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Convex Functions on Discrete Time
Domains

Ferhan M. Atıcı andHatice Yaldız

Abstract. In this paper,we introduce the deûnition of a convex real valued function f deûned on the
set of integers, Z. We prove that f is convex on Z if and only if ∆2 f ≥ 0 on Z. As a ûrst application
of this new concept, we state and prove discrete Hermite–Hadamard inequality using the basics of
discrete calculus (i.e., the calculus onZ). Second,we state and prove the discrete fractional Hermite–
Hadamard inequality using the basics of discrete fractional calculus. We close the paper by deûning
the convexity of a real valued function on any time scale.

1 Introduction

_e convexity property of a given function plays an important role in obtaining in-
tegral inequalities. Proving inequalities for convex functions has a long and rich his-
tory in mathematics. We refer the reader to a monograph written by Dragomir and
Pearce [8]. Recently, there have been some published results (especially, Hermite–
Hadamard integral inequalities) using fractional integral operators [10–12]. _e
Hermite–Hadamard inequality states that if f ∶ I → R is a convex function, then the
following inequality is satisûed:

(1.1) f ( a + b
2

) ≤ 1
b − a(∫

b

a
f (t)dt) ≤ f (a) + f (b)

2
,

where a, b ∈ I and I is an interval in R. To date, there has not been any published
paper for discrete or discrete fractional version of theHermite–Hadamard inequality.

Our goal in this paper is to state and prove the Hermite–Hadamard inequality
for the real valued functions deûned on the set of integers. In order to achieve our
goal, we ûrst deûne a convex function deûned on the set of integers. To characterize
the convexity for discrete functions, we introduce amidpoint condition, and then we
prove that the discrete function is convex if and only if its second diòerence is positive
on Z.

_e plan of the rest of the paper is as follows: In Section 3, with the use of the sub-
stitution method in the time scale calculus, we state and prove the discreteHermite–
Hadamard inequality. In Section 4,we ûrst recall the deûnitions of thenabla fractional
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sumoperator and the right delta fractional sumoperator. We then state and prove the
discrete fractional Hermite–Hadamard inequality. In Section 5, we brie�y talk about
convexity of a function deûned on any time scale.
For further reading on the discrete calculus and the discrete fractional calculus,we

refer the reader to a book by Kelley and Peterson [9], and the papers [1,3,7].

2 Preliminaries

Let Z be the set of integers and a, b ∈ Z with a < b. By [a, b]Z we mean [a, b] ∩ Z.
We deûne

T[a ,b] = {u ∣ u = t − b
a − b for t ∈ [a, b]Z} .

We note that T[a ,b] is a subset of the real interval [0, 1]. Any nonempty closed subset
of the set of real numbers, R, is called a time scale. Hence one can consider T[a ,b] as
an isolated time scale on which all the points are le� and right scattered at the same
time. For further reading on time scales, we refer the reader to an excellent book on
the analysis of time scales [4].
For a function f ∶Z→ R, the ∆ and ∇ operators are deûned as

∆ f (t) = f (t + 1) − f (t) and ∇ f (t) = f (t) − f (t − 1),
for every t ∈ Z, respectively. We also recall that ∆2 f (t) = ∆(∆ f (t)).

Let Γ denote the usual special gamma function and recall the notation that is
known as the falling factorial power

t(µ) = Γ(t + 1)
Γ(t + 1 − µ) .

_roughout, we assume that if t + 1 − µ ∈ {0,−1, . . . ,−k, . . .}, then t(µ) = 0.
Now we are in a position to deûne the convexity for a real valued function deûned

on the set of integers. Next, we deûne themidpoint condition for a discrete function.

Deûnition 2.1 f ∶Z → R is called convex on Z if for every x , y ∈ Z with x < y the
inequality f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) is satisûed for all λ ∈ T[x ,y].

Deûnition 2.2 f ∶Z→ R satisûes themidpoint condition if

f ( a + b
2

) ≤ f (a) + f (b)
2

for every a, b ∈ Z with a + b is an even number.

