NOTES ON NUMERICAL ANALYSIS II

INTERPOLATION AND CURVE FITTING BY
SECTIONALLY LINEAR FUNCTIONS

Hans Schwerdtfeger
(received August 5, 1959)

Functions employed for interpolation and curve fitting are
for the most part polynomials with numerical coefficients. In-
deed these are functions whose values for numerically given
arguments can be computed directly without resorting to non-
algebraic designs. It is known, however, that there are cases
where polynomial interpolation does not yield an adequate ap-
proximation to a given function (cf. [4], p.34).

Another class of functions whose values can be computed
without the aid of tables or advanced methods is the class of the
sectionally linear functions. Their use for the purpose of inter-
polation and curve fitting is further suggested by the well known
fact that every function F(x), continuous over a closed interval
[a,b] , can be approximated uniformly by a sequence of sectional-
ly linear functions over a distinguished sequence of partitions
of the interval [a,b]. It seems that this approximation by sec-
tionally linear functions which is based on a linear interpolation
over the part intervals of the partitions, has not been studied so
far for other than theoretical purposes; Lebesgue's proof of
Weierstrass' first approximation theorem makes use of the
process (cf. [5], p.3). This interpolation will be considered
here with explicit expressions for the approximating sectionally
linear functions, In the same way also curve fitting by the
method of least squares will be studied. Moreover an orthogonal
system of sectionally linear functions over a given partition is
introduced in order to simplify the computation of the coefficients
of a certain expansion. The entirely algebraic character of the
discussion makes the results immediately applicable to numeri-
cal work.
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1. Sectionally linear functions over a partition. Let
a=x%,< %] <...< Xp_] <X, =Dbbe a partition ¥, of the

intarval [a,b], i.e. a £ x £ b. A real function f(x) is said to
be sectionally linear over the partition ¥, if its graph is a
polygon curve having the points (x, , f(x, ))(?” =0,1,..., n)
as vertices. Clearly every such sectionally linear function is
continuous over [a,b] . If {(x) and g(x) are two sectionally
linear functions over Jp, then also «f(x)+ Bg(x) is sectionally
linear over %,, where «, B are real constants. All sectionally
linear functions therefore form a linear space.

This space has the dimension n + 1.

Proof. Let

RIS G IS

Put
0 ifx g¢x, 3

G =1,  @x) = @lx-xy_1) = {x_xv_lifx xo (=1,

The functions ¢@,(x) are linearly independent. Indeed suppose
that with real coefficients Ay, *y,..., A, the relation

Aot Ay P(x)+ cae AL Pp(x) =0

is satisfied for all x in [a,bj . For x = x, we have

@,(x0) =0 (v =1,2,,..,n) and therefore Ao = 0. Put x = x3;
then @3(x]) = x} - X5 2 0, but ¢(x1) = 0,..., @u(x1) = 0;
hence X} = 0, etc. Thus the dimension of our space is at least
n+ 1 and if a function {(x) can be written in the form

(1) i(x) = cg + €3 ?1(x) + ...t Cp Pr(x)
then the coefficients c¢5, ¢1,..., Cp are aniquely defined.,

Conversely every sectionally linear function f(x) can be
written in the form (1)} which is equivalent with

f(xg) = ¢
f(x) =cg-c] X+ €1 % Xo £ X £ x)
f(x) = co - €1 %0 - €2 x] +(c] +c2)x X] L X £X2

E] £l £l ° ° ° . ° 2 B ° ° £ °
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From here it is evident that the ¢4, ¢1, ¢2,... can be adapted
to every prescribed polygon curve over £, .

