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Abstract
Anewmethod of forecastingmortality is introduced. Themethod is based on the continuous-time dynam-
ics of the Lexis diagram, which given weak assumptions implies that the death count data are Poisson
distributed. The underlying mortality rates are modelled with a hidden Markov model (HMM) which
enables a fully likelihood-based inference. Likelihood inference is done by particle filter methods, which
avoids approximating assumptions and also suggests natural model validation measures. The proposed
model class contains as special cases many previous models with the important difference that the HMM
methods make it possible to estimate the model efficiently. Another difference is that the population and
latent variable variability can be explicitly modelled and estimated. Numerical examples show that the
model performs well and that inefficient estimation methods can severely affect forecasts.

Keywords: Non-linear non-Gaussian state-space models; Exponential family PCA; Stochastic approximation EM; Particle
filter; Mortality forecasting; Hidden Markov model

1. Introduction
Understanding and forecasting mortality is an important part of demographic research and policy
making, due to its connection to, for example, pensions, taxation and public health. A closely
related area of application is within actuarial science and, in particular, life insurance. A first step
in understanding mortality patterns is to construct a model describing observed death counts or
mortality rates, or “force of mortality”, across age groups (“period mortality”) or within cohorts
(indexed with respect to time of birth).

One of the earliest contributions to the area of mortality forecasting is the so-called “Gompertz
law of mortality” (Gompertz, 1825), see also the survey Pitacco (2018) and the references therein
for more on other mortality laws. A more recent important contribution to the area is the Lee–
Carter model (Lee & Carter, 1992), where a log-linear multivariate Gaussian model is assumed
for the mortality rates, across age groups and calendar time. The model is a factor model, where
the factor loadings are given by the first component in a principal component decomposition,
thus inducing dependencies across age groups as well as reducing the dimension of the problem.
Concerning forecasting, the model assumes that the calendar time effect is governed by a one-
dimensional Gaussian random walk with drift. Consequently, the Lee–Carter model treats the
mortality rates as a stochastic process. An alternative, and very natural, interpretation of the Lee–
Carter model is as a Gaussian hidden Markov model (HMM), see, for example, De Jong & Tickle
(2006); Fung et al. (2017) for a discussion in a mortality context and Cappé et al. (2006); Durbin &
Koopman (2012) for comprehensive introductions to HMMs (also known as state-space models.)
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For a survey of various extensions of the Lee–Carter model, see Booth & Tickle (2008); Haberman
& Renshaw (2011); Carfora et al. (2017) and the references therein. Another line of work is the
Gaussian Bayesian extension of the Lee–Carter model treated in Pedroza (2006), where models
with random drifts are discussed.

However, a major criticism of the Lee–Carter model is that it treats mortality by a two-step
method; first, standard point estimates of mortality rates are obtained; and second, given these
rates, a (discrete time) stochastic process is fitted. Compared to the MLE used in this paper, the
two-step estimation in the Lee–Carter model ignores the uncertainty and estimation error from
the first step, thusmaking the estimators inefficient. In the Lee–Carter model, it is also not possible
to explicitly distinguish between the finite sample noise of the mortality estimates (Poisson) and
the noise from the underlying latent variables. Thus, there may be a misattribution of variance
that will affect the accuracy of the forecasts. Also this critique is addressed in the present paper.
Other modelling approaches that discuss this issue are given in Brouhns et al. (2002); Ekheden &
Hössjer (2014, 2015).

The main contribution of this paper is that a probabilistic model of mortality is introduced
and that the MLE of the parameters in the model are computed using particle filter techniques.
The model is simple; the main assumption is that mortality can be modelled as the first event
of a Poisson process with intensity equal for all individuals of the same age in the same year. The
intensity is described by a latent factor model where the latent variables are modelled as a Gaussian
process in discrete time. Moreover, it is shown that this model corresponds to a model on a Lexis
diagram where only the population level number of deaths and the exposure to risk is observed.
These data are generally available on country level.

The model can be thought of as an HMM with non-Gaussian observations and therefore par-
ticle filters, in particular the forward filtering backward smoothing algorithm, can be used for
the calculation of the posterior distribution of the latent variables. Stochastic approximation EM
(SAEM) is then used to find estimates of the unknown parameters in the model.

The remainder of the paper is organised as follows: In section 2, the individual-level mor-
tality model is introduced, and it is shown how this relates to the population level model. In
section 3, the estimation of the model is discussed in detail. This includes the dimension reduction
using exponential family principal component analysis (EPCA), particle filtering and smoothing
together with the use of SAEM for the likelihood maximisation. In section 4, it is argued that
model performance should be assessed with respect to death counts or scalings thereof. Therefore,
model validation criteria which are based on (proper) scoring rules are discussed. They are appli-
cable to both training and validation data, hence allowing for model selection based on predictive
performance. In particular, an R2-like measure defined in terms of deviance is introduced. In
section 5, different ways of forecasting, depending on the application, are discussed. For illustra-
tion purposes, a number of examples based on Swedish and US data are given in section 6. It
is seen that the forecasting performance is satisfactory with respect to both in-sample (training)
and out-of-sample (validation) data. These numerical examples illustrate the importance of sep-
arating between the finite sample variation and the latent mortality rate process variation – for
Swedish data (with smaller population), it is clearly seen that the majority of the variation stems
from population variation. It is also illustrated that the Lee–Carter model in this situation will
make an erroneous attribution of variation to the latent mortality rate process, which confirms
the criticism of two-step methods that does not properly capture finite population dynamics.

