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In two dimensions, the problem governing a homogeneous phoretic swimmer of circular
cross-section is ill-posed because of the logarithmic divergence associated with a purely
diffusive solute transport. We address here the well-posed problem that is devised
by introducing a slight inhomogeneity in the interfacial chemical activity. With the
radial symmetry being perturbed, phoretic motion is animated by diffusio-osmosis.
Solute advection, associated with that motion, becomes comparable to diffusion at large
distances. The singular problem associated with that scale disparity is analysed using
matched asymptotic expansions for arbitrary values of the Damköhler number Da and
the intrinsic Péclet number Pe. Asymptotic matching provides an implicit equation
for the particle velocity in terms of these two parameters. The velocity exhibits a
non-trivial dependence upon the sign M of the slip coefficient. For M = −1, we observe
the appearance of several solutions beyond a Da-dependent critical value of Pe. We
also address the respective limits of small and large Da for fixed Pe and arbitrary
inhomogeneity, and illuminate their linkage to the limit of weak inhomogeneity.

Key words: active matter, coupled diffusion and flow

1. Introduction

Motivated by experimental realisation of catalytic swimmers, there is a surging interest in
phoretic self-propulsion of colloidal particles (Aubret, Ramananarivo & Palacci 2017). The
mechanism underlying phoretic self-propulsion includes two ingredients: production and
consumption of solute molecules at the particle boundary, and short-range interactions
between these molecules and the rigid boundary. A spatial asymmetry in the interfacial
activity may lead to particle motion in a preferred direction.
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With the range of solute–boundary interaction being small compared to the
characteristic size a of colloidal particles, this interaction is captured naturally using a
macroscale diffusio-osmotic slip. The problem governing solute transport then resembles
classical problems of diffusiophoresis (Anderson 1989), with one notable exception: the
gradients in solute concentration are driven by the inhomogeneous interfacial activity,
rather than being externally imposed via an ambient gradient. The natural velocity scale
U associated with diffusio-osmosis thus becomes an intrinsic property of the system; see
(2.3).

In the original analysis of phoretic self-propulsion (Golestanian, Liverpool & Ajdari
2007), solute transport was assumed purely diffusive, whereby the solute concentration is
governed by Laplace’s equation. The interfacial activity was represented by a specified
distribution of solute flux. Self-propulsion then follows from an asymmetry in that
distribution. This idealised description may be refined (Michelin & Lauga 2014) to a
more realistic model of first-order kinetics, where the inhomogeneity is represented by
a non-uniform distribution of the rate constant (say of characteristic magnitude k̄). This
refinement results in the introduction of the Damköhler number Da = ak̄/D (where D is
the solute diffusivity) as a new parameter in the governing problem (which remains linear).

An attractive feature of the above ‘standard model’ is that the particle is force-free.
In fact, it is the very force-free requirement that serves to determine uniquely the
particle velocity. With the Stokes paradox becoming irrelevant, this may appear to suggest
the possibility of analysing the idealised two-dimensional problem. Such a desirable
analysis, however, is impeded by the solute-transport problem being ill-posed in two
dimensions. Indeed, at large distances from the particle, the solution to Laplace’s equation
approaches a source or a sink of magnitude compatible with the net production or
consumption of solute. In two dimensions, the associated concentration diverges spatially
at a logarithmic rate – and accordingly is incompatible with the need to approach a far-field
reference concentration. Thus unless one considers situations where the net production or
consumption of solute happens to vanish (Crowdy 2013), the standard model is inadequate
in two dimensions.

In their pioneering discussion of phoretic self-propulsion in two dimensions, Sondak
et al. (2016) made the observation that the incorporation of solute advection, however
weak, results in a well-posed transport problem. The role of solute advection was already
analysed by Michelin & Lauga (2014) and Yariv & Michelin (2015), but only in a
three-dimensional setting. Since advection renders the problem nonlinear, it may modify
significantly the transport mechanism in three dimensions; nonetheless, it is not an
essential ingredient in three dimensions, where the purely diffusive problem is well posed.
The difference between three and two dimensions in this context may be elucidated using
the Péclet number Pe = aU/D – a dimensionless group that enters the formulation once
solute advection is introduced. In three dimensions, the limit Pe → 0 simply reproduces
the standard model; in two dimensions, this limit is singular.

Following the observation of Sondak et al. (2016), the singular limit of small Péclet
numbers in two dimensions was analysed by Yariv (2017) for an arbitrary rate-constant
distribution using matched asymptotic expansions. Thus, as in classical analyses of force
convection problems (Frankel & Acrivos 1968), the transport of solute was separately
analysed in two different asymptotic regions: one on the scale of the particle, where it is
approximately diffusive, and one on a remote scale, of order D/U , where advection enters
the leading-order transport. Later on, Yariv & Crowdy (2020) analysed the small-Pe limit
for a Janus-type distribution in the case of large Damköhler numbers, where the solute
concentration satisfies a mixed boundary-value problem.