Explicit values of the ¢, can be expressed by means of
the successive divided differences of the function f(x). We apply
Newton's interpolation formula to the function f(x) over the
partition %, ; making use of Steffensen's notation (cf. 4], § 4)
we thus obtain the following expression for f(x).

f(x) = £(x5) + f(x5,%]) (x - %) + £(x5,%]1,%2) (x - %) (x - x1)

Foaee t E(Xg X seo e Xno X = X)X - X7)e (X - xp_2)

+ £(X0, %] 0 o0 Xn-1,%)(X = Xo)(x = X1)e .. (x = Xp-2)(x - xn-1).
Hence follows that
f(x1) = £(x0) + £(x0,x1)(x] - Xo)
£(x2) = £(x0) + f(x0,x1)(x2 - %o) + f(x0,%],%x2)(x2 - %5)(x2 - x])
f(x3) = £(x0) + (%0, %1 (%3 - %0) + £(x0, X1, %2)(x3 - %5)(x3 - x])

+ £(x0, %1, %2, x3)(x3 - Xo)(x3 - x1)(x3 - %2)

e ° . @ ' e, o ° ? ° ° . . 2 ° ° . e ° o ° ° ° ° °

On the other hand we have by (1)

f(xo) = co

f(x]1) = co + €1 (x1 ~ %0)

£(x2) = co + €1 (x2 - %o) + €2 (x2 = X1)

f{x3) = co + c1 (x3 = %) + € (x3 - x1) + ¢3 (x3 - x2)

° ° ° ° ° ° ° ° ° . ° . ° * ° . . ° 2 ° i

and since the ¢, are uniquely defined it follows that

co = £(xo)

c1 = f{x0,%1)

cp = f(xg,x]1,x2)(x2 - xg)

c3 = f(x5,%1,%x2,%x3)(X3 - Xo)(x3 ~ x1)
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cn = H(xosX1se e e X 12 Xn)(%p = XoMXp = X))ee e Xy = %p.2)

These ¢, define the function f(x), and its properties are
reflected in certain properties of the sequence ¢y, c},..., Ch-
Thus we find {(x) to be monotorically increasing if and only if

cy > 0, €]+ c2 >0, c1+cp+cy >0, ...,

monotonically non-decreasing if in some (or all) of these reia-
tions the sign > may be replaced by =. The function f(x) will be
strictly convex (from below) if the sequence cj, ¢ + ¢;,
cp+cp+c¢3, ... 1is monotonically increasing. A convex
function {(x) will have its minimum within the interval

[%0.10 XuJifc) + 0n 4 €l €0, Cp 4 vt C 1t =0,
Cl+ eve +Cuyl > 0; the minimum will be at X1 if

€1+ +ve +Cu1 <0, Cl+ see tCp1tCy >0,

The equation f(x) = 0 can be solved by a trial and errc:
method. Suppose for example that f(x) is increasing and there-
fore the sums ¢} + ... +¢c, > 0(v =1, 2,... ). The root =f
the equation will lie in the left-open interval (x,-1. x/“] if

< CO'C].XO_“"/LX,&-I
Fpe-1 SRR € Fpeo

The middle term represents the value of the root.

This is in outline the elementary analysis of the sectional-
1y linear functions.

In the case of a partition ?n ‘with equidistant points
x, =a+ v(b-a)/n (v=0, 1,..., n)
one has in the usual notation
co = f(a), ¢, =(l1/4a) 4" {a) (da= (b-a)/n).
2. Sectionally linear functions, orthogonal over a parti-
tion. In most practical cases the direct computation of the
coefficients ¢, will be tedious. Therefore we shall establish

for {(x) another expansion the coefficients of which can be com-
puted more easily.
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'E[‘he inner product of two functions f(x), g{x) over the
partition #p is defined as

(f,g) zn = (f,8) = 22,0 flx, glx, ) .

It has the usual formal properties of an inner product. It is
symmetric, and linear and homogeneous in each of its factors
f(x) and g(x). The square of the norm of f(x) over 7 is given
by (f,f) > 0; in the case of a sectionally linear functxon f(x) one
has (f,f) = 0 if and only if f(x) = 0 over [a,b].

The two functions f(x) and g(x) are said to be orthogonal
over the partition Zp if (f,g) = 0 (cf. [1], p.80; [3] p.283).

The following formulae are readily established,
(f, ?’L) = ngﬁ f(xv)(xv = X,‘_l)

and in particular

n
(500’ sﬂo) =n+1,( ?A ’ sp/") = Zv:x (Xv = xk-l)(xv = x[-‘-].)
if N> pu.