2. Probabilistic Mortality Model
The probabilistic model that is introduced in the present paper is based on the population dynam-
ics as it is summarised in a Lexis diagram, see Figure 1. On the horizontal axis is calendar year and
on the vertical axis is age. An individual’s life is represented by a 45◦ straight line. Since most
individuals are not born on January 1, the time spent in each square will differ from individual
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Figure 1. Example of a Lexis diagram.

to individual. As an example, consider the shaded area in Figure 1: The oldest individual, the one
closest to the top-left corner of the shaded region is a+ 2 years old at the beginning of calendar
year 1902 and turn a+ 3 during the year 1902. The second oldest individual will turn a+ 2 during
year 1902 and is alive at the end of the year 1902. The youngest individual will turn a+ 2 during
1902 and will die before the end of 1902.

More specifically, with respect to mortality, the life of an individual, say i, can be characterised
by the time of birth Bi and the time of death Qi, where 0≤ Bi ≤Qi, and time is measured in years.

Moreover, let [t, t] be the time period when individuals are observed in the data set, and let
n denote the total number of individuals that have been alive in [t, t]. That is, only individuals
for whom

[
t, t

]∩ [Bi,Qi] �= ∅ are considered. Further, the age of individual i at calendar time t is
denoted by Ai(t) := t − Bi, Bi ≤ t ≤Qi.

The life history of individual i can be described by a counting process, Di(t) ∈ {0, 1}, where 0
means that the individual is alive. The process can be defined in terms of a multiplicative intensity
process (see Andersen et al. (1993); Aalen et al. (2008)): Letm(a, t)≥ 0, denote the hazard rate at
age a and calendar time t. Using the introduced notation, the intensity process can be expressed
as

λi(t)=m(Ai(t), t)1(Qi − Bi ≥Ai(t), Bi ≤ t)=m(Ai(t), t)Yi(t)

That is, Yi(t) is 1 if individual i is alive at t and is usually referred to as the “at-risk” indicator of
individual i. That is, Yi(t)= 1−Di(t).

Hence, the total number of individuals who experience the event “death” up until t, t ≤ t ≤ t,
denoted D(t), is given by

D(t)=
∑
i∈I

Di(t)

where I denotes the set of all individuals. This is a counting process with intensity process

λ(t)=
∑
i∈I

m(Ai(t), t)Yi(t)
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Continuing, the main interest is to describe the process of deaths within yearly Lexis squares: The
Lexis squares of interest are of the form

Sa,t = [a, a+ 1)× [t, t + 1)⊂R
2, a, t ∈N, t ≤ t ≤ t

Let A denote the set of relevant ages and let T denote the set of relevant calendar years. The
collection of all relevant Lexis squares, S̄, is then given by

S̄ := {Sa,t | (a, t) ∈A× T }
A general lexis square, without specifying a and t, will be denoted as S. Then, Di(t; S), which
denotes the counting process which may register a single death for individual i in the Lexis square
S, has intensity process given by

λi(t; S)=m(Ai(t), t)Yi(t)1((Ai(t), t) ∈ S)
=m(Ai(t), t)Yi

(
t; S

)
where Yi(t; S) := Yi(t)1

(
(Ai(t), t) ∈ S

)
. The total number of observed death counts in S is given

by the counting process

D(t; S)=
∑
i∈I

Di(t; S)

with intensity process

λ(t; S)=
∑
i∈I

m(Ai(t), t)Yi(t; S)

Moreover, due to that census data, typically, are only publicly available at integer ages and on
yearly basis, the approach taken in the present paper is to model the hazard rates m(a, t) as
constants within yearly Lexis squares, that is, m(a, t)=mS if (a, t)∈ S. That is, D(t; S) has a
multiplicative intensity process

λ(t; S)=
∑
i∈I

mSYi(t; S)

Furthermore, by introducing DS , the stochastic number of deaths in S, as

DS =
∑
i∈I

1((Qi − Bi,Qi) ∈ S)

and the total amount of time that individuals have been alive in S, the so-called “exposure to risk”,
ES , by

ES =
∑
i∈I

∫ t

t
Yi(t; S)dt

it is possible to state the following lemma relating to observed data:
Lemma 2.1.Assuming independence between individuals, the log-likelihood for the total
population is,

l(M)=
∑
S∈S̄

(dS logmS − eSmS ) (1)

where M= {
mS | S ∈ S̄

}
is the collection of unknown piecewise constant mortality rate param-

eters, dS is the observed number of deaths and eS is the observed exposure to risk in S. This
corresponds to the likelihood function of the Poisson distribution.
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For more on likelihood inference on Lexis diagrams, see Keiding (1991) and the references
therein. Note that Lemma 2.1 and its derivation adjusts for partial information due to right
censoring. The proof is given in Appendix C.

