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Summary

We study the transient dynamics of the genotypic variance of an additive trait under stabilizing
selection, recombination and random drift. We show how interaction of these factors determines
the form and the rates of change of different components of the genotypic variance. Let Vg be the
genie variance of the trait and CL be the contribution of linkage disequilibrium to the genotypic
variance. We demonstrate that the dynamics of the system on the plane (Vg, CL) are typically
characterized by a quick approach to a straight line with slow evolution along this line afterwards.
We show that the number of loci, n, and the population size, N, affect the expected dynamics of Vg

mainly through the ratio N/n. We use our analytical and numerical results in interpreting the
published results of artificial stabilizing selection experiments. The analysis suggests that it is drift
and not selection that most likely led to the reduction of genetic variability in most of these
experiments. Even very strong stabilizing selection only slowly removes polygenic variability from
populations.

1. Introduction

Stabilizing selection on polygenic characters has
traditionally been considered as one of the core
elements of modern evolutionary theory. Numerous
models incorporating stabilizing selection have been
introduced and analysed (for examples, see references
in Weir et al. 1988). The effects of stabilizing selection
have also been analysed experimentally (e.g. Falconer,
1957; Thoday, 1959; Prout, 1962; Gibson & Thoday,
1963; Scharloo, 1964; Scharloo et al. 1967; Tantaway
& Tayel, 1970; Bos & Scharloo, 1973; Gibson &
Bradley, 1974; Kaufman et al. 1977; Soliman, 1982).
The main purpose of these studies was the analysis of
the influence of stabilizing selection on different
components of the phenotypic variability of a poly-
genic trait and the demonstration that stabilizing
selection does decrease these components, as the
classical theory predicts, or does not decrease them.

Unfortunately, direct comparison of theory with
experiment is complicated. One difficulty is that while
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most theoretical studies usually assume weak selection
and focus on equilibrium behaviour, experiments use
strong selection and display transient behaviour.
Recent numerical and theoretical analyses (Gimelfarb,
1992; Gavrilets, 1993; Gavrilets & Hastings, 1993,
1994 a, c) have shown that properties of multilocus
systems under strong stabilizing selection are quite
different from those under weak stabilizing selection.
In particular, strong stabilizing selection can maintain
genetic variability at many loci while weak selection
cannot. A necessary condition for the former seems to
be sufficiently tight linkage between the loci controlling
the traits subject to stabilizing selection. Furthermore,
even if the ultimate outcome of selection is complete
elimination of genetic variability, this may take much
longer than the time span of a typical experiment. At
the end of the experiment one often observes only
small (if any) reduction in the components of genetical
variability. To understand the results of such
experiments, one needs theoretical approaches for
describing the transient dynamics. Several attempts to
analyse the transient dynamics of components of the
genetic variance under stabilizing selection have been
made. Lewontin (1964) numerically studied a five-
locus model of infinite populations. Bulmer (1971,
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1974) analytically considered a case of infinite popu-
lations with infinite number of unlinked loci. Keightley
& Hill (1987, 1988) described an approach that can be
used for analysing the case of finite populations with
infinite number of unlinked or completely linked loci.
Chevalet (1988) considered finite populations with
finite number of unlinked loci. Gavrilets & Hastings
(1994 c) have analysed an infinite population with two
arbitrary linked loci. In this paper we develop a new
approach for studying transient dynamics of multi-
locus systems. Using this approach we consider how
long it takes to get to an equilibrium, how important
different factors are during the transient period, and
what the characteristics of the multilocus system
during this period are.

Different factors can influence the transient dy-
namics under stabilizing selection. We shall con-
centrate on recombination and random drift. We will
neglect mutation. Although it has been argued that
mutation can contribute significantly to the response
to artificial selection (Hill, 1982), mutation can be
safely ignored in situations with high levels of initial
genetic variability considered here. Another possible
complication is the experimentally observed fact that
selection influences not only the genotypic variance
but also the microenvironmental component of the
phenotypic variance (see references above). This effect
has been analysed elsewhere (Gavrilets & Hastings,
19946) and is neglected in this paper.

