1(λ0,j + λ4,j ). If we wanted to estimate
P(L1 > s, L2 > t) then we would use the fact that, conditional on I = 4, 1, 3, 2, the random
variable L1 is distributed as in the preceding, and L2 given (I, L1) is distributed as L1 plus a
hypoexponential distributed as the sum of an exponential with rate

∑
i∈{0,4,1}(λi,3 + λi,2) and

an exponential with rate λ0,2 + λ1,2 + λ3,2 + λ4,2.
We can generate I1, . . . , In either directly, first generating I1, then I2 given the value of I1,

and so on; or we could use the algorithm given at the beginning of this section, keeping track
of the failure order.

Additional variance reduction can be obtained by stratifying on I1. That is, to estimate an
expectation, call it E[R], we would use the fact that

E[R] =
n∑

j=1

E[R | I1 = j ] λ0,j∑n
j=1 λ0,j

.

If we are simulating I1, . . . , In via the algorithm, then to simulate conditional on I1 = j just
let Xj = 0.

4. The exchangeable case

The random vector L1, . . . , Ln is exchangeable when, for some µ and λ, we have λ0,j = λ

and λi,j = µ for all i, j = 1, . . . , n. For this case, letting L(i) be the ith smallest of L1, . . . , Ln,
the joint density of L(1), . . . , L(n) is

fL(1),...,L(n)
(t1, . . . , tn) =

n∏
i=1

aie
−ai (ti−ti−1), 0 = t0 < t1 < · · · < tn,

where ai = (n− i+1)(λ+(i−1)µ). By symmetry, the joint density of the unordered variables
is

fL1,...,Ln(t1, . . . , tn) = 1

n!
n∏

i=1

aie
−ai (ti−ti−1), 0 = t0 < t1 < · · · < tn.
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If we let W1, . . . , Wn be independent exponential random variables, with Wi having rate ai ,
and let Sj = ∑j

i=1 Wi , then L(1), . . . , L(n) has the same joint distribution as S1, . . . , Sn. The
density of Lj is

fLj
(t) = 1

n

n∑
j=1

fSj
(t).

This yields, for instance,

E[Lj ] = 1

n

n∑
j=1

j∑
i=1

1

(n − i + 1)(λ + (i − 1)µ)
= 1

n

n∑
i=1

1

λ + (i − 1)µ
.

All the exchangeable results are in agreement with the results of [4] and [7] when λ = µ.

Remark. It is not immediately clear that our results in the exchangeable case should agree
with those presented in [4] and [7] when λ = µ. The reason is that in our model we consider
a directed graph whereas in the model of [4] and [7] an undirected graph is considered. Thus,
although both models assume that the random variables Xi,j are exponential with parameter µ,
our model assumes that Xi,j and Xj,i are independent whereas the model of [4] and [7] assumes
that Xi,j = Xj,i . That the joint distribution of the shortest paths from node 0 is, nevertheless,
the same in the two models can be seen by the Dijkstra algorithm for finding the shortest paths in
order of their distance from 0. Let us employ this algorithm to generate the shortest paths in the
two models. In both models, we start by generating all edge distances X0,j , j = 1, . . . , n. We
then determine i1 such that X0,i1 = minj X0,j , and note that i1 would be the nearest edge from
node 0. Now suppose that the rth nearest edge from 0, call it ir , has just been discovered by
the algorithm, and that the nearest edges so far discovered are, in order of discovery, i1, . . . , ir .
At this point, to find the next nearest edge, the Dijkstra algorithm would generate the values
Xir ,j , j �= 0, i1, . . . , ir−1. Because the edge value Xi,j will be generated only if the shortest
path to i is discovered before the shortest path to j (and so Lj > Li), the algorithm would
never generate both of the values Xi,j and Xj,i . (To understand why, note that if Lj > Li then
(j, i) would never be an edge of a shortest path.) Thus, it is irrelevant whether Xi,j and Xj,i

are independent or equal because only one of them will be used in finding all shortest paths.
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