_e discrete Taylor’s theoremplays an important role in the proof of the ûrst result
of this paper. For the reader’s convenience we state the theorem here.

_eorem 2.3 (Discrete Taylor’s _eorem [2]) Let u(k) be deûned on Na . _en, for
all k ∈ Na and n ≥ 1,

u(k) =
n−1

∑
i=0

(k − a)(i)
i!

∆iu(a) + 1
(n − 1)!

k−n

∑
l=a

(k − (l + 1))(n−1)∆nu(l),
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where Na = {a, a + 1, . . .}.

Next we characterize the convexity of a discrete function by considering the sign
of its second diòerence.

_eorem 2.4 Let f ∶Z→ R be given. _e following are equivalent:
(i) f is convex on Z.
(ii) f satisûes themidpoint condition.
(iii) ∆2 f (t) ≥ 0 for all t ∈ Z.

Proof We prove that (i)⇒ (ii)⇒ (iii)⇒ (i).
(i)⇒ (ii): Let a, b ∈ Z with a < b and where a + b is an even number. _is implies

that 1
2 ∈ T[a ,b] . Hence, we choose λ = 1

2 to obtain themidpoint condition.
Next we prove that (ii) implies (iii). Let t ∈ Z. Since f has midpoint condition, we

have

f (t + 1) = f ( 1
2 t +

1
2 (t + 2)) ≤ 1

2 f (t) +
1
2 f (t + 2).

_is implies that f (t + 2) − 2 f (t + 1) + f (t) ≥ 0. Hence ∆2 f (t) ≥ 0.
Next we prove that (iii) implies (i). Let x , y ∈ Z with x < y. We need to prove that

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y)

for all λ ∈ T[x ,y] . Fix λ ∈ T[x ,y]/{0, 1}. Deûne x0 = λx + (1 − λ)y. Using the discrete
Taylor’s _eorem (_eorem 2.3) at x0 , we have

f (y) =
1

∑
i=0

(y − x0)(i)
(i)! ∆i f (x0) +

1
1!

y−2

∑
l=x0

(y − (l + 1))(1)∆2 f (l).

Since ∆2 f (t) ≥ 0 on Z and by theMean Value_eorem, we have

f (x) ≥ f (x0) + (x − x0)∆ f (x0),
f (y) ≥ f (x0) + (y − x0)∆ f (x0).

If wemultiply the ûrst inequality by λ and the second inequality by 1 − λ and adding
inequalities side by side, we obtain

f ( λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) for all λ ∈ T[x ,y] .

3 Discrete Hermite–Hadamard Inequality

In this section,we prove the discreteHermite–Hadamard inequality for convex func-
tions deûned on Z. In the statement of the inequality, we use the notations of time
scales calculus:

∫
b

a
f (t)∆t =

b−1

∑
t=a
f (t) and ∫

b

a
f (t)∇t =

b

∑
t=a+1

f (t).

_e following substitution rule plays an important role in the proof.
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_eorem 3.1 (Substitution rule on time scales [6]) Assume ν∶T → R is strictly in-
creasing and T̃ ∶ ν(T) is a time scale. If f ∶T→ R is a an rd-continuous function and ν
is diòerentiable with rd-continuous derivative, then if a, b ∈ T,

∫
b

a
f (t)ν∆(t)∆t = ∫

ν(b)

ν(a)
( f ○ ν−1)(s)∆̃s

or

∫
b

a
f (t)ν∇(t)∇t = ∫

ν(b)

ν(a)
( f ○ ν−1)(s)∇̃s.

_eorem 3.2 Suppose f ∶Z→ R is a convex function on [a, b]Z with a, b ∈ Z, a < b,
and a + b an even number. _en

(3.1) f ( a + b
2

) ≤ 1
2(b − a)[∫

b

a
f (t)∆t + ∫

b

a
f (t)∇t] ≤ f (a) + f (b)

2
.