940 A24-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

23
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.237


Phoretic self-propulsion of a slightly inhomogeneous disc

The preceding discussion may give the impression that a non-zero Péclet number
guarantees the presence of solute advection, which in two dimensions regularises the
ill-posed problem. To see that this is not necessarily the case, it is expedient to consider
a highly symmetric configuration, involving a spherical particle with a homogeneous
interfacial activity. The governing equations in that configuration are clearly solved by
a quiescent state, where the velocity field vanishes trivially and the particle is stationary.
For any value of Pe, then, advection is absent in this quiescent solution. This observation
can be traced back to the meaning of the Péclet number Pe. Since the velocity scale
U associated with diffusio-osmosis is not externally imposed (as in forced convection),
the Péclet number Pe is a native property of the system (see (2.4)). As such, it does not
necessarily represent the ratio between advection and diffusion.

If the sphere is replaced by a cylindrical particle, then the associated two-dimensional
problem is ill-posed – for any value of Pe. A possible regularisation is provided by a
deviation from isotropy, say via a slightly inhomogeneous interfacial activity. Because of
the deviation from radial symmetry, a flow field is triggered by diffusio-osmosis, resulting
in turn in particle motion. Solute advection then renders the problem well-posed. If the
degree of inhomogeneity is quantified by the small parameter ε, then it is evident that the
problem is singular in the limit ε → 0.

Our goal is to address this singular limit, where, following the spirit of Yariv (2017),
we allow for an arbitrary distribution of the deviation from homogeneity. The analysis
of this problem involves several attractive features. The first is its distinctive generality:
as will become evident, the problem can be solved in closed form for arbitrary values
of Pe and Da – a desirable attribute in this class of self-propulsion problems (Boniface
et al. 2019). As will also become evident, the ability to cover the entire range of these
parameters results in the prediction of anomalous phenomena, such as velocity reversal
beyond a critical value of Pe.

The second attractive feature is a mathematical one. Unlike the previous
two-dimensional investigations (Yariv 2017; Yariv & Crowdy 2020), where the interfacial
inhomogeneity was appreciable, the present problem requires going beyond leading-order
analysis in the asymptotic paradigm. It therefore provides a vivid illustration of the way by
which generalised Poincaré expansions allow for a systematic use of Van Dyke matching
in problems involving an inherent logarithmic singularity (Van Dyke 1964; Hinch 1991).

The third attractive feature has to do with spontaneous motion of isotropically active
particles, a phenomenon made possible by the nonlinear mechanism of solute advection.
The symmetry breaking leading to spontaneous motion has been discussed extensively
in the context of the above-mentioned three-dimensional highly symmetric problem
(Michelin, Lauga & Bartolo 2013; Saha, Yariv & Schnitzer 2021), and the possibility of
spontaneous motion in two dimensions is of interest (Hu et al. 2019). The linkage of the
present problem to spontaneous motion in two dimensions is discussed in § 11.

2. Problem formulation

Consider a two-dimensional configuration where a circular disc of radius a is suspended
freely in an unbounded liquid solution (solute diffusivity D). The reference solute
concentration at large distances from the disc is denoted by c∞. The chemical activity
at the particle boundary is modelled as a first-order chemical reaction (Ebbens et al. 2012;
Michelin & Lauga 2014)

solute absorption ( per unit area) = k × local value of solute concentration, (2.1)
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x

y
r → ∞ :

c → 1

u → −Uî

Stokes equations

1

∇2c = Pe u · ∇c

u = êθM
∂c
∂θ

∂c
∂r

= Da F(θ) c

r
θ

Figure 1. Schematic of the dimensionless geometry, indicating the dimensionless differential equations and
boundary conditions.

where the (positive) rate constant k generally varies along the circumference. We assume
that the distribution of k is symmetric about a diameter of the circle. The circumferential
average of k is denoted by k̄.

We employ a macroscale description, where the short-range interaction between the
solute molecules and the particle is expressed by an effective diffusio-osmotic slip
(Anderson 1989). Thus in a particle-fixed system, the standard no-slip condition is
replaced by

slip velocity = b × surface gradient of solute concentration. (2.2)

Following common practice (Michelin & Lauga 2014; Sondak et al. 2016), we assume that
the slip coefficient b is uniform. Note that b is a signed quantity, positive for repulsive
interactions and negative for attractive ones. The velocity scale associated with (2.2) is

U = |b| c∞
a

. (2.3)

Defining the intrinsic Péclet number Pe as aU/D thus gives

Pe = |b| c∞
D

. (2.4)

It follows from the problem symmetry that the force- and torque-free cylinder reacts
to the interfacial slip by translating along its symmetry diameter at a constant velocity,
without rotating. The translation velocity, denoted by s, is reckoned positive when the
particle propagates in the direction of its more active hemicircle. (This definition will be
made precise later on; see (3.12).) Our goal is the determination of this velocity.