Since the functions @,(x),..., @n(x) are linearly indepen-

dent one can determine an orthogonal system ¥5(x),..., Pp(x)
spanning the same space so that

(2) (Yoo o) =0 ifpskv,
The orthogonal functions 44,(x) may be determined either by
the well-known Schmidt orthogonalization process or, as it will
be done here, by the determinant formulae.
Notice first that if
(x)= &0+ &) P1(x)+ ... + &n Pn(x)

is a sectionally linear function with the variable coefficients
£, , then its norm square

(£,9) = o fxy)2 = 320 ZT, (95, 95) E; §;

is a positive definite quadratic form. Similarly one can see that
the matrices
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SUMSRNNET At

(¢0’ 900)"°(¢0’90rn)

Qm = : E s & o
(sorn' ?’o) ¢t (?m’ ?m)
are positive definite and therefore their determinants

fon=lom| >0.
Now we put

o 1

3 © s e

(SDO’ ‘PO) (9001 ‘;01) PP ((po, pm)
V() = 8 -1 (@1, o) (Pys Py) oee (P, @)

m-1

(@ 10 Pe) (P 1sP) v (Po1s P

oo P ¢
Referring to elementary properties of determinants it is readily
seen that '
(3) {(%m> 5,0#)=O(m=1,...,n; Mm=0,1,..., m-1).

On the other hand we observe that the functions  ¥(x),
defined by the determinant formulae can be represented in the

form
Yolx) =1
Yi(x) = “(cl)) + Pix)

¥o(x) = a2+ o8 @i+ Po(

. o - . a - . ° ° o £y . - -

(n) n) (n)
(o]

yo00 = o+ B @0+ o g+ &P el 0 g

( . .. . .
where the &;} are numerical coefficients, uniquely defined for

a given partition #,. The orthogonality relations (2) now follow

46

https://doi.org/10.4153/CMB-1960-009-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1960-009-4

immediately from (3). The systems (2) and (3) are indeed
equivalent.

In the same way one can calculate the norm square

(4) 6 = (W Ym) = (¥ P) = /@) (m=1,..., ).

For any given partition of the interval [a,b] one can thus
set up a system of n + 1 orthogonal functions Y,(x),..., Yu(x),
sectionally linear over ., and every sectionally linear func-
tion f(x) over ;ﬂn can be represented by its "Fourier expansion!

f(x) =ag+a; Yi(x)+ ...+ an Puix)

whose coefficients are given by

a, =(U/6p) (£, W) =(lg) 22, 20 £x,) lx,).
They satisfy a "Parseval equation'"

2
(f,f) = ,uio S, .
which may be used here as a check relation. For practical
applications it is thus necessary and sufficient to have a com-
plete table of the orthogonal sectionally linear functions for a
partition.

3. Minimum property of the orthogonal functions. Let

fm(x) = Eo+ 51 10+ en + El P10+ P
be a sectionally linear function with the variable coefficients
£, Ejsee+» Em.] (if necessary put €m = 1). For a fixed

index m, i.e. one of the numbers 1, 2, ..., n, the function
fn(x) is to be determined such that its norm square

-1 - -1
(b ) = = im0 2 300 (P10 P5) &3 §5 + 22000 (94 Prn) &
* (P m: Pm)
has the smallest possible value,

Using matrix notations with the prime indicating transposi-
tion we have

(fnofrn) = £'Qm-1§ + 20’ + am (£'=(&0r EpseeesEmo1))
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where q' denotes the row vector (( P, P )seees (P n 15 Pnl)
and gm = (P m:» P m). The matrix Q. 1 was seen to be positive
definite., Consequently the expression (f,fy,) has a minimum.
In fact, if we introduce the new variable column 1; by the sub-
stitution

E=7+p
we obtain
(fmfm) = 7‘ Qm-17 +2(4'Qm.1 + Q") + B'Qm-18+29'8+ qn, -

Now the column £ can be chosen such that the linear terms in »

vanish:
Q.18+ q=0.