Now, consider the following probability model: For each S, there is an independent Poisson
process with constant intensity mS , running for time eS , during which dS events are observed.
The total log-likelihood of this model is equivalent to equation (1). Thus, by the likelihood princi-
ple, it is enough to consider this simplermodel, where only the number of deaths and the exposure
to risk in each Lexis square need to be observed, not the individual-level data. Also note that the
model implied by (1) has no explicit dependence on the time of birth or death of specific indi-
viduals, since the exposure to risk summarises all this information. Thus, it is enough to have
access to, for example, country-level mortality data. For later use, note that (1) gives the following
maximum likelihood estimator (MLE) ofmS

m̂S = dS
eS

(2)

In section 2.1, a state-space model is introduced, where mS is treated as an unobservable, latent,
stochastic process,MS , and the total number of deaths observed in S is Poisson distributed given
MS =mS and eS . A consequence of this modelling approach is that the latent MS process is
independent of population size. On the other hand, since m̂S depends on the population size,
these estimates will display more variation than that, typically, seen in the randomness of the
latent MS in itself. This effect is something that will be discussed further in section 6 where
a numerical illustration is given.

2.1. Mortality model
In this section, the probabilistic model of mortality that will be used in our analysis will be defined.
First, however, the notation will be introduced:

Number of age categories k
Number of observation years n
Number of factors p
Number of deaths in S DS ∈N0
Exposure to risk in S eS ∈ [0,∞)
Death intensity in S MS ∈R

Factor loadings ϒ ∈R
k×p

Factor in year t Xt ∈R
p

State transition matrix � ∈R
p×p

Transition covariance matrix � ∈R
p×p

Randommean in year t Kt ∈R
p

Mean transition matrix �K ∈R
p×p

Mean transition covariance matrix �K ∈R
p×p

Mean level μ ∈R
p

All vectors are column vectors. Also, Dt ∈N
k
0 denotes the vector of number of deaths in year t,

and similarly for et andmt . The corresponding variables without subscripts are the matrices with
the observation years in the columns and ages in the rows, for example,D∈N

k×n
0 . The parameters

ϒ , �, � and μ will in general be unknown and are to be estimated. Also, ϒa denotes the a:th row
of ϒ . The procedure for estimation is described in section 3.
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We define a Poisson model with linear Gaussian signal. For t ∈ {0, . . . , n},
DS |MS ∼ Po(eSMS )

MSa,t = exp {ϒaXt}
Xt+1 = �Xt +μ+Ut ,Ut ∼ N(0,�)
X0 ∼ N(μ0,�0)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (M1)

This is an HMMwith non-Gaussian observations and linear Gaussian state equation. One can
note that the dependence between ages is introduced by MSa,t . That is, conditioned on MSa,t , all
ages are independent. Further, as argued in the previous section, under rather weak assumptions,
a reasonable model for the number of deaths in a given year for a given age category is indepen-
dent Poisson with intensity proportional to the exposure. The model specifies an exponential link
function. It is certainly possible to choose a different link function and for the method described
below, the exponential link function is not crucial. However, since this link function has been
widely used in mortality studies going back to Lee & Carter (1992) (or even Gompertz (1825))
and also corresponds to the canonical link in terms of exponential families it is a natural choice.
The matrixϒ contains the factor loadings associated with the time-varying factor scores Xt. This
has two purposes: First, it seems intuitive that individuals of similar age at the same time should
experience a similar mortality rate. Therefore, to model MSa,t independently for each a does not
seem reasonable. Second, since we usually are concerned with a large number of ages (say about
100), it is impractical to estimate a mortality rate process for each age independently. Thus, ϒ
also provides a dimension reduction that simplifies the estimation problem and may be thought
of as a non-parametric alternative to basis functions. The model for Xt is a linear Gaussian model,
although non-linear models are certainly also possible to analyse, but they are not considered
in this paper. However, even under the restriction of linear and Gaussian signals, (M1) should
in many cases have enough flexibility so that it is possible to find a specific model that fits well
with data.