3. Dimensionless formulation

In what follows, we normalise all length variables by a. The analysis is carried out in a
particle-fixed reference system with origin at the disc centre. In that system, we use (x, y)
Cartesian coordinates defined such that the x-axis is aligned along the symmetry diameter
of the particle, pointing in the direction of the more active hemicircle. Additionally, we
utilise (r, θ) polar coordinates, with θ measured in the counterclockwise direction from
the x-axis. Accordingly, the distribution of the rate constant k is denoted by k(θ). The
dimensionless geometry is portrayed in figure 1.

We employ a dimensionless notation where the solute concentration is normalised by
c∞ and the velocity field is normalised by U . Our interest is in the velocity U(= s/U) of
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the particle relative to the otherwise quiescent liquid; in the particle-fixed reference frame,
this velocity is manifested as the uniform streaming −U ı̂ at infinity, ı̂ being a unit vector
in the x-direction.

To obtain this velocity, we consider the coupled problem governing the
solute-concentration distribution c and velocity field u. The solute-transport problem is
governed by: (i) the advection–diffusion equation,

∇2c = Pe u · ∇c for r > 1; (3.1)

(ii) the approach to the reference concentration at large distances,

lim
r→∞ c = 1; (3.2)

and (iii) the kinetic condition at the particle boundary,

∂c
∂r

= Da F(θ) c at r = 1, (3.3)

where

F(θ) = k(θ)/k̄ (3.4)

is the dimensionless distribution of rate constant, and

Da = ak̄
D

(3.5)

is the Damköhler number, representing the ratio of diffusive (a2/D) to reactive (a/k̄) time
scales.

The velocity field u = êru + êθv is governed by: (i) the continuity and Stokes equations
(the former tacitly employed in (3.1)); (ii) the impermeability condition

u = 0 at r = 1; (3.6)

(iii) the slip condition (cf. (2.2))

v = M
∂c
∂θ

at r = 1, (3.7)

where M = b/|b|; (iv) the far-field approach to a uniform stream,

lim
r→∞ u = −U ı̂; (3.8)

and (v) the requirement that the particle is force-free. The latter, in conjunction with (3.7)
and (3.8), provides the particle velocity as a quadrature (Squires & Bazant 2006),

U = M
2π

∫ π

−π

∂c
∂θ

∣∣∣∣
r=1

sin θ dθ. (3.9)

In principle, the above pair of problems provides U as a (nonlinear) functional of F and a
(nonlinear) function of Pe, Da and M. Note that Pe and Da are positive parameters, while
M = ±1.
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The inhomogeneous circumferential reaction is described in condition (3.3) by the
distribution F(θ), which is required to be strictly positive:

F(θ) > 0 for −π < θ < π. (3.10)

By definition of k̄ it follows that F satisfies the integral constraint∫ π

−π

F(θ) dθ = 2π. (3.11)

Also, recalling the sense of direction of the x-axis, we impose the constraint

∫ π/2

−π/2
F(θ) dθ > π. (3.12)

Now, the symmetry of the k distribution about the x-axis implies that F is even, i.e.

F(−θ) = F(θ), (3.13)

so that (3.11) and (3.12) may be written as

∫ π

0
F(θ) dθ = π,

∫ π/2

0
F(θ) dθ >

π

2
. (3.14a,b)

With activity higher on the right hemicircle, one expects the solute concentration about
that hemicircle to be lower than the corresponding concentration about the left hemicircle.
The associated solute gradients are then expected, in some average sense, to point from
right to left. For M = 1, this would apply slip at the same direction, whence particle
motion to the right, whereby U > 0 (see indeed (3.9)). For M = −1, one would then expect
U < 0. The preceding crude arguments may seem to suggest that

MU > 0. (3.15)

A stronger version of the odd dependence (3.15) holds when U is proportional to M:

U ∝ M. (3.16)

This version of (3.15) holds in the linear problem that applies (in three dimensions) in the
absence of solute advection. It was also observed in a small-Pe analysis in two dimensions
(Yariv & Crowdy 2020).

Since we did not prove property (3.15), it remains questionable for the time being.

4. Simplifications

The nonlinear problem formulated in § 3 clearly admits the symmetries

c(−θ) = c(θ), u(−θ) = u(θ), v(−θ) = −v(θ). (4.1a–c)

It is therefore sufficient to analyse the problem in the domain 0 < θ < π.
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A further simplification follows by making use of a streamfunction ψ , defined by

u = ∂ψ

r ∂θ
, v = −∂ψ

∂r
. (4.2a,b)

The continuity equation is then satisfied trivially, while the Stokes equation governing u
is transformed to the biharmonic equation governing ψ :

∇4ψ = 0 for r > 1. (4.3)

The impermeability condition (3.6) implies that ψ is a constant at r = 1. Since ψ is
defined to within an additive constant, we simply write

ψ = 0 at r = 1. (4.4)

In terms of ψ , the slip and far-field conditions (3.7) and (3.8) read, respectively

∂ψ

∂r
= −M

∂c
∂θ

at r = 1, (4.5)

ψ ∼ −Ur sin θ as r → ∞, (4.6)

while the symmetries (4.1a–c) imply that

ψ(−θ) = −ψ(θ). (4.7)

