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Abstract

In discussions of the power of causal explanations, one often finds a commitment to two
premises. The first is that, all else being equal, a causal explanation is powerful to the extent
that it cites the full causal history of why the effect occurred. The second is that, all else being
equal, causal explanations are powerful to the extent that the occurrence of a cause allows us
to predict the occurrence of its effect. This article proves a representation theorem showing
that there is a unique family of functions measuring a causal explanation’s power that
satisfies these two premises.

1. Introduction
Several authors in philosophy of science have argued that, all else being equal, a
causal explanation is good to the extent that it provides a detailed description of the
causal history of why the event being explained (i.e., the explanandum) occurred.
Consider the example from Railton (1981, 250):

For any given gas, its particular state S at a time t will be determined solely by its
molecular constitution, its initial condition, the deterministic laws of classical
dynamics operating upon this initial condition, and the boundary conditions to
which it has been subject. Therefore, the ideal explanatory text for its being in
state S at time t [ : : : ] will be a complete causal history of the time evolution of
that gas.

The idea being expressed here is that the ideal causal explanation of why a gas ends
up in state S at a time t is the full causal history of the gas’ evolution from some
state S0, at some previous time t0, to its state S at t. From this exemplar of an ideal
causal explanation, one can make the further inference that causal explanations in
general are good or powerful to the extent that they approximate this ideal. One finds
a similar idea expressed by Salmon (1984), who holds that in many cases, good
explanation “involves the placing of the explanandum in a causal network consisting
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of relevant causal interactions that occurred previously and suitable causal processes
that connect them to the fact-to-be-explained” (269). Similarly, Lewis (1986, 217)
defends the thesis that “to explain an event is to provide some information about its
causal history.” Keas (2018) also defends the idea that, all else being equal, scientific
explanations are good to the extent that they trace the causal history of an event back
as far as possible, calling this feature of an explanation “causal history depth.”

On the other hand, there is also widespread agreement in the literature that, all
else being equal, explanations are powerful to the extent that learning the facts that
explain an explanandum would allow us to predict the occurrence the explanandum,
if we didn’t know that it had occurred. This assumption is made explicit in attempts to
formalize explanatory power due to Schupbach and Sprenger (2011) and Crupi and
Tentori (2012). Moreover, Eva and Stern (2019) provide a specific formalization of the
explanatory power of causal explanations by assuming that, all else being equal, a
causal explanation is powerful to the extent that learning that an intervention has
brought about a particular cause of an event would allow us to predict the occurrence
of that event. Let us call this feature of a causal explanation its “causal statistical
relevance.”

These two putative good-making features of a causal explanation can be in tension
with one another. Consider the following example (Eva and Stern 2019, 1047–8):

Ettie: Ettie’s Dad went to see the local football team play in a crucial end of
season match. Unfortunately, Ettie was busy on the day of the game, so she
couldn’t go with him. On her way home, she read a newspaper headline saying
that the local team had lost. When she got home, she asked him “Dad, why did we
lose?”, to which her witty father replied “because we were losing by fifty points
when the fourth quarter started.” Understandably, Ettie still wanted to better
understand why her team lost, so she asked her Dad why they were down by so
much entering the fourth quarter. He replied that their best player was injured
in the opening minutes of the game, and, finally, Ettie’s curiosity ran out.

When Ettie’s father explains the team’s loss by their being down fifty points at the start
of the fourth quarter, he provides an explanation with high causal statistical relevance;
given an intervention on the game such that the local team is down fifty points at the
end of the fourth quarter, it is very likely that they will lose. However, Ettie balks at the
explanation because it has very low causal history depth; we don’t get much of a story
as to why the local team lost. Indeed, it is only once Ettie’s father cites more distant
causal factors contributing to the team’s loss that Ettie’s curiosity is satisfied.

The goal of this paper is to formalize the desiderata that an explanation is good to
the extent that it possesses causal history depth and causal statistical relevance. I then
prove a representation theorem showing that a specific family of functions provides a
measure of causal explanatory power that uniquely satisfies both causal history depth
and causal statistical relevance, alongside some minimal ancillary desiderata.

2. Formal preliminaries

2.1. Bayesian Networks
We begin with the following definition of a causal graph:
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Definition 2.1. A causal graph is a pair G � V;R� �, where V is a set of random
variables that are each measurable with respect to a common probability space
P � Ω;A;Pr� �, and R is an acyclic set of ordered pairs of elements of V, usually
represented pictorially as arrows from one random variable to another.