For the purpose of the numerical illustration, a slight variation of Model (M1) will also be
considered:

DS |MS ∼ Po(eSMS)
MSa,t = exp {ϒaXt}
Xt+1 = �Xt +Kt +μ+Ut ,Ut ∼ N(0,�)
Kt+1 = �KKt +Vt ,Vt ∼ N(0,�K)
X0 ∼ N(μ0,�0)
K0 ∼ N(μK

0 ,�
K
0 )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(M2)

Clearly (M1) is a special case of (M2). The difference is that in (M2) the drift is a stochastic process,
while in (M1) it is a fixed parameter. Empirical evidence for including a random drift, in the
context of mortality forecasts, is discussed in Pedroza (2006).

To make it easier to follow our numerical illustration, explicit formulas will, when necessary,
be provided also for this model.

3. Model Fitting
The modelling approach taken in the present paper is based on a certain class of non-Gaussian
HMMs, as described in section 2.1. In this section, the fitting of such models using maximum
likelihood and particle filters is discussed. For easy comparison with the literature on HMMs, see,
for example, Barber et al. (2011), we will adopt the standard notation x0:n = (x0, . . . , xn).
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As defined in section 2.1, the following parameters are to be fitted:ϒ ,μ, � and�. Concerning,
μ0 and �0, these will be set to deterministic values. For more on how this may be done, see
the numerical illustration in section 6. Letting ψ = (μ, �,�), the complete data likelihood can
be defined as

pϒ ,ψ (x0:n, d0:n)= v(x0)gϒ (d0 | x0)
n∏

t=1
fψ (xt | xt−1)gϒ (dt | xt) (3)

where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v(x0) = (2π)−
p
2 |�0|− 1

2 exp
{
−1
2
(x0 −μ0)′�−1

0 (x0 −μ0)
}
,

gϒ (dt | xt) =∏k
a=1 exp

{−ea,t exp (ϒaxt)
} (

ea,t exp (ϒaxt)
)da,t

da,t! ,

fψ (xt | xt−1) = (2π)−
p
2 |�|− 1

2 exp
{
−1
2
(xt −�xt−1 −μ)′�−1(xt − �xt−1 −μ)

} (4)

Note that v(x0) is the density of the starting point X0, which we have assumed to be known. Since
x0:t corresponds to unobservable, stochastic, state vectors, the likelihood function that we want to
maximise is the one given by

pϒ ,ψ (d0:n)=
∫

pϒ ,ψ (x0:n, d0:n)dx0:n (5)

which in general is hard to evaluate. The present paper makes use of particle filter techniques
and, in particular, the SAEM algorithm which is based on approximating (5) using simulation,
see Cappé et al. (2006, Ch. 11.1.6). Apart from this, the SAEM procedure is closely related to
the standard EM algorithm and will in this context correspond to iterating between sampling
unknown states and updating of parameter estimates. A more detailed description of the particle
filter techniques and sampling of unknown states is given in sections 3.2–3.4. Provided that the
complete data likelihood will have low-dimensional sufficient statistics, the SAEM method can
be described as a simple updating procedure in terms of these sufficient statistics. This is a nice
feature of the method since it avoids the need to store all simulated trajectories. Therefore, before
describing the SAEM technique in more detail, which is done in section 3.5, the properties of the
complete data likelihood will be discussed.

First, one can note that the complete data likelihood from (3) may be written according to

pϒ ,ψ (x0:n, d0:n)= gϒ (d0:n | x0:n)fψ (x0:n)
where

gϒ (d0:n | x0:n) := gϒ (d0 | x0)
n∏

t=1
gϒ (dt | xt) (6)

fψ (x0:n) := v(x0)
n∏

t=1
fψ (xt | xt−1). (7)

From the definition of gϒ (d0:n | x0:n), it is clear that gϒ (d0:n | x0:n) is a concave function in terms
ofϒ (see Lemma 3.2), but there is no low-dimensional statistic available for estimatingϒ . Hence,
the estimation of ϒ is not suitable for inclusion in the SAEM algorithm. Note, however, that
the role of ϒ may be thought of as a non-parametric basis function used in order to introduce
dependence across ages in Xt and to reduce the dimension of the problem. Thus, excluding
the estimation of ϒ from the SAEM algorithm and estimating ϒ in isolation can be seen as
conducting an EPCA. This is described in more detail in section 3.1. Consequently, the SAEM
algorithm is used to estimate ψ by optimising pϒ̂ ,ψ (d0:n) via the corresponding complete data

https://doi.org/10.1017/S1748499520000275 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499520000275


526 Patrik Andersson and Mathias Lindholm

likelihood pϒ̂ ,ψ (x0:n, d0:n). Moreover, the Gaussian part of pϒ̂ ,ψ (x0:n, d0:n), that is fψ (x0:n), will
produce estimators and low-dimensional statistics that can be written explicitly:

Lemma 3.1. In both Models (M1) and (M2), the joint distribution of x0:n and d0:n defines a curved
exponential family. The complete data maximum likelihood estimate, conditional on x0:n and d0:n,
can therefore be expressed in terms of low-dimensional sufficient statistics.