Finally, we note that in term of ψ , the advection–diffusion equation (3.1) becomes

∇2c = Pe
r
∂(c, ψ)
∂(r, θ)

for r > 1. (4.8)

5. Weak inhomogeneity

We write
F(θ) = 1 + ε f (θ), (5.1)

where
ε > 0. (5.2)

From (3.13), (3.14a,b) and (5.2), we find that f satisfies the respective properties

f (−θ) = f (θ),
∫ π

0
f (θ) dθ = 0,

∫ π/2

0
f (θ) dθ

(
= −

∫ π

π/2
f (θ) dθ

)
> 0. (5.3a–c)

In addition, we impose the constraint (without any loss of generality)

max
[0,π]

|f (θ)| = 1. (5.4)

It then follows from (3.10) that
ε < 1. (5.5)

Examples of distributions that satisfy properties (5.3a–c) and (5.4) are the cosine
distribution

f (θ) = cos θ (5.6)
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and the Janus distribution

f (θ) =
{

1, 0 < |θ | < π/2,
−1, π/2 < |θ | < π.

(5.7)

In terms of ε and f , the absorption condition (3.3) becomes

∂c
∂r

= Da c[1 + ε f (θ)] at r = 1. (5.8)

With the norm of f set to ord(1) by (5.4), the parameter ε may be interpreted
as an effective measure of interfacial inhomogeneity. To capture the case of weak
inhomogeneity, we consider the asymptotic limit ε ↘ 0. We expand all pertinent field
variables in the generic form

g(r, θ; ε) = g0(r, θ)+ ε g1(r, θ)+ · · · . (5.9)

This results in the respective expansion of U:

U = U0 + εU1 + · · · . (5.10)

6. Breakdown of the weak-advection approximation

At ord(1), condition (5.8) becomes radially symmetric:

∂c0

∂r
= Da c0 at r = 1. (6.1)

In the absence of flow at ord(1), the right-hand side of (4.8) vanishes at this order. It then
follows that c0 is governed by Laplace’s equation

∇2c0 = 0 for r > 1. (6.2)

We anticipate that the solution of (6.1) and (6.2) is radially symmetric for all r. Conversely,
with a radially symmetric c0, no flow is animated by the slip condition (3.7). We therefore
proceed assuming that

c0 is a function of r alone, (6.3)

and that u0 (and hence ψ0) vanish trivially. Consequently,

U0 = 0. (6.4)

Substituting (6.3) into (6.1) and (6.2), we obtain

c0 = a0(Da ln r + 1). (6.5)

The integration constant a0 cannot be determined from the ord(1) balance of the far-field
condition (3.2),

lim
r→∞ c0 = 1, (6.6)

which is incompatible with (6.5).
The above incompatibility is associated with the breakdown of the dominance of

diffusion, associated via (6.2) with the small-ε limit. Indeed, the solution (6.5) implies
that the presumably ord(ε) advective term in (3.1) becomes comparable to the diffusive
term at distances r = ord(ε−1). As a consequence of the above non-uniformity, we need
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to employ two separate asymptotic expansions of c. The first, holding at ord(1) distances
from the disc (the ‘nearby’ region), is provided by the generalisation of (5.9)

g(r, θ; ε) = g0(r, θ; ε)+ ε g1(r, θ; ε)+ · · · , (6.7)

where we allow for a weak (i.e. logarithmic) dependence upon ε at each order. The second
expansion holds at the ‘remote’ region, where r = ord(ε−1). Towards that end, we employ
the stretched radial coordinate

r′ = εr, (6.8)

which is ord(1) in the remote region. Employing the change of variables

c(r, θ; ε) = c′(r′, θ; ε), (6.9)

the remote region expansion is

c′(r′, θ; ε) = c′
0(r

′, θ; ε)+ ε c′
1(r

′, θ; ε)+ · · · , (6.10)

where again we allow for a logarithmic dependence upon ε at each asymptotic order. The
use of generalised Poincaré expansions, where the terms are allowed to depend upon ln ε,
enables a straightforward use of the Van Dyke matching rule, where logarithmically large
terms are considered on a par with ord(1) terms (Hinch 1991).

Two points are worth noting: First, the far-field decay (3.2) now applies on c′:

lim
r′→∞

c′ = 1. (6.11)

No far-field condition applies on the nearby field c, which describes the concentration only
for r = ord(1). Thus the distribution (6.5), obtained prior to the identification of two length
scales, remains valid (with a0 being allowed to depend weakly upon ε). Since (3.9) clearly
applies in the nearby region, (6.4) is also retained. Instead of the far-field condition (3.2),
the nearby concentration c must satisfy appropriate large-r conditions that follow from
the requirement of asymptotic matching with the remote concentration. These conditions
determine uniquely the integration constants appearing in the various {ci} (e.g. a0 in (6.5)).

Second, the velocity field is affected by the solute concentration only through the slip
condition (3.7), which applies at r = 1. Accordingly, there is no need for a separate
expansion of the velocity field, akin to (6.10), at the remote region. The only modification
required in the expansion of the velocity field is the transition from (5.9) to (6.7).