This is a system of linear equations with the coefficient matrix
Qm-1; it has a unique solution # such that

(fm:fm) = "7‘ Qm-17 + A'Qm-18 +29'8 + qm

and the minimum of (f,,fy,) is assumed for % =0, i.e. for
£ = A . Thus the minimum function f,(x) has to satisfy the
condition i

Qm-15 +9q=0

which by returning to the original notations is seen to be equiva-
lent with

Z“;;i(% VPDE (@ Pen) = (@iafm) = 0 (A= 0,1,..., m=-1),

By comparison with (3) one concludes that fiy,(x) ='\}lm(x). Thus
the orthogonal functions have the required minimum property.

4. Partition with equidistant points. Instead of [a,b] we
take now the unit interval [0, 1; . By #, we denote its partition

in n equal parts, i.e.
x, = Yn (v=0,1,..., n) .

The basis functions are then
0 ifx £ (- 1)/n

(x) =
% x=-{u-1)/n ifx >(x-1)/n
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In this case the orthogonal functions %4(x) can readily be
computed for every fixed n. (It might be pointed out that in our
notation we are constantly omitting an index n; thus instead of

@.(x), K (x) we really should write gﬂ,,(n)(x) and ‘(,V,Sn)(x)
and similarly in other symbols. This omission is however
irrelevant as long as n is supposed to be fixed throughout the
discussion.)

For all n it is found that the orthogonal sectionally linear
functions over &, are given by

Yolx) =1, W(x)=-3+x

=_n-1 (n-1)(n+4)
¥2lx) (n+1)(n+2)  (n+l)(n+2) x* P 2(x)

(n-2)(n-1) _,n-2

¥3(x) = oot 1) x =2 - ®a(x) + P3(x) ,

and generally fork =0, 1, 2,..., n-3:

k+1)(k+2 k+1
(5) Yookl = Gorgieral 2y 200 - 2 FE 10 1100 + P -

In particular we find

¥n-2(x)=(2/ 597;;-4(:{) -(6/5)501,1_ 3(x)+ ¢n.2(x) (if n »5)
Y 1(x) = (3/10¢4.3(x) = Pn2(x)+ Pp_1(x) (if n>4)
Yo%) = (1/6) Py _2(x) ~(2/3)¢n_1(x) + Pp(x) (n23).

We notice that the coefficients of these expansions do not depend
on n.

The first two or three functions ¢ (x) are readily obtained
from the general formula in §2. For the rest it has been ob-
served in cases of small values of n that each ¥,_x(x) can be
written as linear combination of only three consecutive basis
functions: @, _y_2(x)y Ppu_k-1(x), Ppn_k(x) with coefficients
depending on k only. Consequently it was conjectured - and
verified - that this is so for every n.

Thus let us write

Y n-kl¥) = x@pn x-2(x)+ B Pu_k-1(x) + Pp_klx) .
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We express according to (3) that 4 ,_x(x) is orthogonal to
@ n-k-2(x) and $p_x.1(x). This gives us two linear equations
for the unknown coefficients x and 8 :

(Pn-k-2> ¥a-k) = (Pack-2: Po-k-2)& + (Pni-2: Pn-k-1)8
+ ($n-x-2:Pn-x) = 0
(Pn-x-1'¥n-k) = (Pn_x-1,Pn-k-2)¢ + (Pn-k-1>¥n-k-1)P

+ (Pn-k-15Pn-k) = 0

We evaluate the inner products and obtain the equations in the
form

(k+3) (k+4)(2k+7) & + (k+2)(k+3)(2k+8)B = -(k+1)(k+2)(2k+9)
(k+2)(k+3)(2k+ 8) & + (k+2)(k+3)(2k+5) R = - (k+1)(k+2)(2k+6)

whence

= BtD42) p= -2kl
(+3) (k+4) i3

To prove the formula (5) we have to show that with these
coefficients all the orthogonality relations