Proof Fix t ∈ T[a ,b] ∖ {0, 1}. We deûne
x = ta + (1 − t)b, y = (1 − t)a + tb.

It is easy to see that x , y ∈ [a, b]Z and x + y is even. Hence, 1
2 ∈ T[x ,y] (or T[y ,x]).

Since f is convex on [x , y]Z (or [y, x]Z), we have

f ( x + y
2

) ≤ f (x) + f (y)
2

.

_is implies that

f ( a + b
2

) ≤ 1
2
[ f (ta + (1 − t)b) + f ((1 − t)a + tb)] .

Next we integrate each side of the inequality over T[a ,b] and obtain

∫
T[a ,b]

f ( a + b
2

) ∆̃t ≤ 1
2
[∫

T[a ,b]
f (ta + (1 − t)b)∆̃t + ∫

T[a ,b]
f ((1 − t)a + tb)∆̃t] ,

where ∆̃ represents the derivative operator on the time scale T[a ,b].
Let us ûrst closely look at

∫
T[a ,b]

f (tb + (1 − t)a)∆̃t.

Choose ν(t) = t−a
b−a . _en we have f (tb + (1 − t)a) = ( f ○ ν−1)(t). We observe that

ν is strictly increasing and ν([a, b]Z) = T[a ,b] . By using the substitution method on
time scales (_eorem 3.1), we have

∫
T[a ,b]

f (tb + (1 − t)a)∆̃t = 1
b − a ∫[a ,b]Z

f (t)∆t,

since ν∆(t) = 1
b−a .

Next we claim that

(3.2) ∫
T[a ,b]

f ( ta + (1 − t)b) ∆̃t = 1
b − a ∫[a ,b]Z

f (t)∇t.

We prove our claim using the basics of dual time scales given in [5].
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Deûne ν(t) = t−b
a−b . Hence we rewrite the le�-hand side of equality (3.2) as

∫
T[a ,b]

f (ta + (1 − t)b)∆̃t = ∫
T[a ,b]

( f ○ ν−1)(t)∆̃t

= ∫
1

0
( f ○ ν−1)(t)∆̃t = ∫

0

−1
( f ○ ν−1)∗(s)∇̃s

= ∫
0=(u−1○ν)(b)

−1=(u−1○ν)(a)
f ((u−1 ○ ν)−1)(s)∇̃s,

(3.3)

where

( f ○ ν−1)∗(s) = f (ν−1(−s)) = f ((ν−1 ○ u)(s)) = f ((u−1 ○ ν)−1)(s)
and u(s) = −s.

Here we also have

(u−1 ○ ν)(s) = u−1(ν(s)) = u−1( s − b
a − b ) = b − s

a − b ,

(u−1 ○ ν)∇(s) = 1
b−a > 0⇒ u−1 ○ ν is strictly increasing.

Using the substitution method (_eorem 3.1) for (3.3), we obtain

∫
0

−1
f (u−1 ○ ν)−1(t)∇̃t = ∫

b

a
f (t) 1

b − a∇t,

as desired.
To prove the other half of the inequality in (3.1), we use the convexity of the func-

tion and have the following inequalities:

f ( ta + (1 − t)b) ≤ t f (a) + (1 − t) f (b)
f ((1 − t)a + tb) ≤ (1 − t) f (a) + t f (b).

Adding these two inequalities side by side, we obtain

f ( ta + (1 − t)b) + f ((1 − t)a + tb) ≤ f (a) + f (b).
Integrating each side over T[a ,b] , we have

∫
T[a ,b]

( f (ta + (1 − t)b) + f ((1 − t)a + tb)) ∆̃t ≤ ∫
T[a ,b]

( f (a) + f (b)) ∆̃t.

Using arguments simiar to those used above, we can show that

1
b − a(∫

b

a
f (t)∆t + ∫

b

a
f (t)∇t) ≤ f (a) + f (b).

4 Discrete Fractional Hermite–Hadamad Inequality

In this sectionwe ûrst present suõcient fundamental deûnitions and formulas so that
the article is self-contained.