Defining the remote-region gradient operator ∇′ = ε−1∇, solute transport in that region
is governed by (cf. (3.1))

ε ∇′2c′ = Pe u · ∇′c′, (6.12)

wherein u is to be evaluated at r = ord(ε−1).

7. Leading-order remote solution

Given condition (3.8) and observation (6.4), the velocity in the remote region is simply
given at leading order by constant vector −ε ı̂ U1. Consequently, the leading-order balance
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of (6.12) becomes

∇′2c′
0 = −Pe U1

∂c′
0

∂x′ , (7.1)

wherein x′ = εx is a stretched Cartesian coordinate (cf. (6.8)). This equation is
supplemented by the leading-order balance of (6.11), namely

lim
r′→∞

c′
0 = 1. (7.2)

Writing

c′
0 = 1 + G, (7.3)

we find that G, which decays at large r′, also satisfies (7.1). Substituting

G = exp
(
−1

2 Pe U1x′
)

H, (7.4)

we find that H satisfies the modified Helmholtz equation

∇′2H = 1
4 Pe2 U2

1H. (7.5)

The solution of that equation that decays at large r′ and is least singular at r′ = 0 is a
radially symmetric screened source, K0(Pe |U1| r′/2), in which K0 is the modified Bessel
function of the second kind. While all spatial derivatives of that source also satisfy (7.5),
they are too singular at the origin and are excluded by the requirement of asymptotic
matching with (6.5). We therefore obtain

c′
0 = 1 + Q

2π
exp

(
−1

2 Pe U1x′
)

K0

(
Pe |U1| r′

2

)
, (7.6)

where the source magnitude Q remains to be determined. Using the small-argument
behaviour of K0 (Abramowitz & Stegun 1965), we find

c′
0 ∼ 1 − Q

2π

(
ln

Pe |U1| r′

4
+ γ

)
as r′ → 0, (7.7)

wherein γ is the Euler–Mascheroni constant. The asymptotic error in (7.7) is ‘algebraically
small’ in r′, i.e. smaller than some positive power of r′.

We now perform Van Dyke ord(1) : ord(1) matching, using (6.5). Comparison of the
ln r terms gives

Q = −2πa0 Da. (7.8)

Comparison of the r-independent terms then yields

a0 =
[

1 + Da
(

ln
4

ε Pe |U1| − γ

)]−1

. (7.9)

We have therefore evaluated c0 in terms of the (as yet unknown) leading-order particle
velocity. To obtain that velocity, we need to consider deviations from radial symmetry in
the nearby region.
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Phoretic self-propulsion of a slightly inhomogeneous disc

8. Deviations from radial symmetry

Making use of (6.3), we find from (4.8) at ord(ε) that c1 satisfies the equation

∇2c1 = Pe
r
∂ψ1

∂θ

dc0

dr
. (8.1)

It also satisfies the boundary condition
∂c1

∂r
− Da c1 = Da c0 f (θ) at r = 1, (8.2)

obtained from (5.8) at ord(ε).
Towards formulating the far-field condition governing c1, we expand c′

0 at small r′ up to
ord(r′), thus obtaining the following refinement of (7.7):

c′
0 ∼ 1 + a0 Da

(
ln

Pe |U1| r′

4
+ γ

) (
1 − 1

2 Pe U1r′ cos θ
)

as r′ → 0, (8.3)

where we have made use of (7.8). It is seen readily that the asymptotic error in (8.3)
is ‘algebraically smaller’ than r′, meaning that its ratio to r′ is algebraically small in r′.
Making use of Van Dyke ord(1) : ord(ε) matching, we obtain the following condition on
c1:

c1 ∼ 1
2 Pe U1a0 Da

(
ln

4
ε Pe |U1|r − γ

)
r cos θ as r → ∞. (8.4)

It is evident from both the far-field behaviour (8.4) and the forcing terms in (8.1) and
(8.2) that c1 lacks radial symmetry. The integral expression (3.9) then implies a non-zero
U1:

U1 = M
2π

∫ π

−π

∂c1

∂θ

∣∣∣∣
r=1

sin θ dθ, (8.5)

consistently with the analysis of solute transport in the remote region.
Our first objective is to determine the general form of ψ1. This field is governed by: (i)

the biharmonic equation (see (4.3)); (ii) the impermeability condition (cf. (4.4))

ψ1 = 0 at r = 1; (8.6)

(iii) the far-field condition (cf. (4.6))

ψ1 ∼ −U1r sin θ as r → ∞; (8.7)

(iv) the symmetry condition (cf. (4.7))

ψ1(−θ) = −ψ1(θ); (8.8)

(v) the requirement of a force-free disc; and (vi) the slip condition (cf. (4.5))
∂ψ1

∂r
= −M

∂c1

∂θ
at r = 1. (8.9)

Given the general structure of single-valued solutions of the biharmonic equation in polar
coordinates (Leal 2007), we find that the force-free solution that satisfies (8.6)–(8.8) is

ψ1 = −U1

(
r − 1

r

)
sin θ +

∞∑
n=2

α(n)(r−n − r2−n) sin nθ. (8.10)

In principle, the velocity U1 and the set {α(n)} are determined from the slip condition (8.9).
We therefore head to the calculation of c1.

