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In this note, we examine the proportion of periodic orbits of Anosov flows that lie in
an infinite zero density subset of the first homology group. We show that on a
logarithmic scale we get convergence to a discrete fractal dimension.
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1. Introduction

There has been a considerable body of research on how closed geodesics on compact
negatively curved manifolds and, more generally, periodic orbits of Anosov flows
are distributed in homology classes, for example [1, 3, 11–14, 19, 21, 24]. To state
these results more precisely, let φt : M → M be a transitive Anosov flow such that
the winding cycle associated with the measure of maximal entropy vanishes. This
class of flows includes geodesic flows over compact negatively curved manifolds. The
basic counting result is that the number of period orbits of length at most T and
lying in a homology class α ∈ H1(M, Z) is asymptotic to (constant) × ehT /T 1+k/2,
where h is the topological entropy of the flow and k � 0 is the first Betti number
of M . Furthermore, the distribution is Gaussian and the constant above is related
to the variance [14, 17, 25].

It is also interesting to ask about the distribution of periodic orbits lying in
a set A ⊂ H1(M, Z). If A is finite, the behaviour follows from that for single
homology classes, so we suppose that A is infinite. This, of course, implies that
H1(M, Z) is infinite, i.e. k � 1. Petridis and Risager [18] (for compact hyperbolic
surfaces) and Collier and Sharp [6] (for Anosov flows for which the measure of
maximal entropy has vanishing winding cycle) independently showed if A has pos-
itive density then the proportion of periodic orbits of length at most T lying

* For the purpose of Open Access, the authors have applied a CC BY public copyright licence
to any Author Accepted Manuscript (AAM) version arising from this submission.

† Corresponding author.

© The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society
of Edinburgh. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
re-use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1https://doi.org/10.1017/prm.2024.67 Published online by Cambridge University Press

mailto:james.everitt@warwick.ac.uk
mailto:r.j.sharp@warwick.ac.uk
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2024.67&domain=pdf
https://doi.org/10.1017/prm.2024.67


2 J. Everitt and R. Sharp

in A converges to the density of A (with respect to an appropriate norm), as
T → ∞. To state this and our new results more precisely, let P denote the set
of prime periodic orbits for φ and, for γ ∈ P, let �(γ) denote the least period
of γ and [γ] ∈ H1(M, Z) denote the homology class of γ. It is convenient to
ignore any torsion in H1(M, Z), so we can think of H1(M, Z) as a lattice in
H1(M, R) ∼= R

k. Write PT = {γ ∈ P : �(γ) � T}, PT (α) = {γ ∈ PT : [γ] = α},
and PT (A) =

⋃
α∈A PT (α). Fixing a norm ‖ · ‖ on H1(M, R), write NA(r) =

#{α ∈ A : ‖α‖ � r} and N(r) = NH1(M,Z)(r). We say that A ⊂ H1(M, Z) has
density d‖·‖(A) (with respect to ‖ · ‖) if

lim
r→∞

NA(r)
N(r)

= d‖·‖(A).

Proposition 1.1 [6, 18]). Let φt : M → M be a transitive Anosov flow for which
the winding cycle associated with the measure of maximal entropy vanishes. Then
there exists a norm ‖ · ‖ on H1(M, R) such that if A ⊂ H1(M, Z) has density
d‖·‖(A) then

lim
T→∞

#PT (A)
#PT

= d‖·‖(A).

The norm (defined in § 2) is a Euclidean norm determined by the second
derivative of a pressure function.

Now, suppose A has density zero. It is interesting to ask whether we can obtain
more precise information about the behaviour of

D(T,A) :=
#PT (A)

#PT

as T → ∞. If we write ρA(r) = NA(r)/N(r), then the naive conjecture is that
D(T, A) is of order ρA(

√
t), as T → ∞, and this is consistent with case A = {α}.

It is too optimistic to hope that a precise asymptotic relation holds for general A.
Nevertheless, one might hope for information on the logarithmic scale if we use some
notion of discrete fractal dimension. We say that A has discrete mass dimension δ
if

lim
r→∞

log NA(r)
log r

= δ

or, equivalently, that if

NA(r) = rδκA(r) (1.1)

then limr→∞ log κA(r)/ log r = 0. (Note that this is independent of the choice of
norm ‖ · ‖.) For a discussion of discrete fractal dimensions, see [4].