The purpose of this paper is to generalize our
previous results in two ways to facilitate further
comparison with data. The first is to allow the trait to
be controlled by an arbitrary number of loci. Although
a very small or infinitely large number of loci can
sometimes account for observable variability in some
quantitative traits, to have an approach without such
limitations is, obviously, much more desirable. The
second is to incorporate the effects of random genetic
drift into the model. The latter is necessary for the
following reason. The population size of experimental
populations is usually small (Hill & Caballero, 1992).
If there are n loci with two alleles each, then the
number of possible gametes is 2". If n = 1 and, hence,
there are only two possible gametes, then a population
with N = 1 0 0 individuals may be considered as
effectively infinite and a deterministic model can be
used to understand population genetics processes.
However, the simplification of ignoring stochasticity
in a population oi N = 100 is not valid if the number
of loci n = 10, when there are more than one thousand
possible gametes. This shows that random drift is
increasingly important in multilocus systems.

In this paper, we present approximate formulae
describing the dynamics of polygenic variability under
stabilizing selection, recombination, and drift. To
derive these formulae we utilize a heuristic approach
for incorporating the effects of random drift, and a
dynamical property of the system that has recently
been discovered in numerical simulations. We use our

theoretical results in interpreting results of artificial
stabilizing selection experiments. Surprisingly, the
analysis suggests that it is drift and not selection that
most likely led to the reduction of genetic variability
in most of these experiments. Our analysis shows that
even very strong stabilizing selection is inefficient in
removing genetic variability from populations quickly.
In multilocus systems subject to stabilizing selection
random genetic drift seems to be a much more
important factor in reducing genetic variability than
selection.

2. Approximating dynamics of the genotypic variance

We consider an additive quantitative trait z determined
by n diallelic loci. The standard model for an additive
trait is

(1)

where a/aO is the contribution of the z'th locus from
the paternal (maternal) gamete, and e is a random
microenvironmental deviation whose distribution is
independent of genotype and has zero mean and
constant variance E. At the ith locus, let a( > 0 be half
the difference between the contributions of two
homozygotes to the trait and/?4 be the frequency of the
higher value allele. Denote by Dti the pairwise linkage
disequilibrium between the /th and yth loci. Under
random mating the genotypic (additive) variance of
the trait G = Vg+CL is the sum of two components:
the genie variance,

(2 a)

(where qt = 1 —p() and the contribution of the linkage
disequilibrium,

- 2 (2 b)

where Vg ( is the contribution of the rth locus to the
genie variance and CLij is the contribution of the
O',/)th pair of loci to CL. The phenotypic variance
P = G + E, where E is the microenvironmental vari-
ance. We assume that the population is under
stabilizing selection with the optimum value equal to
zero. This selection can be described using quadratic
or Gaussian fitness functions:

w(z) = 1 — sz2, (3 a)

(3 b)

where the parameters s and Vs measure the strength of
selection. As we showed previously (Gavrilets &
Hastings, 1994 c), the function (3 b) with Vs = is also is
a good approximation to the double truncation used
in experiments (provided selection is at least mod-
erately strong with the proportion selected < 1/2).
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We shall consider a population of a finite size N with
non-overlapping generations. The ultimate outcome
of this model is a stochastic equilibrium between
factors that eliminate genetic variability (e.g. random
drift) and those that increase it (e.g. mutation). (Note
that quadratic or Gaussian stabilizing selection on an
additive trait does not necessarily eliminate genetic
variability (Nagylaki, 1989; Gavrilets & Hastings,
1993, 1994a)). Such stochastic equilibria have been
analysed previously (e.g. Bulmer, 1972; Keightley &
Hill, 1988; Barton, 1989; Burger et al. 1989). We shall
assume that initially the population has a high enough
level of genetic variability so that mutation can
effectively be neglected. Here we are interested in the
transient dynamics of the genotypic variance and its
components in the first generations of selection when
the genie variance is reduced to, say, one tenth of its
initial level.