940 A24-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

23
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.237


S. Saha and E. Yariv

Substituting (6.5) and (8.10) into (8.1), we obtain the Poisson equation

∇2c1 = Pe a0 Da

[
U1

(
1
r3 − 1

r

)
cos θ +

∞∑
n=2

nα(n)(r−n−2 − r−n) cos nθ

]
. (8.11)

Also, substitution of (6.5) into (8.2) yields the condition

∂c1

∂r
− Da c1 = Da a0 f (θ) at r = 1. (8.12)

In addition to (8.11) and (8.12), c1 must also satisfy the matching condition (8.4).
We note that condition (5.3a) implies a cosine series representation for f , say

f (θ) =
∞∑

n=0

f (n) cos nθ, (8.13)

wherein

f (n) = 2
π

∫ π

0
f (ϑ) cos nϑ dϑ (8.14)

are the associated Fourier coefficients. We write c1 as a sum of corresponding Fourier
modes:

c1(r, θ) =
∞∑

n=0

c(n)(r) cos nθ. (8.15)

Substituting into (8.5) and making use of the orthogonality of the set {cos nθ}∞n=0, we
obtain

U1 = −M
2

c(1)(1). (8.16)

Given the linear problem governing c1, we can exploit that orthogonality further and seek
only c(1)(r). This function satisfies the inhomogeneous equation (cf. (8.11))

d2c(1)

dr2 + 1
r

dc(1)

dr
− c(1)

r2 = Pe a0 Da U1

(
1
r3 − 1

r

)
, (8.17)

together with the matching condition (cf. (8.4))

c(1) ∼ 1
2 Pe U1a0 Da

(
ln

4
ε Pe |U1| r

− γ

)
r as r → ∞, (8.18)

and the boundary condition (cf. (8.12))

dc(1)

dr
− Da c(1) = Da a0 f (1) at r = 1. (8.19)

Note that (5.3a) and (8.14) imply that f (1) > 0.
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Phoretic self-propulsion of a slightly inhomogeneous disc

The most general solution of (8.17) and (8.18) is

c(1) = −1
2 Pe a0 Da U1

(
1
r

+ r
)

ln r + 1
2 Pe a0 Da U1

(
ln

4
ε Pe |U1| − γ

)
r + N1

r
.

(8.20)

The coefficient N1 is obtained readily from (8.19). It then follows that

c(1)(1) = a0 Da
1 + Da

[
Pe U1

(
ln

4
ε Pe |U1| − γ − 1

)
− f (1)

]
. (8.21)

Substitution into (8.16) eventually gives, upon making use of (7.9) and (8.14),

U1

[
Da (2 + 2Da + M Pe)

(
ln

4
ε Pe |U1| − γ

)
+ Da (2 − M Pe)+ 2

]

= 2M Da
π

∫ π

0
f (θ) cos θ dθ. (8.22)

The implicit equation (8.22) provides U1 as a function of the governing four parameters.
The appearance of ln ε results in a non-analytic dependence upon ε at ε = 0, as was to be
expected from the singular nature of the limit ε → 0.

9. The limits of slow and fast kinetics

By replacing U1 with U/ε in (8.22) and making use of (5.1), we obtain an implicit equation
for U itself:

U
[

Da (2 + 2Da + M Pe)
(

ln
4

Pe |U| − γ

)
+ Da (2 − M Pe)+ 2

]

= 2M Da
π

∫ π

0
F(θ) cos θ dθ, (9.1)

with an asymptotic error that is algebraically small in ε. Note that the dependence upon ε
has disappeared; this was to be expected, as this parameter is not required for the problem
specification.

When Da becomes small, we find from (9.1) the approximation

U ∼ M Da
π

∫ π

0
F(θ) cos θ dθ, (9.2)

which is no longer singular at U = 0. In the other limit, as Da → ∞, we obtain

U
(

ln
4

Pe |U| − γ

)
∼ M

π Da

∫ π

0
F(θ) cos θ dθ, (9.3)

which essentially implies an ord(Da−1) scaling of U. To understand the above limits, it
is expedient to consider the limits Da 	 1 and Da 
 1 from the outset, allowing for ε to
attain ord(1) values (subject to both (5.2) and (5.5)). It therefore proves useful to employ
the original problem formulation, in terms of F(θ).