The proof of Lemma 3.1 is given in Appendix C.2, where explicit formulas for the MLEs can
be found. Recall from the beginning of section 3 that μ0 and �0 are being treated as constants,
hence being outside of the estimation procedure. For more on how to assign values to μ0 and�0,
see section 6.

3.1. Dimension reduction using EPCA – estimatingϒ

As mentioned in sections 2.1 and 3, the matrix ϒ may be thought of as a non-parametric choice
of basis functions, that is, ϒ is a matrix of factor loadings. The approach to estimate ϒ in the
present paper is closely connected to standard principal component analysis (PCA), but adapted
to count data. The method that will be used consists of optimising the Poisson part of the com-
plete data likelihood, that is, gϒ (d0:n | x0:n) from (6). Recall, from section 2.1, that both ϒ and
x0:n are unobservable quantities. One way of handling this is to estimate ϒ and x0:n jointly, given
d0:n, by maximising gϒ (d0:n | x0:n). This is what is referred to as EPCA. There are many varia-
tions of EPCA, see Lu et al. (2016) for a review of some. Here the method introduced in Collins
et al. (2001) is used (there called generalised PCA). One can, however, note the close connection
to the approach taken in Brouhns et al. (2002), where a similar procedure is suggested within a
Poisson GLM. A completely different interpretation of the approach from Collins et al. (2001) is
to view the problem in a Bayesian setting and treat x0:n as having an improper (“flat”) prior, that
is, constant density, which is independent of ϒ :

Lϒ ,x0:n(d0:n)∝ gϒ (d0:n | x0:n)
Regardless of the interpretation of the objective function gϒ (d0:n | x0:n) in the EPCA optimisa-

tion, it is possible to show the following:

Lemma 3.2. The function − log gϒ (d0:n | x0:n) is convex in ϒ given x0:n, and convex in x0:n given
ϒ , but not jointly (globally) convex in both ϒ and x0:n.

The proof of Lemma 3.2 is given in Appendix C. To see the effect of Lemma 3.2, one can note
that for example gϒ/c(d0:n | cx0:n)= gϒ (d0:n | x0:n) for all c ∈R+. Note that the above “marginal”
convexity property corresponds to so-called “bi-convexity”, see Gorski et al. (2007, Definition 1.1,
1.2). Moreover, in Gorski et al. (2007), conditions are given for when minimisation of a bi-convex
function using so-called alternate convex search methods, which is a special case of cyclic coordi-
nate methods, will converge, see (Gorski et al. 2007, Theorem. 4.7, 4.9, Corollary 4.10). For more
on cyclic coordinate methods and convergence, see Bazaraa et al. (2006, Ch. 8.5).

Regarding the practical implementation, denote the fitted values by ϒ̂ and x̂0:t and also note
the non-uniqueness of these. We therefore suggest to do as follows: Let �̂ denote the empirical
p× p-dimensional covariance matrix of x̂0:t , and make a Cholesky factorisation of �̂ expressed
in terms of σ̂ , that is, �̂ = σ̂ σ̂ ′. Then, set ̂̂ϒ := ϒ̂σ̂

and

̂̂x0:t := σ̂−1̂x0:t
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that is,

ϒ̂ x̂0:t = ̂̂ϒ̂̂x0:t
but̂̂x0:t will now have an empirical covariance which is a p× p-dimensional identity matrix. Note
that this procedure is a slight violation of the original EPCA optimisation: The suggested scaling
does not affect the value of the loss function used in the optimisation, but it will affect its deriva-
tive. As a compromise, we propose to refit ϒ̂ , given ̂̂x0:t . The advantage of this procedure is that
it is natural to use the identity matrix as starting guess for � in the numerical optimisation that
follow below.

Before ending this section, note that as opposed to classical PCA, the EPCA components are
not orthogonal. Therefore, when increasing the number of components all the components may
change.

3.2. Particle filtering
Having estimated ϒ , as explained in the previous section, it remains to estimate ψ . Since the
likelihood pψ (d0:n) is not directly computable, approximations are needed. In the present paper,
this will be done using simulation techniques, in particular, using particle filtering and smoothing.
For more detailed accounts of these methods, see, for example, the book by Cappé et al. (2006) or
the survey by Kantas et al. (2015).

In this section, it is assumed that all parameters are known, so that the task is to, for 0≤ t ≤ n,
find the filtering distribution

p(x0:t | d0:t)
and, in the next section, the smoothing distribution

p(x0:t | d0:n)
Note here that the difference between the filtering and smoothing distribution is up to what
time it is conditioned, that is, the smoothing distribution assumes full knowledge of all available
data – including future observations, seen from time t. The filtering distribution is the distribution
of x0:t conditioned on the observations. On the other hand, the smoothing distribution conditions
on all observations up to present time.