_e ν−th order nabla fractional sum and the right fractional sum of f are deûned,
respectively, by

∇−ν
a f (t) =

t

∑
s=a

(t − ρ(s))ν−1

Γ(ν) f (s) and b∆−ν f (t) =
b

∑
s=t+ν

(s − σ(t))(ν−1)

Γ(ν) f (s),
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where ν ∈ R/{. . . ,−2,−1, 0}.
Let α be any real number. _en “t to the α rising" is deûned to be

tα = Γ(t + α)
Γ(t) ,

where t ∈ R ∖ {. . . ,−2,−1, 0}, and 0α = 0.

_eorem 4.1 Suppose f ∶Z → R is a convex function on [a, b]Z, where a, b ∈ Z,
a < b, and a + b an even number. _en

(4.1) f ( a + b
2

) ≤ Γ(α)
2β(b − a)

[ b−1∆
−α f (t) ∣t=a−α +∇−α

a+1 f (t) ∣t=b] ≤
f (a) + f (b)

2
,

where

β = ∫
T[a ,b]

((b − a)t + (α − 1)) α−1
∆̃t

and α is a positive real number.

Proof Let t ∈ T[a ,b] ∖ {0, 1}. We deûne

x = ta + (1 − t)b, y = (1 − t)a + tb.

_is implies that x , y ∈ [a, b]Z and x + y is an even number. Since f is also convex
on [x , y]Z (or [y, x]Z), we have

f ( x + y
2

) ≤ f (x) + f (y)
2

.

If we replace x and y in the inequality, we obtain

f ( a + b
2

) ≤ 1
2
[ f (ta + (1 − t)b) + f ((1 − t)a + tb)] .

Multiplying each side by ((b − a)t + (α − 1))α−1 and integrating over T[a ,b] , we have

∫
T[a ,b]

((b − a)t + (α − 1)) α−1
f ( a + b

2
) ∆̃t

= f ( a + b
2

) ∫
T[a ,b]

((b − a)t + (α − 1)) α−1
∆̃t

≤ 1
2
[ ∫

T[a ,b]
((b − a)t + (α − 1))α−1 f (ta + (1 − t)b)∆̃t

+ ∫
T[a ,b]

((b − a)t + (α − 1)) α−1
f ((1 − t)a + tb) ∆̃t] .

Next we claim that

∫
T[a ,b]

((b − a)t + (α − 1)) α−1
f ((1 − t)a + tb) ∆̃t = Γ(α)

b − a b−1∆−α f (t) ∣t=a−α .
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To prove our claim we deûne g(t) = (t − a + (α − 1))α−1 , ν(t) = t−a
b−a and F(t) =

g(t) f (t). _en we observe that

F(ν−1(t)) = (g f )(ν−1(t)) = g(ν−1(t)) f (ν−1(t))

= (ν−1(t) − a + (α − 1)) α−1
f ((1 − t)a + tb)

= ((b − a)t + (α − 1)) α−1
f ((1 − t)a + tb) .

Next we use the substitution method (_eorem 3.3) for the integral. We have

∫
T[a ,b]

((b − a)t + α − 1) α−1
f ((1 − t)a + tb) ∆̃t

= ∫
b

a
F(t)ν∆(t)∆t = 1

b − a
b−1

∑
t=a

(t − a + α − 1)α−1 f (t)

= Γ(α)
b − a b−1∆−α f (t) ∣t=a−α .

_is completes the proof of the claim.
Next we claim that

∫
T[a ,b]

((b − a)t + α − 1) α−1
f ( ta + (1 − t)b) ∆̃t = Γ(α)

b − a∇
−α
a+1 f (t) ∣t=b .

To prove this claim, we again use basic notation and results of dual time scales [5].
Indeed, we have

∫
T[a ,b]

((b − a)t + α − 1) α−1
f ( ta + (1 − t)b) ∆̃t = ∫

T[a ,b]
(F ○ ν−1)(t)∆̃t

= ∫
0

−1
(F ○ ν−1)∗(s)∇̃s,

where F(t) = f (t)g(t), g(t) = (b − t + (α − 1))α−1, ν(t) = t−b
a−b , and u(s) = −s.