We start with the small-Da limit. With interfacial reaction being ord(Da) weak, it
results in an ord(Da) perturbation to the unity equilibrium concentration specified by (3.2).
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The slip condition (3.7) then implies that the velocity field is ord(Da) small too, as is U
itself. Writing c = 1 + Da c̃, we find that at leading order c̃ satisfies Laplace’s equation in
the vicinity of the disc, together with the Neumann condition (cf. (3.3))

∂ c̃
∂r

= F(θ) at r = 1. (9.4)

The solution that is least divergent as r → ∞ is

c̃ = ã + ln r − 2
π

∞∑
n=1

cos nθ
nrn

∫ π

0
F(ϑ) cos nϑ dϑ. (9.5)

The constant ã cannot be determined from the analysis in the particle vicinity. Rather,
it may be obtained by asymptotic matching with the leading-order approximation for
c̃ in a remote region, which is now at distances ord(Da−1). (This matching procedure
excludes terms diverging like r and faster in (9.5).) However, this constant is irrelevant to
the calculation of the particle velocity. Thus, writing U = Da Ũ, we obtain readily from
(3.9) that

Ũ = M
π

∫ π

0
F(θ) cos θ dθ, (9.6)

in agreement with (9.2). With the remote region being irrelevant, it is hardly surprising
that approximation (9.2) is independent of Pe. While the original problem is ill-posed for
Da = 0, it appears as though the singularity in the limit Da → 0 is a ‘removable’ one.

Consider now the limit Da 
 1. It is evident from condition (3.3) that c possesses the
generalised Poincaré expansion

c(r, θ; Da) = c0(r, θ; Da)+ Da−1 c1(r, θ; Da)+ · · · , (9.7)

where c0 satisfies the homogeneous Dirichlet condition

c0 = 0 at r = 1. (9.8)

With c0 uniform at r = 1, there is no slip to drive ord(1) fluid velocity, so we anticipate
that u = ord(Da−1). The leading-order concentration then satisfies Laplace’s equation.
Seeking the solution that diverges least rapidly at large r, we obtain

c0 = a0 ln r. (9.9)

The constant a0 is determined from matching with a remote-region solution, now at
distances Da−1. Writing U = Da−1 U1 + · · · and repeating an analysis similar to that in
§ 7 we find that (cf. (7.9))

a0 =
(

ln
4 Da

Pe |U1| − γ

)−1

. (9.10)

At ord(1), we now find from (3.3) that

c1 = a0

F(θ)
at r = 1. (9.11)

Substituting into (3.9) then gives

U1 = −a0M
π

∫ π

0

F′(θ)
F2(θ)

sin θ dθ. (9.12)
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Figure 2. Variation of MU1 with Da for Pe = 1 and ε = 0.1, using the distribution (5.7). The solid curves are
obtained from the implicit equation (9.1). The dashed curves show the small-Da approximation (9.2) and the
large-Da approximation (9.3).

Introducing f via (5.1) and forming the small-ε limit yields

U1 ∼ −εa0M
π

∫ π

0
f ′(θ) sin θ dθ. (9.13)

Upon using (9.10) and the Fourier expansion (8.13)–(8.14), we finally obtain

U1

(
ln

4 Da
Pe |U1| − γ

)
∼ εM

π

∫ π

0
f (θ) cos θ dθ. (9.14)

Reverting to U and F, we then retrieve (9.3).
The preceding analyses clarify why U becomes small for both small and large Da. For

small Da, the interfacial reaction is so slow that c deviates only by ord(Da) values from
the unity equilibrium values. These deviations result in an ord(Da) particle speed. For
large Da, the reaction is so fast that c nearly vanishes at the interface, reducing there to
ord(1/Da) values (up to logarithmic terms). Since it is the interfacial distribution that
determines the particle speed (recall (3.9)), we again find that U is small, now essentially
ord(1/Da). For fixed ε and Pe, both limits are associated with weak advection.

10. Dependence upon M

We now address the validity of (3.15) and (3.16). In the limits Da 	 1 and Da 
 1, we
observe from (9.2) and (9.3) that U satisfies (3.16). This proportionality does not apply,
however, in the general case: indeed, it is verified readily from (8.22) that U1 is not an odd
function of M. This is hardly surprising: a non-trivial dependence upon M was already
observed by Michelin & Lauga (2014), who analysed self-propulsion in three dimensions
at finite Pe. The dependence upon M in the present problem is illustrated in figure 2, where
the product MU1 is portrayed, for both M = 1 and M = −1, as a function of Da for Pe = 1
and ε = 0.1, using the distribution (5.7).

Having found that U does not satisfy (3.16), we now address the weaker version (3.15).
With the logarithmic expression ln(4/ε Pe |U1|) being asymptotically large and positive
for ε 	 1, it is evident that U1 > 0 for M = 1, in agreement with (3.15). For M = −1,
the situation is more delicate. Assuming again that the logarithmic expression is large
and positive, we find that U1 < 0 for Pe that is smaller than 2 + 2Da. For Pe = 2 + 2Da,
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the term multiplying the logarithmic expression vanishes, and we find the closed-form
solution

U1 = − Da
π(Da + 1)2

∫ π

0
f (θ) cos θ dθ < 0. (10.1)

For Pe larger than 2 + 2Da, however, the term multiplying the logarithmic expression
becomes negative, suggesting in turn a positive U1.