The fundamental idea behind the Bayes nets approach to representing causal
structure is that if there is a chain of arrows from one variable to another, then
the first variable is causally relevant to the second. So, for instance, in an
epidemiological causal graph there might be a chain of arrows from a variable
representing whether or not a patient smokes to a variable representing whether
or not the patient develops lung cancer, thus encoding the claim that smoking
causes lung cancer.

If there is an arrow from one variable to another, then we say that the first variable
is parent of the second, and the second variable is a child of the first. We can then
define the ancestor and descendant relations as the transitive closure of the parent
and child relations, respectively. We are now in a position to define the all-important
Markov condition:

Definition 2.2. A probability distribution Pr is Markov with respect to a graph
G � V;R� �, where all variables in V are measurable with respect to some
probability space P � Ω;A;Pr� �, if and only if, according to Pr, each X � V is
independent of any subset of the set of non-descendants of X in G, conditional on its
parents in G.

The Markov condition ensures that once we know the value taken by the direct
causes of some variable set X, information about the values taken by any non-effects
of X are uninformative with respect to the probability that X takes any value. This
reflects the intuitive condition that once we know the direct causes of X, information
about more distant causes of X, or about other phenomena not causally related to X,
should not be relevant for making predictions about X.

Finally, we are in a position to define a Bayesian network:

Definition 2.3. A Bayesian network (or “Bayes net”) is a pair G;Pr� � such that G is a
graph in which all variables in V are measurable with respect to some probability
space P � Ω;A;Pr� �, no variable is an ancestor of itself (i.e., the graph is acyclic), and
Pr is Markov to G.

The core idea of the theory of causal Bayes nets is that, for the reasons given
above, the causal structure of any system can be represented as a Bayes net G; Pr� �.
To illustrate, consider the simple causal graph X! Y ! Z W. If this graph
can be paired with the probability distribution Pr in order to form a Bayes net,
then it must be the case that, according to Pr, X is unconditionally independent of
W, Y is independent of W conditional on X, Z is independent of X conditional on Y
and W, and W is unconditionally independent of X and Y. These independence
claims are individually necessary and jointly sufficient for Pr being Markov to
the graph.
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2.2. Intervention distributions
Representing the causal structure of a system as a Bayes net allows us to calculate the
probability distribution over a variable in that Bayes net, given an intervention on the
system. An intervention is an exogenous setting of the values of one or more variables
in the Bayes net that does not depend on values taken by any of the other variables.
To see how this works, let us begin with a result from Pearl (2000, 15–16), who proves
that if V � V1; . . . ;Vmf g is the set of variables in a Bayes net, and if each variable in V
has a corresponding value v1; . . . ; vm, and if par Vi� � is the vector of values taken by the
set of parents of a variable Vi in the Bayes net, then the probability Pr v1; . . . ; vm� � can
be factorized as follows:

Pr v1; . . . ; vm� � �
Ym
i�1

Pr�vi j par Vi� ��: (1)

Next, suppose that we intervene on a set of variables X � V, setting it to the set of
values x. Pearl (2000, 30) and Spirtes et al. (2000, 51) show that in a Bayes net, the
interventional conditional probability Pr�v1; . . . ; vm j do x� �� can be obtained using the
following truncated factorization:

Pr�v1; . . . ; vm j do x� �� �
Ym
i�1

Prdo x� ��vi j par Vi� ��; (2)

where each probability Prdo x� ��vi j par Vi� �� is defined as follows:

Prdo x� � vi j par Vi� �
� � �

Pr�vi j par Vi� �� if Vi =2 X;
1 if Vi 2 X and vi consistent with x;
0 otherwise:

8<
: (3)

Put another way, if we intervene on some set of variables X � V in a Bayes net, then
we make it the case that the values of the variables in X no longer depend on their
parents, but instead depend solely on the intervention. This can be represented
graphically by a sub-graph in which all arrows into all variables in X are removed.
This sub-graph is called the pruned sub-graph for an intervention on X. Spirtes et al.
(2000) prove that Prdo x� � will be Markov to this pruned sub-graph of G;Pr� �, so that we
can calculate the joint probability distribution over the pruned sub-graph created by
any intervention on any set of variables X, using equation (2).

2.3. Causal distance
Next, we define a measure of causal history depth, in the context of a given Bayes net.
Let us begin with some graph-theoretic terminology.