Here we have

(u−1 ○ ν)(s) = u−1(ν(s)) = u−1( s − b
a − b ) = b − s

a − b .

_is implies that (u−1 ○ ν)∇(s) = 1
b−a > 0⇒ u−1 ○ ν is strictly increasing.

Using the substitution method (_eorem 3.3) for the last integral above, we have

∫
0

−1
(F ○ ν−1)∗(s)∇∗s = ∫

0

−1
F((u−1 ○ ν)−1)(s)∇∗s = ∫

b

a
F(t) 1

b − a∇t.

Next, replacing F(t) back in the integral, we have

∫
b

a
F(t) 1

b − a∇t = 1
b − a

b

∑
s=a+1

(b − s + α − 1)α−1 f (s)

= 1
b − a

b

∑
s=a+1

(b − ρ(s)) α−1
f (s) = Γ(α)

b − a∇
−α
a+1 f (t) ∣t=b ,

wherewe used the identity (b− s+α− 1)α−1 = (b− s+ 1)α−1 . _is completes the proof
of our second claim.
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Hence, we obtain the following inequality:

f ( a + b
2

) ≤ Γ(α)
2β(b − a)

[ b−1∆
−α f (t) ∣t=a−α +∇−α

a+1 f (t) ∣t=b] .

To prove the other half of the inequality (4.1), we again use convexity of f on [x , y]Z .
Hence we have

f (ta + (1 − t)b) ≤ t f (a) + (1 − t) f (b),
f ((1 − t)a + tb) ≤ (1 − t) f (a) + t f (b).

Adding these two inequalities, we obtain

f ( ta + (1 − t)b) + f ((1 − t)a + tb) ≤ f (a) + f (b).

As before, we multiply each side of the inequality by ((b − a)t + (α − 1))α−1 and
integrate over T[a ,b] to get

∫
T[a ,b]

((b − a)t + (α − 1)) α−1
f ( ta + (1 − t)b) ∆̃t

+ ∫
T[a ,b]

((b − a)t + (α − 1)) α−1
f ((1 − t)a + tb) ∆̃t

≤ ∫
T[a ,b]

((b − a)t + (α − 1)) α−1( f (a) + f (b)) ∆̃t

= ( f (a) + f (b)) ∫
T[a ,b]

((b − a)t + (α − 1)) α−1)∆̃t

Following the claims we proved above, we have

Γ(α)
2β(b − a)

[ b−1∆
−α f (t) ∣t=a−α +∇−α

a+1 f (t) ∣t=b] ≤
f (a) + f (b)

2
.

_is completes the proof.

We want to point out that if one chooses α as 1 in (4.1), then _eorem 3.2 becomes
a corollary of _eorem 4.1. In Section 3, we gave the proof of the discrete Hermite–
Hadamard inequality, since one might want to continue only in the direction of the
discrete version of the inequality (1.1).

5 A Convex Function on a Time Scale

In this section, we extend and unify the deûnition of a convex function. Let T be any
time scale and a, b ∈ T with a < b. By [a, b]T wemean [a, b] ∩T. We deûne

T[a ,b] = {u ∣ u = t − b
a − b for t ∈ [a, b]T} .

Deûnition 5.1 f ∶T → R is called convex on T if for every x , y ∈ T with x < y the
inequality

f ( λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y)
is satisûed for all λ ∈ T[x ,y].
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Note that if T = R, then the set T[x ,y] is equal to the real interval [0, 1]. Hence, the
above deûnition coincideswith the deûnition of a real valued convex function deûned
on R. If T = Z, then the set T[x ,y] is a subset of the real interval [0, 1]. In this case,
Deûnition 5.1 coincides with the deûnition of a real valued convex function deûned
on Z, namely Deûnition 2.1.

Acknowledgment We thank the referee for his/her careful reading of the manu-
script.
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