An exact analysis of the transient dynamics in this
model seems impossible. Instead, in this section we
present an approximate approach based on several
simplifications. We start with a two-locus population
of infinite size. We consider quadratic stabilizing
selection (3 a) assuming that the contributions af of
the loci to the trait are equal. As was shown elsewhere
(Gavrilets & Hastings, 1994 c), in this case there are
two different stages in the dynamics. During the first
stage, which lasts for several generations, the mean
value of the trait rapidly approaches the optimum and
negative linkage disequilibrium is 'built up ' . After
that the linkage disequilibrium component CL is
approximately a constant proportion of the genie
variance,

Q(r) « 6Vg{t), (4)

where t is the generation number, and the dynamics of
Vg(t) can be approximated by a single differential
equation

At w

(Gavrilets & Hastings, 1994c, eqn 12). Here S =
s{\+6), w=\— SVg is the mean fitness of the
population, and K™ax is the maximum possible level of
the genie variance. The parameter 6 < 0 depends on
the intensity of selection and on the recombination
rate, 8 = r/s— V[(f/s)2 + 1]- Using as our justification
extensive numerical simulations (described below), we
begin by assuming that equation (4) with some value
of 6 holds for the multilocus model as well. Later we
also give a simple intuitive explanation of why we
expect this to be so. Using some additional simplifying
assumptions (exactly stated in the Appendix) one can
show that in the case of infinite populations with n
'equivalent' loci the dynamics of the genie variance
are approximated by

2SV(V™*-V)
dt w

(6)

Note that if n = 2, this equation reduces to (5). If the
loci are different with respect to their contributions to
the different components of the genotypic variance,
(6) becomes

2SVJV™»*-V)I!*
dt w

(7)

where ne is an effective number of loci (defined exactly
in the Appendix). If the loci are equivalent with
respect to their contributions to different components
of the genotypic variance, the effective number of loci
is equal to the actual number of loci. In general, ne

changes with time. However, numerical simulations
suggest (see the Appendix) that during the transient
dynamics ne can be considered as approximately
constant.

Now we are in a position to incorporate the effects
of the random drift into the model. According to a
common method, the expected change in the genie
variance as a result of sampling drift can be
approximated by a differential equation

5
dt

- -
IN

(8)

where TV is the (effective) population size. This simple
approximation has proved to be useful in many
problems (e.g. Keightley & Hill, 1987, 1988). Com-
bining this equation with (7) we finally get a single
differential equation

dVg

dt
g, max

2N
(9a)

that together with relationship (4) completely describes
the expected dynamics of the genie variance in finite
populations under quadratic stabilizing selection and
recombination. This equation can be represented as

(5) d(t/N) w
(9 b)

This means that if one scales the time in the units of
the population size (i.e. expresses the time as t/N),
then the influence of the population size and the
effective number of loci on the behaviour of the genie
variance is described by a single parameter N/ne. This
property of the dynamics was first noticed by Chevalet
(1988) in numerical simulations. Further evidence of
the generality of this effect is presented in the next
section.

Equations (4) and (9) represent the main theoretical
result of this paper. Equation (9) can be easily
integrated. Using the obvious relations CL = 6Vg,G =
(l+6)Vg and w = \—SVg one can also use (9) for
describing the dynamics of the contribution of linkage
disequilibrium, of the genotypic variance and of the
mean fitness of the population. One can also consider
the relative importance of selection/recombination
and drift in the dynamics of multilocus variability.
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Fig. 1. The dynamics of the components V and Ct of the genotypic variance G under double truncation selection. The
population size after selection A f̂ter = 8, 16, 32, 64, 126, 256 and 512, the population size before selection was four times
its value before selection (the curve corresponding to a smaller population size always lies above), (a) Unlinked loci, rh =
0-5, (b)rh = 01.
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The comparisons of predictions from equation (9)
with simulation show that equation (9) allows to
predict the time to change Vg from one value, say Vv

to another, say V2, with an error within 20%-40%
range depending on the recombination rate and Vx

and K, values. However, equation (9) was derived for
quadratic stabilizing selection, which is quite different
from the double truncation selection typically used in
experiments looking at stabilizing selection. In the next
section, we use numerical simulations to check if the
properties of the transient dynamics of the genotypic
variance under double truncation are similar to those
under quadratic stabilizing selection.