To understand the possibility for a velocity reversal, we assess the critical value of
Pe at which the expression within the brackets appearing in the left-hand side of (8.22)
would vanish approximately. Towards this end, we temporarily abandon our generalised
asymptotic approach, where logarithmically large terms are considered on a par with
ord(1) terms, and consider an expansion of that expression in inverse powers of ln(1/ε).
In performing that expansion, we take the difference between the critical value Pec and
2 + 2Da to be of order 1/ ln(1/ε). Thus writing

Pec = 2 + 2Da + Δ

ln(1/ε)
, (10.2)

with Δ being ord(1), we find that at ord(1) the expression within the brackets becomes

−DaΔ+ Da(4 + 2Da)+ 2, (10.3)

which vanishes for

Δ = 2
(Da + 1)2

Da
. (10.4)

The above analysis may appear to suggest a transition from negative to positive U1 at a
critical value at which the expression within the brackets appearing in the left-hand side
of (8.22) vanishes, giving rise to a diverging U1. This is, however, only a crude estimate:
as the expression within the brackets approaches zero, U1 (which is negative) becomes
large, and the above balance becomes invalidated due to the ln |U1| term in the brackets.
The numerical solution of (8.22) for M = −1 actually reveals that a bifurcation occurs at
a critical value of Pe, where two positive solutions appear. This is illustrated in figure 3,
where we portray the velocity U1 as a function of Pe for ε = 0.1 and Da = 1, using the
distribution (5.7). At these values, the bifurcation appears at Pe ≈ 17.3. We conclude that
(3.15) is invalid.

11. Concluding remarks

We have analysed the phoretic self-propulsion of a circular disc whose interfacial activity
is slightly inhomogeneous. The analysis was based upon a linearisation scheme that
exploited the slight inhomogeneity. This scheme implies that advection is relatively weak
even for ord(1) values of the intrinsic Péclet number Pe. The dominance of diffusion
over advection is not uniformly valid. The analysis of this singular limit requires the
use of matched asymptotic expansions. As is customary in singular problems in two
dimensions (Frankel & Acrivos 1968), we have employed generalised Poincaré expansions,
allowing for a logarithmic dependence of the various asymptotic orders upon the expansion
parameter ε. This has allowed for a straightforward use of the Van Dyke matching rule.

Our key result is (9.1), which provides, for a given distribution of interfacial reaction
rate, the dimensionless velocity of the particle as an implicit function of the slip sign M,
the intrinsic Péclet number Pe, and the Damköhler number Da. The functional dependence
upon M is non-trivial, with a possibility of velocity reversal existing for M = −1. We have
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Figure 3. Variation of U1 with Pe for M = −1, Da = 1 and ε = 0.1, using the distribution (5.7). We show
both the negative branch and the multi-valued positive branch, which exists for Pe > Pec.

also obtained simpler approximations in the limits of small and large Da, which are not
restricted by the assumption ε 	 1.

The velocity reversal appearing for M = −1 beyond a critical value of Pe brings to
mind the possibility of spontaneous motion at finite Pe. This possibility was investigated
in detail in three dimensions, using the highly symmetric configuration discussed in § 1.
Thus Michelin et al. (2013) observed that in addition to the ‘trivial’ quiescent solution,
with a stationary particle, the governing equations also admit a non-trivial solution beyond
a critical value of Pe; this solution corresponds to self-sustained motion. For an absorbing
boundary (in tune with (3.3)), such spontaneous motion can take place only for M = −1.
Recently, Saha et al. (2021) studied the linearised response of the same system to a weak
external force and found a bifurcation at the same critical value. In fact, it was shown by
Saha et al. (2021) that the study of the forced problem provides a convenient alternative to
the stability analysis of the unforced problem.

Can spontaneous motion also occur in two dimensions? This is a subtle question: with
the reference state being ill-posed (Hu et al. 2019), there is no two-dimensional counterpart
to the stability analysis of Michelin et al. (2013). One can imagine investigating the
weakly-forced problem, following Saha et al. (2021). In that problem, the advection
triggered by the motion of the disc renders the solute-transport problem well-posed.
Unfortunately, a forced problem cannot be studied under the framework of Stokes
equations in two dimensions, due to the Stokes paradox. We propose that the present
analysis, where the highly symmetric configuration is perturbed by a weak inhomogeneity,
may provide a first step in the right direction. Indeed, the bifurcation of U1 at a critical
value of Pe, which approaches 2 + 2Da as ε → 0, may be a signature of spontaneous
motion.

Finally, it is illuminating to provide here the dimensional counterpart of (9.1), namely

s
[

ak̄
D

(
2 + 2

ak̄
D

+ bc∞
D

) (
ln

4D
a |s| − γ

)
+ ak̄

D

(
2 − bc∞

D

)
+ 2

]

= 2bc∞
πD

∫ π

0
k(θ) cos θ dθ. (11.1)

Note the appearance of two Péclet numbers. The first, bc∞/a, is the signed version of the
Péclet number Pe used in the dimensionless analysis. The second, a |s|/D, is the number
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associated with the particle speed. While our analysis is valid provided that the latter
number is small, we anticipate that (11.1) may provide a rough approximation even when
this restriction is violated.
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