Definition 2.4. For any two variables X and Y in a graph G � V;R� �, a directed path
from X to Y is a set of edges R1; . . . ; Rnf g such that:

i. Each Ri in the set is an element of R;
ii. R1 � X;Vj

� �
, where Vj 2 V;
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iii. Rn � Vk; Y� �, where Vk 2 V; and
iv. there exists a sequence of distinct variables V1; . . . ;Vn�1

� �
such that, for each Ri

in the path, Ri � Vi;Vi�1
� �

.

Pictorially, there is a directed path from X to Y in a graph if one can follow the edges
of the graph to “travel” from X to Y, moving with the direction of the edges, without
passing through the same variable more than once. To illustrate, in the graph
X! Y ! Z W , there is a directed path from X to Z, but not from X to W.

Using the cardinalities of directed paths between variables, we define a proximity
measure on the variables in a graph in two steps.

Definition 2.5. For any causal graph G � V;R� �, the causal distance δG X; Y� �
between two variables X 2 V and Y 2 V is the cardinality of the directed path from X
to Y with minimal cardinality, if such a directed path exists. If no such path exists,
then δG X; Y� � � max δG Vi;Vj

� �
: Vi;Vj 2 V

� �
.

Definition 2.6. For any causal graph G � V;R� �, the normalized causal proximity
πG X;Y� � takes as its arguments any two sets X � V and Y � V, and is defined as
follows:

πG X;Y� � � max δG Vi;Vj

� �
: Vi;Vj 2 V

� � �max δG X; Y� � : X 2 X; Y 2 Y
� �

max δG Vi;Vj

� �
: Vi;Vj 2 V

� � :

In other words, πG X;Y� � returns the normalized difference between the length of the
longest shortest directed path between any two variables in the graph G and the
length of the longest shortest path between a variable in X and a variable in Y. The
result is a measure of proximity that approaches one as the longest shortest path
between a variable in X and a variable in Y gets shorter in length, and approaches
zero as the longest shortest path between a variable in X and a variable in Y becomes
longer. To illustrate, in the graph X! Y ! Z W, πG Xf g; Wf g� � � 0,
πG Y;Wf g; Zf g� � � :5, and πG X; Yf g; Zf g� � � 0. As it will occasionally be more
convenient to speak in terms of normalized causal distance rather than normalized
causal proximity, we define a normalized causal distance function ΔG X;Y� �:

Definition 2.7. For any causal graph G � V;R� �, the normalized causal distance
ΔG X;Y� � is given by the equation ΔG X;Y� � � 1 � πG X;Y� �.

3. The representation theorem
In this primary section of the paper, I make good on my promise in the introduction
to state a set of desiderata that formalize those cases in which explanatory power
requires a trade-off between causal history depth and predictive power, and then
prove that a specific family of measures uniquely satisfies these desiderata. In several
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respects, my proposed desiderata are adapted from those proposed by Schupbach and
Sprenger (2011), but with adaptations made so as to incorporate causal history depth
and intervention distributions, neither of which Schupbach and Sprenger consider.

I begin by stating three ancillary desiderata for such a measure. The first is as
follows:

D1 (Formal structure) For any Bayes net G;Pr� � where the graph G � V;R� � is
such that each variable in V is measurable with respect to the probability space
P � Ω;Σ; Pr� �, θP;G is a function from any two sets of values e and c of any two
sets of variables E � V and C � V to a real number θP;G e; c� � 2 �1; 1� 	 that can
be represented as a function of Pr�e j do c� ��, Pr e� �, and πG C;E� �.

This desideratum ensures that θP;G takes as input: (i) the fact that a set of effect
variables E takes a set of values e, and (ii) the fact that a set of causal variables C takes
a set of values c and returns a value between �1 and 1 representing the power with
which the fact that C � c explains the fact that E � e. Moreover, this value is
determined solely by the following quantities: (i) the probability that E � e given an
intervention setting C to c, (ii) the marginal probability that E � e, and (iii) the
normalized causal proximity between C and E.

Second, I introduce an additional formal constraint:

D2 (Normality and form) The function θP;G e; c� � is a ratio of two functions of
Pr�e j do c� ��, Pr e� �, and πG C;E� �, each of which are homogeneous in their
arguments to lowest possible degree k ≥ 1.

The requirement that the function be a ratio of two functions with the same
arguments ensures that it is normalized. I follow Schupbach and Sprenger in holding
that requiring that each function be homogeneous in its arguments to lowest possible
degree k ≥ 1 ensures that their measure of explanatory power is maximally simple, in
a well-defined sense advocated by Carnap (1950) and Kemeny and Oppenheim (1952).
Note that a function f is homogeneous in its arguments x1; . . . ; xn to degree k if, for all
γ 2 R, f γx1; . . . ; γxn� � � γkf x1; . . . ; xn� �.