3. Properties of the dynamics under double
truncation stabilizing selection

In this section, we describe numerical results which
show that the two properties of the transient dynamics,
namely the approximate constancy of the CJ Vg ratio
and the fact that the influence of the population size
and the number of loci on the behaviour of the genie
variance is described by a single parameter N/n, hold
under double truncation as used in artificial stabilizing
selection experiments.

Our numerical results are based on a modified
version of the program described in Hastings (1987).
We considered n = 2, 4, 8 and 16 loci. Population size
before selection is N = 32, 64, 128, 256, 512,1048 and
2048. One fourth of individuals (with values of the
trait closest to the mean) were selected. Micro-
environmental variance E was chosen equal to the
maximum possible level of the genie variability (at
allele frequencies 0-5). The populations were started at
linkage equilibrium (with all D(j = 0). The contribu-
tions of loci to the trait were equal. Recombination
rates between adjacent pairs of loci were identical. We
considered four different recombination rates resulting
in the mean harmonic recombination rates between
pairs of loci, rh = 0-50, 0-25, 010 and 0-025. In the
two-locus case rh is just the recombination rate.
Number of runs for computing the' average' dynamics
were 100, 90, ..., 40 for N = 32, 64, ..., 2048, respect-
ively.

Figures 1 a, b illustrate the ' average' dynamics of
the components of the genotypic variance on the
(Vg,CL) plane for different numbers of loci, popula-
tion sizes, and recombination rates. In each case the
population starts at a vicinity of the point (1, 0), then
it takes several generations to reach a straight line
with evolution along this line towards the point (0, 0)
afterwards. The time to reach the straight line increases
with tighter linkage. The location of this line is
controlled by the value of 6. This value is equal to the
CJVg ratio at an unstable polymorphic equilibrium
with aiieie frequencies one half. In the two-locus case
the value of 6 can be derived from exact dynamic
equations (Gavrilets & Hastings, 1994 c). In principle,

one can try to solve the exact dynamic equations for
equilibrium values of Di} in the n-locus case. Instead
we consider an alternative approach based on Bulmer's
formula (Bulmer, 1974, eqn 13). Assuming that
selection does not change Vg and using several heuristic
approximations, Bulmer derived an equation that
relates the equilibrium value of the contribution of
linkage disequilibrium, C*, with the genie variance,
Vg, the strength of selection, and the mean harmonic
recombination rate between pairs of loci, rh:

C*(V 4-C* + F} — -H(V + C*Y/r (\O)

Here /? = — 2zp <f>(zP)/P, where P is the proportion of
individuals selected, z is the standard normal deviate
corresponding to (l+P)/2, and </>(z) is the standard
normal density function. To check this formula,
Bulmer compared theoretical predictions with nu-
merical values from several five- and six-locus models
having unstable equilibria with allele frequencies equal
to one half. His conclusion was that (10) predicts
equilibrium values satisfactorily. Figures la, b can be
used to compare the dynamics of Vg in models with
different number of loci but with the same value of the
mean harmonic recombination rate between pairs of
loci. In all cases the proportion of individuals selected
was P = 0-25. The latter gives /? « -0-97. With Vg =
E = 1 equation (10) produces C* = -0-29 and -0-59
for rh = 0-5 and 01 respectively. One can see that the
trajectories corresponding to different numbers of loci
are close enough to each other and that the straight
lines along which the populations evolve cross the line
Vg = 1 at points that are close to the values predicted
from (10). The same is true for rh = 0-25 and 001
(data are not presented).

Figure 2 shows that the curves representing the
dynamics of Vg(t/N) corresponding to different
numbers of loci and population sizes but with the
same value of the ratio N/n are very close.