(@ » ¥ nx) =0 (»=0,1,..., n-k-1)

are satisfied. Indeed

k+1
(%50 ¥n-x) =§—§%%§{%—(% »#n-k-2) ’2;}5(% Pn-k-DH{(F > Pn-x)

and taking nz(k+3)(k+4) as common denominator on the right
side we obtain as numerator
(k+1)(k+2)(n-k-v-1) + 2(n-k-») + 3(n-k-v+1) + ... + (k+3)(n-v+1))
- 2(k+1)(k+4)(n-k-v + 2(n-k-v+1) + ... + (k+2)(n-v+1))
+ (k+3)(k+4)(n-k-v+1)+ 2(n-k-v+2) + ... + (k+1)(n-v+1))
= (k+1)(k+2)(53(k+3)(k+4)(n-k-v) + (1/6)(k+1)(k+2)(2k+9) - 1)
- 2(k+1)(k+4) (3 (k+2)(k+3)(n-k-») + (1/6)(k+1)(k+2)(2k+6))
+ (k+3)(k+4)(3(k+ 1) (k+2)(n-k-») + (1/6)(k+1)(k+2)(2k+3))

which indeed equals zero. Thus (5) is proved.
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For small values of n complete systems of sectianally
linear orthogonal functions over 2, are shown in the following
table, their graphs in the figure.

n=2: Yo(x) = (1/12) - 3 x + @5 (x)
n=3: Po(x) = (1/10) - (7/10) x + #o(x)
Y3(x) = (1/6) x - (2/3) Pa(x) + P3(x)

n=4: Palx) = (1/10) - (4/5) x + ¢5(x)

#3(x) = (3/10) x - @p(x) + P3(x)
Ya(x) = (1/6)P5(x) - (2/3)P3(x) + Py(x)
n=5:  Yp(x)=(2/21) - (6/7) x+ ¥a(x)
Y3(x) = (2/5) x = (6/5) P2(x) + #3(x)
Yalx) = (3/10)5(x) - ¥3(x) + Py(x)
¥5(x) = (1/6) ¢3(x) - (2/3)#4(x)
+ P5(x) .

For large-scale numerical applications it would of course
be necessary to compute orthogonal systems for greater values
of n.

For the practical computation of the "Fourier coefficients'"
of a given function we also need the norm squares G, = (Y Yém)-
With regard to (4) and the preceding formulae we find for any n:

6Go=n+1, 6, = (n+1)(n+2)/12n ,

65 = n-1/n(n+1)(n+2), ©3 = (n-1)(n-2)/n3(n+1) ;

and for any k £ n - 3:

1 (kt1)(k+2)

6ok =% =
Ly ey A Y

In particular for n = 5 one has

6,=06, 67 =7/10, G, =2/105, 63 = 2/125, O4 = 3/250, S5 =1/150 .
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As an application we shall obtain the sectionally linear
interpolation of the function x2 over the partition "J5 of [o,1].
Evidently ’

£(0) = 0, £(1/5' = 1/25, £(2/5) = 4/25, £(3/5) = 9/25, £(4/5)=16/25,
f(1) =1
and

(£, @o) = 11/5, (£, ¢1) = 9/5, (f, ) = 34/25, (f, ¥3) = 116/125,

(£, P4) = 66/125, (f, Ps5) = 1/5.

Therefore
(£, ¥o) = 11/5, (£, ¥1) = 7/10, ({, ¥2) = 2/75, (£, ¥3) = 2/125 ,
(f, ¥a4) = 1/125, (£, ¥5) = 1/375
and
ag = 11/30, ay =1, a2 = 7/5, a3 = 1, ag=2/3, asg=2/5.

From the "Fourier expansion'
f(x) = 2,2
(x) = v=o &v %, (x)
one derives the interpolating function in the form

£(x) =(1/5)P1(x) +(2/5)P2(x) +(2/5)P3(x) +(2/5)p4(x) H2/5)Ps5(x) ,
which indeed satisfies the given conditions,

5. Curve fitting by least squares. The problem of curve
fitting (or data fitting) is really a generalized interpolation
problem. Like the ordinary interpolation problem it is usually
solved by polynomials. Given a function F(x) tabulated over the
partition

Pm: 3% <L X< . & X 1L Fpm=b
of the interval [a,b] , it is required to find a polynomial p(x) of
degree not greater than n ¢ m such that the values of p(x) fit

best to the values of F(x) at P, "in the sense of the method of
least squares', i.e. such that

Zono (FEL) - P(Rp) )2

becomes as small as possible. If n = m the minimum of this
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expression will be zero; it will be obtained if one uses for p(x)
the ordinary interpolation polynomial of degree ¢ n as it is
given by Lagrange's formula or Newton's formula without the
remainder term; if n < m the minimum will in general be posi-
tive.