Third, I introduce a desideratum aimed at capturing the idea that there is a specific
zero point for any measure of explanatory power:

D3 (Neutrality) If Pr�e j do c� �� � Pr e� �, then θP;G e; c� � � 0.

Neutrality ensures that when an intervention setting causal variables to a
particular set of values provides no information about the explanandum effect, causal
explanatory power is zero.

With these three ancillary desiderata established, I move now to a formalization of
causal history depth:

D4 (Causal history depth) Holding fixed the value of Pr�e j do c� �� and Pr e� �, if
Pr�e j do c� �� > Pr e� �, then θP;G e; c� � is strictly decreasing in πG C; E� �, and if
Pr�e j do c� �� < Pr e� �, then θP;G e; c� � is strictly increasing in πG C;E� �.
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This desideratum encodes the idea that, all else being equal, if an intervention setting
C to c is positively statistically relevant to the event denoted by E � e, then C � c is
explanatorily powerful to the extent that it cites causes that are more causally distant
(and so less proximal) with respect to the variables in E. Moreover, it introduces the
idea that if an intervention setting C to c is negatively statistically relevant to the
event denoted by E � e, then explanatory power is an increasing function of causal
history depth (and so a decreasing function of causal proximity). This reflects the
assumption that attempted explanations that cite factors that both make the event
being explained less likely and are causally far removed from the event being
explained are especially bad explanations.

Fifth and finally, I introduce a formalization of causal statistical relevance:

D5 (Causal statistical relevance) Holding fixed the value of πG C;E� �, the
greater the degree of causal statistical relevance between e and c (defined here
as the difference Pr�e j do c� �� � Pr e� �), the greater the value of θP;G e; c� �.

This desideratum says that the more an intervention such that C � c makes it likely
that E � e, the greater the explanatory power of c with respect to e.

These five desiderata together determine the form of a more general measure of
causal explanatory power, as established by the following representation theorem
(see the appendix for a proof of this and all subsequent facts and propositions):

Proposition 3.1. Any measure θP;G e; c� � that satisfies D1–D5 has the form

θP;G e; c� � � Pr�e j do c� �� � Pr e� �
Pr�e j do c� �� � Pr e� � � απG C; E� � ; where α > 0:

The equation for θP;G e; c� � can be re-written in terms of normalized causal distance as
follows:

θP;G e; c� � � Pr�e j do c� �� � Pr e� �
Pr�e j do c� �� � Pr e� � � α 1 � ΔG C;E� �� �; where α > 0: (4)

This result raises the immediate question of the significance of the coefficient α. For a
given Bayes net G;Pr� � with variable settings C � c and E � e, let φP;G be a function
defined as follows:

φP;G α; e; c� � � j @θP;G c; e� �=@πG C;E� � j
j @θP;G c; e� �=@Pr�e j do c� �� j : (5)

If we take the absolute value of the partial derivative of θP;G with respect to any
argument to measure the importance of that argument to the overall measure of
causal explanatory power, then φP;G measures the relative importance of causal
proximity/distance, as compared to the statistical relevance of an intervention
setting C to c, for a fixed value of Pr e� �.1 The following fact about φP;G holds:

1 There is a slight idealization at work here. In practice, πG C;E� � can only take rational values in the
unit interval, and so the partial derivative @θP;G=@θG C;E� � is not really well-defined. However, for the
purpose of calculating φP;G, we treat πG C;E� � as though it can take all real values in the unit interval.
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Fact 3.2. For any Bayes net G;Pr� � and any Pr�e j do c� ��, Pr e� �, and πG C;E� �, if
Pr�e j do c� ��≠Pr e� �, then dφP;G α; e; c� �=dα > 0.

Thus, increases in α result in increases in the relative importance of proximity/
distance, as compared to causal statistical relevance, for the measure of causal
explanatory power, whenever there is some causal statistical relevance, either
positive or negative, between the explanans and the explanandum.