4. Biological implications

An immediate effect of stabilizing selection on an
additive trait is the buildup of linkage disequilibrium
manifested in non-random combinations of alleles in
gametes and a reduction of the genotypic variance.
This effect was discussed in the classical literature
(Fisher, 1930; Mather, 1941), first analysed in
numerical simulations by Lewontin (1964) and de-
scribed using an analytical model by Bulmer (1971,
1974). Stabilizing selection also influences allele
frequencies. This process was first studied in the
classical papers by Wright (1935) and Robertson
(1956) with the conclusion that stabilizing selection
invariably moves allele frequencies toward fixation.
Subsequent work has shown, however, that stabilizing
selection does not necessarily eliminate genetic varia-
bility (Gale & Kearsey, 1968; Kearsey & Gale, 1968;
Nagylaki, 1989; Gimelfarb, 1992; Gavrilets &
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Fig. 2. The dynamics of the genic variance Vg in models with different numbers of loci, n = 2, 4, 8, 16, and population
sizes, TV, but with the same ratio N/n. The time (i.e. the generation number) is scaled in terms of the population size, (a)
The case of unlinked loci, rh = 0-5, (b) rh = 0-25.
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Hastings, 1993, 1994a). Even if the ultimate outcome
of stabilizing selection is complete exhaustion of
genetic variance, the rate of approach to fixation of
alleles can be very slow and decreases with increase in
linkage (Lewontin, 1964). Recently we presented an
analytical treatment of these transient dynamics in
two-locus models (Gavrilets & Hastings, 1994c). Here,
we have begun the generalization of our approach to
the more important case of multilocus populations
with a finite size.

(i) Properties of the transient dynamics

We have analysed the transient dynamics of two
components of the genotypic variance, namely the
variance due to disequilibrium, CL, and the genie
variance, Vg. An interesting property of transient
dynamics is the approximate constancy of the CJ Vg

ratio in time. This peculiarity allows us to incorporate
all effects of linkage disequilibrium on the dynamics of
the genie variance in a single parameter 6. A
satisfactory approximation of 6 is given by Bulmer's
(1974) formulae with 6 being a function of the mean
harmonic recombination rate between pairs of loci
and parameters characterizing intensity and form of
stabilizing selection. In the two-locus case the ap-
proximate constancy of the CJ Vg ratio in time has
been proved analytically (Gavrilets & Hastings,
1994c). In the multilocus case this constancy was
demonstrated numerically in this paper. An intuitive
explanation of this effect for infinite populations is as
follows. If selection is absent, any state of the
population with linkage equilibrium represents an
equilibrium. On the (Vg,CL) plane the system has a
line of equilibria described by the equation CL = 0. If
selection is very weak relative to recombination, the
dynamics are characterized by quick reduction of
disequilibrium with slow evolution of allele frequencies
afterwards (Nagylaki, 1976, 1977, 1978, 1992 and
1993; Hoppensteadt, 1976). On the (Vg,CL) plane
such dynamics are represented by a quick movement
of trajectories toward the straight line CL = 0 with
slow evolution along this line afterwards. If re-
combination is absent, any state of the population
with no genotypic variance represents an equilibrium.
On the (Vg, CJ plane the system has a line of
equilibria described by the equation CL = — Vg. If
recombination is very weak relative to selection, we
expect that the dynamics on the (Vg, CJ plane are
represented by quick movement of trajectories toward
the straight line CL = — Vg with slow evolution along
this line afterwards. The fact that in two opposite
extreme cases of weak and strong (relative to
recombination) selection the dynamics on the (Vg, CL)
plane are qualitatively similar suggests that the same
take place in 'intermediate' situations. Numerical
simulations both confirm this expectation and demon-
strate that the effect is preserved in finite populations.