Example 1.2. Suppose A ⊂ Z is given by A = {±m2 : m ∈ N} then the discrete
mass dimension of A is 1/2. More interesting examples appear in percolation theory
(see, e.g. [10]).

Our main result is the following.
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Theorem 1.3. Let φt : M → M be a transitive Anosov flow for which the winding
cycle associated with the measure of maximal entropy vanishes. If A ⊂ H1(M, Z)
has discrete mass dimension δ then

lim
T→∞

log D(T,A)
log T

=
δ − k

2
.

Let Σ be a compact orientable surface of genus g � 2 with a Riemannian metric g
of negative curvature and let T 1Σ denote the unit tangent bundle. Then the natural
projection p : T 1Σ → Σ induces a homomorphism p∗ : H1(T 1Σ, Z) → H1(Σ, Z) ∼=
Z

2g whose kernel is the torsion subgroup, and induces a bijection between the prime
periodic orbits of the geodesic flow and primitive closed geodesics on Σ such that
�(γ) = lengthg(p(γ)) and p∗([γ]) = [p(γ)]. If, for A ⊂ H1(Σ, Z), we define DΣ(T, A)
to be the proportion of closed primitive geodesics on Σ with g-length at most T
and with homology class in A, then we have the following corollary.

Corollary 1.4. Let Σ be a compact orientable surface of genus g � 2 with a
Riemannian metric of negative curvature. If A ⊂ H1(Σ, Z) has discrete mass
dimension δ then

lim
T→∞

log DΣ(T,A)
log T

=
δ − 2g

2
.

2. Anosov flows

Let M be a compact Riemannian manifold and φt : M → M be a transitive Anosov
flow [2, 8]. We suppose that M has first Betti number k � 1 and ignore any torsion
in H1(M, Z). Using the notation of the introduction, we say that φ is homologically
full if the map P → H1(M, Z) : γ 	→ [γ] is a surjection. This automatically implies
that the flow is weak-mixing (since an Anosov flow fails to be weak-mixing only
when it is a constant suspension of an Anosov diffeomorphism [20], in which case
it can have no null homologous periodic orbits) and hence that

#PT ∼ ehT

hT
,

as T → ∞, where h > 0 is the topological entropy of φ [15, 16]. There is a unique
measure of maximal entropy μ for which the measure-theoretic entropy hμ(φ) = h
[5]. (See [8] for the notions of topological and measure-theoretic entropy for φ.)

Let Mφ denote the set of φ-invariant Borel probability measures on M . For a
continuous function f : M → R, we define its pressure P (f) by

P (f) = sup
{

hν(φ) +
∫

fdν : ν ∈ Mφ

}
.

Given ν ∈ Mφ, we can define the associated winding cycle Φν ∈ H1(M, R) by

〈Φν , [ω]〉 =
∫

ω(Z) dν,

where [ω] is the cohomology class of the closed 1-form ω, Z is the vector generating
φ, and 〈·, ·〉 is the duality pairing [23, 26]. Write Bφ = {Φν : ν ∈ Mφ}; this is a
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compact and convex subset of H1(M, R). The assumption that φ is homologically
full is equivalent to 0 ∈ int(Bφ) and implies that there are fully supported measures
ν for which Φν = 0. We will impose the more stringent condition that Φμ = 0,
where μ is the measure of maximal entropy for φ. This class includes geodesic
flows over compact negatively manifolds with negative sectional curvature. (In the
case considered in corollary 1.4, Bφ may be identified with the unit-ball for the
Federer–Gromov stable norm on H1(Σ, R) [7, 9].)