To start off, the filtering recursion equation can be written as,

p(x0:t | d0:t)= p(x0:t−1 | d0:t−1)
g(dt | xt)f (xt | xt−1)

p(dt | d0:t−1)
∝ p(x0:t−1 | d0:t−1)g(dt | xt)f (xt | xt−1)

Further, assume that an approximation of p(x0:t−1 | d0:t−1) of the form

p̂(x0:t−1 | d0:t−1)=
r∑

i=1
wi
t−1δXi

0:t−1
(x0:t−1) (8)

wherewi
t−1 are the weights and where δ is the Kronecker-delta function, is available. Moreover, let

q(xt | dt , xt−1) denote an importance density function from which it is possible to draw samples
from. It then follows that

p̂(x0:t | d0:t)∝ g(dt | xt)f (xt | xt−1)
q(xt | dt , xt−1)

q(xt | dt , xt−1)p̂(x0:t−1 | d0:t−1)

As the above approximate recursion is iterated, the weights in (8) will be multiplied. Therefore,
the variance of the method will increase rapidly with t. A partial remedy for this is to include an
additional resampling step. That is, by introducing X0:t−1, denoting the random sample drawn
from p̂(x0:t−1 | d0:t−1), the following approximation is obtained
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Algorithm 1. SISR

• At time t = 0, for all i ∈ {1, . . . , r}:
1. Sample: Xi

0 ∼ q(· | d0).

2. Compute: wi
0 = g(d0 |Xi

0)ν(X
i
0)

q(Xi
0|d0)

.

3. Resample: Xi
0 ∼∑r

i=1 wi
0δXi

0
( · ).

• At time t ≥ 1, for all i ∈ {1, . . . , r}:
1. Sample: Xi

t ∼ q(· | dt , X̄i
t−1).

2. Append: Xi
0:t = (X̄i

0:t−1, Xi
t).

3. Compute: wi
t = g(dt |Xi

t )f (X
i
t |X̄i

t−1)
q(Xi

t |dt ,X̄i
t−1)

.

4. Resample: Xi
0:t ∼

∑r
i=1 wi

tδXi
0:t
( · ).

• Xi
0:t is an approximate sample from p(x0:t | d0:t).

p̂(x0:t−1 | d0:t−1)=
r∑

i=1
δXi

0:t−1
(x0:t−1)

The recursion outlined above corresponds to the so-called sequential importance sampling resam-
pling (SISR) algorithm, which is summarised in Algorithm 1. For more details concerning the
derivation of this algorithm, see Cappé et al. (2006, Ch. 9.6) and Kantas et al. (2015).

Note that as a by-product of using the SISR algorithm, it follows that the likelihood may be
estimated according to

p̂(d0:n)=
n∏

t=0

1
r

r∑
i=1

wi
t (9)

see Kantas et al. (2015).

3.3. Particle smoothing
In section 3.2, the SISR algorithm for obtaining the filtering distribution was described. Here one
can recall that this algorithm was derived from Bayes’ rule as a recursion going forward in time.
Likewise, one could just as well consider similar recursive relationships based on that the time is
reversed. This is what will be used in order to obtain the smoothing distribution,

p(x0:t | d0:n)
First note that an application of Bayes’ rule yields the following relation:

p(x0:n | d0:n)= p(xn | d0:n)p(x0:n−1 | d0:n, xn)= p(xn | d0:n)p(x0:n−1 | d0:n−1, xn)
= p(xn | d0:n)p(xn−1 | d0:n−1, xn)p(x0:n−2 | d0:n−2, xn−1)

= p(xn | d0:n)
n−1∏
k=0

p(xk | d0:k, xk+1)
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Algorithm 2. FFBS

• For t = n:

1. Sample: X̃n ∼∑r
i=1 wi

nδX̄i
n( · ).

• For all t = n− 1, n− 2, . . . , 1:

1. Compute: wi
t|t+1 ∝wi

tf (X̃t+1 | X̄i
t).

2. Sample: X̃t ∼∑r
i=1 wi

t|t+1δXi
t
( · ).

• X̃0:t is an approximate sample from p(x1:t | d1:n).

where

p(xk | d0:k, xk+1)= f (xk+1 | xk)p(xk | d0:k)
p(xk+1 | d0:k) ∝ f (xk+1 | xk)p(xk | d0:k)

Recall from section 3.2 that Algorithm 1 produces an approximation of p(xk | d0:k). Thus, a combi-
nation of these observations suggests Algorithm 2 for sampling from the approximate smoothing
distribution, which is the forward filtering backward sampling (FFBS) algorithm from Godsill
et al. (2004).