We have presented further evidence of the generality
of the effect discovered by Chevalet (1988) who noted
that when time is scaled in the units of the population
size N (i.e. expressed as the ratio t/N), the behaviour
of genetic variance and its components depends mainly
on N/n. Starting from the exact multilocus dynamics
equations, we have shown analytically that this effect
is present for quadratic stabilizing selection. For the
double truncation selection scheme that is used in
experiments, we have demonstrated numerically that
the dynamics of genetic variance are determined
mainly by N/n. This peculiarity of the system allows
us to use two-locus dynamics equations in multilocus
context.

Combining these properties of the dynamics of
multilocus systems discovered in numerical simula-
tions with a standard heuristic approach for in-
corporating the effects of random drift, we have
derived approximate formulae describing the dy-
namics of polygenic variability under stabilizing
selection, recombination, and drift. The resulting
formulae give good quantitative agreement for the
whole transient dynamics.

(ii) Relative importance of selection and drift

One can use the dynamic equation (9) for comparing
the relative importance of recombination, selection
and random drift in the transient dynamics of the
genie variance Vg. A simple way is to compare the
magnitudes of two terms in the right-hand part
of (9) describing the contributions of selection/
recombination and of random drift to the rate of
change in Vg. This is done in Fig. 3, where these
contributions are given as functions of the existing
genie variance for four different numbers of loci (n =
2, 4, 8 and 16), a single population size N = 32, a
single selection strength, $ = 0-1, and two different
recombination values (rh = 0-5 and rh = 01). One can
see that different components dominate for different
values of the genetic variance, Vg. Let us consider the
cases of free recombination between two loci and
among sixteen loci. We can see (Fig. 3 a) that the
contribution of the random drift to the rate of change
of Vg is much bigger than that of selection/
recombination in the case of 16 loci, but is much
smaller than that of selection/recombination if there
are only 2 loci. Thus the dynamics of the genie
variance in a population of 32 individuals is effectively
neutral, if there are 16 loci underlying the selected
trait, and is effectively deterministic, in the case of two
loci. If the loci are linked, then the linkage dis-
equilibrium created by stabilizing selection further
decreases the contribution of selection/recombination
to the rate of change of Vg. As a result, the dynamics
of the genie variance is effectively neutral in the case
of 8 loci (Fig. 3 b). The same is true with respect to the
four locus model as long as 0-5 < Vg < 1.
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0-5 10 0 0-5

Fig. 3. The magnitudes of the two components of the rate of change of the genie variance (eqn (9)) as function of Vg.
The straight line stands for the contribution of random drift for TV = 32. The curves represent the contributions of
selection/recombination for different number of loci, n. (a) The case of unlinked loci, rh = 0-5. (b) rh = 0-25.

500 1000 1500 2000
Generation

2500 3000 3500 4000

Fig. 4. The dynamics of the genie variance V in models with different population sizes after selection, A ,̂ler, and different
recombination rates, rh. Each set of trajectories corresponds to a specific value of A r̂ter (A t̂ter = 8, 16, 32, 64 and 128
with the set of trajectories corresponding to a bigger population size always lying above), n = 16. The five trajectories
within each set correspond to rh = 0-5; 0-25; 0 1 ; 0025 and 001.

A different illustration of this effect on the basis of
the simulation model with double truncation described
above is presented in Fig. 4. This Figure shows the

dynamics of the genie variance for sixteen-locus
populations of different sizes. One can see that
trajectories corresponding to different recombination
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Table 1. Artificial stabilizing selection experiments. See text for
discussion of role of drift and selection

Reference

Falconer, 1957
Thoday, 1959
Prout, 1962
Gibson & Thoday, 1963
Scharloo, 1964
Scharloo et al. 1967
Tantaway & Tayel, 1970
Bos & Scharloo, 1973
Gibson & Bradley, 1974
Kaufman et al. 1977
Soliman, 1982

Organism

Drosophila
Drosophila
Drosophila
Drosophila
Drosophila
Drosophila
Drosophila
Drosophila
Drosophila
Tribolium
Tribolium

Population
size

40
2

« 3 5
8
8
8

18
8
8

«100
30

Number of
generations

14, 19
42
40
19
13
13, 38
10
25
40
95

7

Type

LS
—
—
SL
SL
SL
LS
SL
SL
—
LS

values are very close initially when the random drift
dominates. The separation of these trajectories in-
dicates the influence of selection and recombination.
For n = 16, selection/recombination is practically
unimportant for population sizes up to 64 individuals
and it takes at least 50 generations for the effects of
selection/recombination to show up.