To illustrate how this measure works, let us return to Eva and Stern’s Ettie
example:

Example 3.3. Consider the simple causal graph X! Y ! Z, where X is a binary
variable denoting whether or not the team’s best player is injured in the first half of
the match (0 if not injured, 1 if injured), Y is a binary variable denoting whether or not
the home team is down by more than thirty points at the start of the fourth quarter (0
if they are not, 1 if they are), and Z is a binary variable denoting whether or not the
home team loses (0 if they lose, 1 if they do not lose). Suppose that
Pr�Z � 0 j do X � 1� �� � :8, Pr�Z � 0 j do Y � 1� �� � :99, and Pr Z � 0� � � :3. We
know that ΔG Xf g; Zf g� � � 1 and ΔG Yf g; Zf g� � � :5. It follows that if α > :456,
then θP;G Z � 0;X � 1� � > θP;G Z � 0; Y � 1� �.

Thus, for suitably large α (and so a suitably large emphasis on causal history depth
as a determinant of causal explanatory power), my proposed measure of causal
explanatory power can deliver verdicts in keeping with Ettie’s intuitions in this
vignette.

One might object at this stage that the formalization of causal history depth
presented here only tracks the degree to which an explanation cites a distant cause
relative to the explanandum effect, and that this is distinct from the desideratum that
an explanation fills in the full causal history of the events leading up to the
explanandum effect. In response, I prove a result showing that, necessarily, the
function derived above will deliver the result that the explanatory power of a causal
explanation is always positively associated with the extent to which that explanation
cites the full causal history of an explanandum effect.

Consider any Bayes net G � V;R� � in which all variables are measurable with
respect to some probability space P. Let E be some subset of V, and let Par0 E� � denote
the parents of the variables in E according to G, let Par1 E� � denote the parents of
the parents of the variables in E according to G, and so on. Let Ξ n� � � [n

i�0 Pari E� �,
and let ξ n� � be a set of values taken by the variables in Ξ n� �. The following
proposition holds:

Proposition 3.4. For all n > 0, if Parn E� � is non-empty, Parn E� �≠ Parn�1 E� �, and
E \Ξ n� � � ;, then θP;G e; ξ n� �� � > θP;G e; ξ n � 1� �� �.

This ensures that, for any set of variables E, we can generate a more powerful
explanation of why E takes the value that it does by accounting for more of the causal
history of the event represented by E � e. This shows that when we stipulate as
desiderata for a measure of causal explanatory power my formalizations of causal
history depth and causal statistical relevance, the measure proposed here captures
the idea that, all else being equal, ideal causal explanation involves a maximally
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perspicuous filling-in of the causal chain of events resulting in the explanandum
effect, in keeping with the motivating intuition of this paper.

4. Conclusion
I conclude by first noting that my goal in this paper has not been to give a formal
measure of causal explanatory power that delivers intuitive judgements in all
applicable circumstances. Indeed, I take it that no all-things-considered quantitative
measure of explanatory power could possibly comport with our intuitions or
scientific practices in all cases.2 Instead, my aim has been to examine specifically
those cases in which the power of a causal explanation is determined by a trade-off
between causal history depth and causal statistical relevance.

Even with this qualification, it could be argued that there is no context in which
explanatory power is entirely determined by a trade-off between these two properties,
and that instead there is always a wide array of factors that determine causal
explanatory power in any given context, such that the concept of explanatory power
itself never admits of formal representation. Against this line of argument, I hold that
in some cases, the sole primary determinants of causal explanatory power are causal
history depth and causal statistical relevance. In these cases, my measure amounts to
an explication of explanatory power, in the sense of Carnap (1950). That is, it takes an
inherently vague, imprecise notion from the real world and renders it mathematically
tractable, while still capturing something close enough to the actual determinants of
our judgements of explanatory power.

Acknowledgments. I am grateful to Jonathan Birch, Luc Bovens, Christopher Hitchcock, Christian List,
Katie Steele, Reuben Stern, Thalia Vrantsidis, and audiences at the LSE PhD student work-in-progress
seminar, the 2018 Explanatory Power Workshop at the University of Geneva, and the Concepts and
Cognition Lab at Princeton University for feedback on various drafts of this paper.

A Proofs and demonstrations
A.1 Proof of Proposition 3.1
Proof. For the sake of concision, let x � Pr�e j do c� ��, let y � Pr e� �, and let
z � πG C;E� �. By D1, a measure of causal explanatory power must be a function
f x; y; z
� �

. We begin by searching for a function that is homogeneous in its arguments
to degree 1, in keeping with D2. Such a function has the form

f x; y; z
� � � ax� by� cz

āx� b̄y� c̄z
: (6)

D3 requires that the numerator is zero whenever x � y. This is achieved by letting
a � �b and c � 0, so that we have

f x; y; z
� � � a x � y

� �

āx� b̄y� c̄z
: (7)