3.4. Choosing the importance distribution
Recall that the particle filter algorithms, Algorithms 1 and 2, assume that there is an importance
distribution q(xt | dt , xt−1) from which it is possible to draw random samples. How to choose
such a distribution is what will be discussed next. In order for Algorithms 1 and 2 to have
small variances, the importance distribution should be chosen to be a close approximation of
g(dt | xt)f (xt | xt−1). One way of doing this is as follows: Recall that as a by-product of the EPCA
estimation of ϒ̂ , an estimated state vector x̂0:n is produced. Given the estimated state vector, one
can make a second-order Taylor expansion of log g(dt | xt) in xt around x̂t . For model (M1), this
approach results in the following approximation

log g(dt | xt)≈ log g(dt | x̂t)+ 1
2
(xt − x̂t)′Ht(xt − x̂t)∝ 1

2
(xt − x̂t)′Ht(xt − x̂t) (10)

where “∝” corresponds to removing normalisation constants not depending on xt , and where
Ht :=Ht(dt , x̂t , ϒ̂) denotes the Hessian of log g(dt| · ), evaluated at x̂t , which typically is obtained
as a by-product from the EPCA optimisation. The first-order term is 0 since x̂t is obtained as
the optimal value of the EPCA algorithm. Further, note that from section 3.1, it follows that −Ht
is positive semi-definite. Thus, (10) is the un-normalised log density, with xt as argument, of a
multivariate Gaussian distribution with mean x̂t and covariance (−Ht)−1. Finally, by combining
the above, the approximation of log (g(dt | xt)f (xt | xt−1)) becomes
log

(
g(dt | xt)f (xt | xt−1)

)
≈ log g(dt | x̂t)− 1

2
(xt − x̂t)′(−Ht)(xt − x̂t)− 1

2
(xt − �xt−1 −μ)′�−1(xt − �xt−1 −μ)

∝ −1
2
(
xt −

(−Ht̂xt +�−1(�xt−1 +μ)
))′(−Ht +�−1)(xt − (−Ht̂xt +�−1(�xt−1 +μ)

))
∝ log (q(xt | dt , xt−1))

where q(xt | dt , xt−1) is the density of a multivariate Gaussian distribution with mean −Ht̂xt +
�−1(�xt−1 +μ) and covariance (−Ht +�−1)−1.

Analogously, for Model (M2), the approximation of log
(
g(dt | xt)f (xt , kt | xt−1, kt−1)

)
instead

becomes
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log
(
g(dt | xt)f (xt , kt | xt−1, kt−1)

)
≈ log g(dt | x̂t)− 1

2
(xt − x̂t)′(−Ht)(xt − x̂t)

− 1
2
(xt − �xt−1 − kt−1 −μ)′�−1(xt − �xt−1 − kt−1 −μ)

− 1
2
(kt − �Kkt−1)′(�K)−1(kt − �Kkt−1)

∝ −1
2

((
xt
kt

)
−

(
νt

νKt

))′ (−Ht +�−1 0
0 (�K)−1

)((
xt
kt

)
−

(
νt

νKt

))
∝ log (q(xt , kt | dt , xt−1, kt−1))

where q(xt , kt | dt , xt−1, kt−1) is the density of a multivariate Gaussian distribution withmean ν̃t =
(νt , νKt )′ and covariance �̃ given by

ν̃t =
(−Hx̂t +�−1(�xt−1 + kt−1 +μ

)
�Kkt−1

)

�̃ =
(−Ht +�−1 0

0 (�K)−1

)−1

In practice, to ensure a finite variance, a t-distribution with 3 degrees of freedom with location
vector ν̃t and shape matrix �̃ is used instead.

3.5. Parameter estimation
As described in the beginning of section 3, given that it is possible to obtain approximate samples
from the smoothing distribution p(x0:t | d0:n), the suggested approach to fit the parameter vec-
tor ψ is to use the stochastic approximation expectation maximisation (SAEM) algorithm. The
description of this method outlined below is primarily based on Cappé et al. (2006), where further
references can be found.

To start off, recall the EM-algorithm: At step l:
1. E-step: Q(ψ (l),ψ)= ∫

log pψ (x0:n, d0:n)pψ (l) (x0:n | d0:n)dx0:n.
2. M-step: ψ (l+1) = argmaxψQ(ψ (l),ψ).

Under certain conditions, the sequence ψ (l) is guaranteed to converge to the maximum likeli-
hood estimate ofψ , see Cappé et al. (2006, Ch. 10.5). Here pψ (x0:n, d0:n) is given by (3). Therefore,
disregarding terms not depending on ψ ,

Q(ψ (l),ψ)=
∫ n∑

t=0
log fψ (xt | xt−1)pψ (l) (x0:n | d0:n)dx0:n

Recall that the models in the current paper have multivariate Gaussian densities f (xt | xt−1),
belonging to the exponential family, which makes it possible to write the M-step explicitly
using the ML estimators from Lemma 3.1. That is, the M-step can be written in terms of a
low-dimensional sufficient statistic S(x0:n).

To obtain a better estimate Q̂(ψ (l),ψ), one could draw a large number of replicates of X0:n.
This is often referred to as the Monte Carlo EM algorithm.