Still assuming that Φμ = 0, there is an analytic pressure function
p : H1(M, R) → R, defined by p([ω]) = P (ω(Z)) [12, 24]. This is a strictly con-
vex function with positive definite Hessian; it has a unique minimum at 0. For
ξ ∈ H1(M, R), we define σξ > 0 by

σ2k
ξ = det∇2p(ξ)

and set σ = σ0. There is also an analytic entropy function h : int(Bφ) → R

defined by h(ρ) = sup{hν(φ) : Φν = ρ} such that p and −h are Legendre conju-
gates (via the pairing 〈·, ·〉) [22]. More precisely, −∇h : int(Bφ) → H1(M, R) and
∇p : H1(M, R) → int(Bφ) are inverses and

h(ρ) = p((∇p)−1(ρ)) − 〈(∇p)−1(ρ), ρ〉.
We write ξ(ρ) = (∇p)−1(ρ). Then −∇2h(ρ) = (∇2p(ξ(ρ)))−1. In particu-
lar, ξ(0) = 0, H := −∇2h(0) = (∇2p(0))−1 is positive definite and detH =
(det∇2p(0))−1 = σ−2k. We use H to define a norm ‖ · ‖ on H1(M, R) by

‖ρ‖ = 〈ρ,Hρ〉.
We note that

N(r) := {α ∈ H1(M, Z) : ‖α‖ � r} ∼ vkσkrk,

where vk = πk/2/Γ(k/2 + 1), the volume of the standard unit-ball in R
k. For

small ρ, Taylor’s theorem gives us the expansion

h(ρ) = h − ‖ρ‖2/2 + O(‖ρ‖3). (2.1)

We now consider the periodic orbits of φt. As above, we ignore the torsion in
H1(M, Z) and treat it as a lattice in H1(M, R). We fix a fundamental domain F
and, for ρ ∈ H1(M, R), we define 
ρ� ∈ H1(M, Z) by ρ − 
ρ� ∈ F .

Proposition 2.1 (Theorem 3.5 of [3]). Let φt : M → M be a homologically full
transitive Anosov flow. If ρ ∈ int(Bφ) and α ∈ H1(M, Z) then

#{γ ∈ PT : [γ] = α + 
ρT �} ∼ c(ρ)e〈ξ(ρ),Tρ−�Tρ	−α〉 eh(ρ)T

T 1+k/2
,

as T → ∞, uniformly for ρ in any compact subset of Bφ, where c(ρ) =
1/((2π)k/2σk

ξ(ρ)h(ρ)).

Remark 2.2. The statement of Theorem 3.5 in [3] is for the more general class
of hyperbolic flows and the hypotheses there are a condition called Assumption A
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(see p. 18 of [3]) and that Bφ contains zero in its interior. For transitive Anosov
flows, it was proved in [24] that both of these are implied by the flow being homo-
logically full. Counting results for a linearly varying homology class were originally
proved by Lalley in the more restricted setting of geodesic flows over compact
negatively curved surfaces [14].

If Φμ = 0, we can set ρ = 0 and recover the asymptotic

#PT (α) ∼ 1
(2π)k/2σkh

ehT

T 1+k/2
,

originally proved by Katsuda and Sunada [12]. Furthermore, for all sufficiently
small Δ > 0, we have

lim
T→∞

sup
‖α|�ΔT

∣∣∣∣T 1+k/2#PT (α)
c(α/T )eh(α/T )T

− 1
∣∣∣∣ = 0. (2.2)

3. Proof of theorem 1.3

3.1. Upper bound

In this section, we show that (δ − k)/2 gives an upper bound for the limit in
theorem 1.3. The main idea is to use proposition 2.1 and the Taylor expansion of
h(ρ) to replace D(T, A) with a sum of Gaussian terms over elements of A with
norm bounded by η

√
T log T , for η > 0 chosen sufficiently large that the resulting

error decays faster than T (δ−k)/2.
We begin with the trivial observation that

D(T,A) − e−hT hT#PT (A) = o(D(T,A)),

so that it is sufficient to consider e−hT hT#PT (A). We can make the following
approximation.

Lemma 3.1. For any η > 0,

∑
α∈A

‖α‖�η
√

T log T

(
hT#PT (α)

ehT
− e−‖α‖2/2T

(2π)k/2σkT k/2

)

= o
(
T (δ−k)/2(log T )δ/2κA(η

√
T log T )

)
,

where κA is defined by equation (1.1).