2 See Lange (2022) for an argument to this effect.
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Letting x � 1 gives us

f x; y; z
� � � a � ay

ā� b̄y� c̄z
: (8)

By D1, D4, and D5, as y! 0 and z! 0, it must be the case that f x; y; z
� �! 1. This

requires that a � ā, so that we have

f x; y; z
� � � a x � y

� �

ax� b̄y� c̄z
: (9)

Next, let x � 0 so that we have

f x; y; z
� � � �ay

b̄y� c̄z
: (10)

By D1, D4, and D5, as y! 1 and z! 0, it must be the case that f x; y; z
� �! �1. This

requires that b̄ � a, so that we have

f x; y; z
� � � a x � y

� �
a x� y
� �� c̄z

: (11)

It remains to determine the sign of a and c̄. Let x � 1 and y � 0, so that

f x; y; z
� � � a

a� c̄z
: (12)

If c̄ < 0, then f x; y; z
� �

> 1 for positive z, in violation of D1. Thus, c̄ ≥ 0. Moreover, it
must be the case that c̄ > 0 for D4 to hold in general. Next, let x � 0 and y � 1, so that

f x; y; z
� � � �a

a� c̄z
: (13)

If a < 0, then f x; y; z
� �

< � 1 for some c̄ > 0, in violation of D1. Thus, a ≥ 0.
Moreover, it must be the case that a > 0 for D5 to hold in general. Letting α � c̄=a, we
arrive at the function

f x; y; z
� � � x � y

x� y� αz
; (14)

or

θP;G e; c� � � Pr�e j do c� �� � Pr e� �
Pr�e j do c� �� � Pr e� � � απG C;E� � ; (15)

where α > 0.

A.2 Demonstration of Fact 3.2
Proof. We proceed by expanding the function φP;G:

φP;G α; e; c� � � j @θP;G c; e� �=@πG C;E� � j
j @θP;G c; e� �=@Pr�e j do c� �� j :
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� j � α�Pr�e j do c� �� � Pr e� �	=�Pr�e j do c� �� � Pr e� � � απG C;E� ��2 j
j 2Pr e� � � απG C;E� �=�Pr�e j do c� �� � Pr e� � � απG C;E� ��2 j : (16)

Since all terms are positive, if Pr�e j do c� �� > Pr e� �, then we have

φP;G α; e; c� � � α�Pr�e j do c� �� � Pr e� �	
2Pr e� � � απG C;E� � ; (17)

in which case

dφP;G α; e; c� �
dα

� 2Pr e� ��Pr�e j do c� �� � Pr e� �	
�2Pr e� � � απG C;E� ��2 > 0: (18)

If Pr�e j do c� �� < Pr e� �, then we have

φP;G α; e; c� � � �α�Pr�e j do c� �� � Pr e� �	
2Pr e� � � απG C;E� � ; (19)

in which case

dφP;G α; e; c� �
dα

� �2Pr e� ��Pr�e j do c� �� � Pr e� �	
�2Pr e� � � απG C;E� ��2 > 0: (20)

Thus, the fact holds in either case.

A.3 Proof of Proposition 3.4
Proof. Since Parn E� �≠Parn�1 E� �, we know that there is at least one X 2 Parn E� � such
that δG X; E� � > δG Y; E� � for any E 2 E and any Y 2 Parn�1 E� �. This entails that

max δG X; E� � : X 2 Parn E� �; E 2 E
� �

> max δG Y; E� � : Y 2 Parn�1 E� �; E 2 E
� �

;

which entails in turn that

max δG X; E� � : X 2 Ξ n� �; E 2 E
� �

> max δG Y; E� � : X 2 Ξ n � 1� �; Y 2 E
� �

;

and so πG Ξ n� �;E� � < πG Ξ n � 1� �;E� �. Since E and Ξ n� � have empty intersection, we
know from equation 3 that, for any e, Pr�e j do ξ n� �� �� � Pr�e j par0 E� �� for any n, and
so, for n > 0, Pr�e j do ξ n� �� �� � Pr�e j j do ξ n � 1� �� �� � Pr�e j par0 E� ��. Together, this
entails that, for any α,

θP;G E;Ξ n� �� � � Pr�e j do ξ n� �� �� � Pr e� �
Pr�e j do ξ n� �� �� � Pr e� � � απG Ξ n� �;E� �

>
Pr�e j do ξ n � 1� �� �� � Pr e� �

Pr�e j do ξ n � 1� �� �� � Pr e� � � απG Ξ n � 1� �;E� �
� θP;G E;Ξ n � 1� �� �:
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