(iii) Artificial stabilizing selection experiments

Of course our results do not lead to predictions of the
dynamics of genetic variability in a single experiment
where the outcome will depend on parameters (such
as allelic contributions and recombination structure)
and initial conditions (initial gamete frequencies) that
are unknown. However, good quantitative agreement
of theory and simulations in simplified models suggests
that we may expect to get at least some qualitative
understanding of stabilizing selection experiments.
Table 1 summarizes the experimental design of most
of the relevant experiments. Typically, the foundation
stocks (presumably with large level of genetic varia-
bility) were derived from wild or large laboratory
populations, number of replicates was small (2, 3 or
4), very strong selection (with 15 %—30 % selected)
was applied, and reduction in the additive genetic
variance G was measured. We shall exclude from
consideration the experiment by Thoday (1959), where
the population size was too small and that one by
Kaufman et al. (1977), where both the population size
and the duration of the experiment were large, but the
intensity of selection seems to be small due to a
specific ' within family' selection scheme used by these
authors. We also exclude the experiment by Prout
(1962), where the phenotypic variability increased
(presumably due to changes in the environmental
condition of the entire experiment). The remaining
experiments can be roughly divided into two groups:
one with (relatively) large population sizes and
(relatively) short durations of experiment (marked LS

in Table 1) and another with (relatively) small
population sizes and (relatively) long durations of
experiment (marked SL in Table 1). The average
population size and number of generations over the
LS-experiments are N = 30 and T= 12, while those
numbers for SL-experiments are 8 and 25.

The additive genetic variance G is reduced as a
consequence of negative linkage disequilibrium
generated by selection (Bulmer's effect) and changes
in allele frequencies towards fixation caused by
selection and random genetic drift. The first effect
does not result in reduction of overall genetic
variability, and G can be restored if selection ceases.
In contrast, shifting the allele frequencies towards
fixation results in permanent reduction of overall
genetic variability.

If genetic drift is the only factor reducing the genie
variance, Vg at the end of an experiment with N = 30
and T = 12 is expected to be 82 % of its initial value,
while at the end of an experiment with N = 8 and
T = 25, Vg is expected to be 20% of its initial value. In
very large populations the main factor reducing the
genie variance is selection. In general, the degree of
reduction of Vg resulting from selection only depends
on three factors: the initial value of Vg relative to
Vg max; the number of loci n; and linkage. Analysis
of numerical data (described by Figs 1 and 2) for
TV = 512 shows that if n is not smaller than 4, then
the change in Vg during 12 or even 25 generations
of selection is not very large. The SL-experiments
are expected to result in a drastic reduction of Vg

with genetic drift being the major factor. The LS-
experiments are expected to result in a small reduction
of Vg with genetic drift and selection having approxi-
mately equal effect.

Given our analytical and numerical results, we
conclude that the population sizes and the durations
of these experiments were too small for the effects of
stabilizing selection on the genetic variability (as
measured by the genie variance) to show up. Some
reduction of the additive genetic variance observed in
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these experiments should be a result of the decrease in
the genie variance caused by random drift (in SL-
experiments) and of the build up of negative linkage
disequilibrium (in LS-experiments).

(iv) Evolutionary implications

Our findings demonstrate that if there are several loci,
even very strong stabilizing selection can require a
very long time to reduce genetic variability (as
measured by the genie variance) significantly. This
conclusion has important implications for the main-
tenance of genetic variability. When thinking about
natural systems, it is unreasonable to expect that
environmental conditions and populations remain
constant over time scales of hundreds of generations.
Our results imply that over shorter time scales, strong
stabilizing selection, which acts on fitness presumably
controlled by a larger number of loci, will not have
time to eliminate variability. In this case random drift
can be more important in removing genetic variability.