A treatment of the data fitting problem is given for instance
by Nielsen [3], Chap.VIII; a more elegant method has been pro-
posed by Forsythe [l] and Herzberger [ZJ . We shall adapt this
method for data fitting by means of sectionally linear functions
instead of polynomials.

Again we assume that the number m + 1 of the data

Yo=F(Xp5) » + + + s Ym = F(Em)

is larger than n + 1 where n is the '"degree!' of the sectionally
linear function f(x) over 4, by which the data are to be fitted
best in the sense of the method of least squares. We also suppose
that the partition @ ., contains the partition 2,, i.e. each x,
isan %, . (The reason for the inequality n < m, preventing
strict interpolation, could be that orthogonal systems are not

available for sufficiently high values of n.)

Let

f(x) =co+cy] Pi(x)+ ...+ cp Pnix)

]

ap+ta; ¥i(x)+ ... +an ¥n(x) .

The coefficients ¢, or a, have to be found such that

4 = Z}LTO (f(xfu) - y,u»)z = Min,

It will be sufficient to establish the procedure for the ¢, as it
will be formally the same for the a, .

We introduce the vectors (columns)

co Yo f(X5) - yo

~ i _ A _ f(;{_l) A
c = . B Y - ° H 8 - .

‘n Ym f(Xm) - v

and the rectangular (m + 1) x (n+ 1) - matrix
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1 ¢1(%0)  $2l%o) «o. PnlXo)
1 ¢1(x1)  f2(x1) ... #n(x))
g -| ! Ak 72%2) ... gax2)
1 (Fm) PoFm) e PolEm)
Then
§= @c-y
and

4= §'§ = c‘_@'é c-2%y+yly

is the expression to be minimized. Putting
G=¢'¢ ., z= Py

one has

A=¢'Ge-c'z-2z'c+vy'y

Now we observe that the matrix ¢ has the rankn+ 1.
It contains as submatrix the regular (n+ 1) X (n+ 1) - matrix

1 0 0 oeo 0

1 oy(x)) o ... 0
(6) 1 @i(xz) @alx2) ... 0

1 ¢,(n)  #alxn) -vr Palxn)

because P, < fm. Thus the Gram matrix G of & is positive
definite, and G-1 exists, and we can write

Ya)

c'Ge - ¢'GG~l z - 2'G~! Ge + 2'G-l z + y'y - 2'G-! z
(c - G-l z)'G(c - G~1 2) + y'y - 2'G-lz .

It follows that 4 has a minimum, viz. yly - z'G-1 z , which
actually will be assumed if

c-Glz=0 ;
hence ¢ has to be the unique solution of the "normal system"

Ge= @'y ,

55

https://doi.org/10.4153/CMB-1960-009-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1960-009-4

or in explicit form

(m+ g+ 2 }Fmo PUTICI+ .0+ Z,Eo Pl )cn

- m
= Z#:o Yae

Z./“'rf0 ?1(;/-»)':0 * Zl“‘ilo ?l(if‘)zcl teeot Z/‘i ?l(fﬂ)?n(ift)cn

2o P1FY,

=20 palfacot 0 alEpr@aer +. v 5 pn(T) ey
=Z/~TO pn(if")}}" °

If m = n the matrix & coincides with the matrix (6) and
we have 4= 0; the data fitting problem then is the interpola-
tion problem.

6. Final remark. We have studied the theory and some
applications of the sectionally linear functions over a finite
partition of a finite interval only. The theory can be extended
to functions over an infinite partition of a finite or infinite
interval. This will be the object of a forthcoming paper.
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