Proof. Let η > 0. Clearly, (2.2) still holds if we take the supremum over
‖α‖ � η

√
T log T . Over this set, we have c(α/T ) = c(0) + O(‖α‖/T ) = c(0) +
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O(
√

log T/
√

T ) and

h
(α

T

)
T = ht − ‖α‖2

2T
+ O

(‖α‖3

T 2

)
= hT − ‖α‖2

2T
+ O

(
(log T )3/2

√
T

)
.

Substituting these in, we obtain an estimate

sup
‖α‖�η

√
T log T

∣∣∣∣∣hT#PT (α)
ehT

− e−‖α‖2/2T eq(α,T )

(2π)k/2σkT k/2

∣∣∣∣∣ = o(T−k/2),

where |q(α, T )| � c′(log T )3/2T−1/2, for some c′ > 0. A simple calculation then
shows that we may remove the q(α, T ) terms, while keeping the o(T−k/2) error
term. To complete the proof, we note that summing over ‖α‖ � η

√
T log T involves

NA(η
√

T log T ) = O(T δ/2(log T )δ/2κA(η
√

T log T )) summands. �

Next, we estimate the Gaussian part from the previous lemma.

Lemma 3.2.

∑
α∈A

‖α‖�η
√

T log T

e−‖α‖2/2T

(2π)k/2σkT k/2
= O(T (δ−k)/2(log T )δ/2κA(η

√
T log T )).

Proof. The result follows from the elementary estimate

∑
α∈A

‖α‖�η
√

T log T

e−‖α‖2/2T

(2π)k/2σkT k/2
= O

(
NA(η

√
T log T )

T k/2

)
.

�

The contribution from ‖α‖ > η
√

T log T is estimated as follows.

Lemma 3.3. ∑
α∈A

‖α‖>η
√

T log T

hT#PT (α)
ehT

= O(T−η2/2(log T )3k/2−2).

Proof. Applying proposition 2.1, we see that, for x ∈ R
k and C(Δ) a cube of (small)

side length Δ based at 0,

hT e−hT #
{

γ ∈ PT :
[γ]√

T log T
∈ x + C(Δ)

}

∼ he−hT c(x
√

(log T )/T )
eh(x

√
(log T )/T )T

T k/2
(Δ
√

T log T )k

∼ Δk(log T )k/2e−(‖x‖2 log T )/2

(2π)k/2σk
.
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Thus, we can estimate the sum in the statement by (log T )k/2Iη(T ), where Iη(T )
is the integral:

Iη(T ) :=
1

(2π)k/2σk

∫
B(η)

e−‖x‖2 log T/2 dx,

where B(η) = {x ∈ R
k : ‖x‖ > η}. Substituting u = x

√
log T and passing to coor-

dinates (r, θ) with r > 0 and ‖θ‖ = 1, we obtain

Iη(T ) =
Area({θ : ‖θ‖ = 1}

(2π)k/2σk

∫ ∞

η
√

T

e−r2/2rk−1 dr = O(T−η2/2(log T )k−2),

where we have used standard asymptotics for the complementary error function
erfc(z). �

To complete the proof of the upper bound, choose η >
√

k − δ. Then combining
lemmas 3.1–3.3 and noting that

lim
T→∞

log κA(η
√

T log T )
log T

= lim
T→∞

log κA(η
√

T log T )
log(η

√
T log T )

log(η
√

T log T )
log T

= 0

shows that

lim sup
T→∞

log D(T,A)
log T

� δ − k

2
. (3.1)

3.2. Lower bound

Since we seek a lower bound, we only need to consider

∑
α∈A

‖α‖�
√

T

hT#PT (α)
ehT

.

The following result is almost identical to lemma 3.1 and we do not repeat the
proof.

Lemma 3.4.

∑
α∈A

‖α‖�
√

T

(
hT#PT (α)

ehT
− e−‖α‖2/2T

(2π)k/2σkT k/2

)
= o

(
T (δ−k)/2κA(

√
T )
)

.

Since we have the bound

∑
α∈A

‖α‖�
√

T

e−‖α‖2/2T

(2π)k/2σkT k/2
� e−2

(2π)k/2σkT k/2
NA(

√
T ) =

e−2

(2π)k/2σk
T (δ−k)/2κA(

√
T ),

we conclude that

lim inf
T→∞

log D(T,A)
log T

� δ − k

2
.
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