We are grateful to Chuck Coxwell who did some of the
numerical simulations. We thank Bob Costantino, Trudy
Mackay and two anonymous reviewers for helpful comments
on the manuscript. This work was supported by U.S. Public
Health Service Grant R01 GM 32130 to A.H.

Appendix A

The exact equation for the dynamics of allele
frequencies under quadratic stabilizing selection (3 a)

Here

is

A P « = (Al)

where w is the mean fitness of the population. This
equation was derived in (Zhivotovsky & Gavrilets,
1992) using results of Ewens & Thompson (1977) on
marginal systems and induced fitnesses. Alternatively,
(A 1) can be derived using an approach described in
(Turelli & Barton, 1990; Barton & Turelli, 1991). In
(Al),

Clrh *-

Fk = -

(A 2)

(A3)

Dikh is linkage disequilibrium among three loci, and z
is the mean value of the trait. We assume that z = 0
and that linkage disequilibrium of the third order
among different loci is zero. The first assumption is
satisfied in artificial selection experiments when the
optimum is close to the population mean. The second
assumption seems to be plausible in the case of
stabilizing selection provided a sufficiently high level
of variability is still maintained in the population.
Using these assumptions one can represent (A 1) in
the form

(A 5)

is the ratio of the contributions of the rth locus to CL

Vgi = 2al
iPiqt.

= I.k k+iak(Jk + z()D(k, where
and ^
The remainder term *H — ^k k^i

z~t = a((p( — q() is the contribution of the rth locus
to the mean value of the trait z = l,zt. If selection
is very weak relative to recombination, linkage
disequilibrium can be neglected and (A 4) simplifies to
a well-known form

Ap( x sa.2tpt qt(pt — qt)/w. (A 6)

The change in the genie variance Vg t contributed by
the rth locus is approximated as AVgJx 2a^(qi—pl)
Ap( and is

AVgJ = -s
(A 7)

Summing up over all loci and using the equality

w

where = a,2/2 is the maximum possible level of
the genie variability at the rth locus (at allele
frequencies equal to one half), and 3ft, = sY.2a.izi3ft v

Below we shall show that the remainder term ^ can be
neglected in comparison with the other sum. Using
this and substituting the differential ratio dVg/dt for
the difference ratio AVJAt, one can approximate
(A 8) as

Ay

If K.t ~ v%.p KT ~ K « T a n d

loci / and j , we get equation

2sV(V™x-V)(\+6)!!2
dt w

(A 9)

for all pairs of

(A 10)

that approximates the dynamics of the genie variance
in the multilocus case. Gavrilets & Hastings (1994 c)
have shown that in the two-locus case with equal loci
equation (A 10) adequately describes dynamics after
some short time interval. If the loci are different with
respect to their contributions to the components of
the genotypic variance, one can introduce the effective
number of loci «„

n. =• (Al l )

APi = s(a* (A 4)

and represent (A 9) in the form (7). In general, ne

changes with time and can be both smaller or bigger
than n. However, numerical iterations of (A 6) for
different number of loci have suggested that during
the transient dynamics (when the genie variance is
reduced to about one tenth of its initial level) the
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changes in ne are not very big. For example, for n =
4, depending on the initial conditions and the
differences in the locus contributions, ne stays between
3 and 6, while for n = 10, ne stays between 7 and 14.

To show that the term 3% can be neglected, let us
represent it as

i.i.k

(A 12)

where CLik = 2aia.kDik is the contribution of the
(ik)th pair of the loci to CL and the sum is over all
different loci i,j and k. To derive (A 12), we have used
the equality zt = —~Lk k^,tzk that is valid provided z =
0. We expect that all CL ik values are small and
negative, and zl values are both positive and negative
and small. This suggests that positive and negative
terms of the form zl zi CL ik will cancel each other and
the resulting sum will be smaller in absolute value
than the first sum in the right-hand side of (A 8) where
all elements have the same sign.
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