An alternative is to combine a stochastic approximation algorithm with the EM algorithm,
which is known as the SAEM algorithm. In practice, this leads to an algorithmwhere the sufficient
statistic is updated in each step by taking a weighted average of the current value and the sufficient
statistic obtained by sampling from the smoothing distribution given the current estimates. The
SAEM algorithm is described in Algorithm 3.
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Algorithm 3. SAEM

• Initialise ψ =ψ (0), and Ŝ0 = 0. Do for l = 1, 2, . . . , L:

1. Sample: Xl,i
0:n ∼ pψ(l−1) (· | d0:n), i= 1, 2, . . . ,m.

2. Compute: Ŝl = Ŝl−1 + cl
[ 1
r

∑r
i=1 S(X

l,i
0:n)− Ŝl−1

]
.

3. New estimate: Using Ŝl, calculate ψ l according to Lemma 3.1.

• ψ (L) approximates the MLE of ψ .

Here cl ≥ 0,
∑

l cl = ∞ and
∑

l c2l <∞. Under certain assumptions, ψ (l) is guaranteed to
almost surely converge to a stationary point of the log likelihood, as l → ∞, see Cappé et al. (2006,
Ch. 11.1.6) for details.

For easy reference, we summarise the proposed model fitting strategy in section A.

4. Model Validation
Recall from Lemma 2.1 that one may think of the data as coming from an experiment where a
Poisson process is observed for a fixed time, the exposure to risk, during which d deaths occur.
This is to be used when fitting the model and may also be used when evaluating the model.
Therefore, when validating our model, the exposure to risk will be thought of as a fixed quan-
tity, corresponding to a sample size. Then the observed d will be compared to the predictive
distribution of the number of deaths in a Lexis square, denoted by P. In this setting, it is natu-
ral to consider splitting the data into a training and validation part, where parameters and state
vectors are estimated based on the training data, and the model validation is based on the out-of-
sample performance in the validation part of the data. That is, the out-of-sample performance is
evaluated, given that the exposure to risk is assumed to be known.

On the other hand, when forecasting future values, the exposure to risk is yet to be observed,
the situation is different and this problem is discussed in section 5.

In the present paper, the predictive distribution will be evaluated using (proper) scoring rules,
see Gneiting & Raftery (2007); Czado et al. (2009). Loosely speaking, a scoring rule is a function
that assigns a numerical value to the quality of a candidate predictive distribution, P, with respect
to observed data, d. A scoring rule is said to be “proper” if there exists a unique optimal value,
and it is “strictly proper” if the optimal value is attained for a unique P. It can be noted that many
of the classical loss functions used for model evaluation are scoring rules. One such which will be
used in the present paper is the absolute error

AE(P, d) := |d −μ|
where μ is a point prediction based on P. Observe that this is a proper, but not strictly proper,
scoring rule since any predictive distribution with the same point forecast, for example, median,
will give the same absolute error. Note that AE is a negatively oriented scoring rule, that is, the aim
is to minimise AE. A more informative measure, which is a proper, negatively oriented, scoring
rule, is the interval score (IS) defined according to

ISγ (P, d) := (u− l)+ 2
γ
(l − d)1{d<l} + 2

γ
(d − u)1{d>u}

where l and u denote lower and upper 100(1− γ )% percentiles, respectively, of the distribution
P, see Gneiting & Raftery (2007). The IS measure is a generalisation of the standard probability
coverage measure. In practice, the average of these losses will be analysed, corresponding to the
“Mean AE” (MAE) and “Mean IS” (MIS), and it is, hence, clear that reducing MAE and MIS
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still corresponds to improving model performance compared with observed data. Moreover, both
measures may be used for model selection purposes based on both in-sample (training) and out-
of-sample (validation) performance.

Furthermore, recall that the parameters in model (M1) (and model (M2)) are estimated by
maximising the log likelihood, which is equivalent to maximising the logarithmic score (see
Gneiting & Raftery 2007; Czado et al. 2009)

logs(P, d) := log P(d)

where P(d) is the probability mass of the observation d in a predictive distribution, which is as
proper scoring rule. That is, maximising the likelihood is equivalent to maximising

l(d0:n)=
∑
S

logs(PS , dS )

which is a proper scoring rule. Here one can note that compared with (M)AE and (M)IS, where the
optimal value is 0, the logarithmic score only tells us that a higher value is better. Still, scaling and
translation of a proper scoring rule using constants is still a proper rule. One choice of scaling and
translation of the logarithmic score suggested in Cameron & Windmeijer (1996) which produces
an R-squared like measure is the following:

R2
Dev :=

∑
S logs(PS , dS )−∑

S logs(PS , dS )∑
S logs(̂PS , dS )−∑

S logs(PS , dS )
(11)

where “Dev” refers to that both the numerator and the denominator are deviance residuals.
Further, P̄ denotes the likelihood in a model with only a constant intercept. In the present case,
this will be taken as the model with one constant death rate per age. The likelihood P̂ is the satu-
ratedmodel, that is, where the number of parameters are equal to the number of observations. The
sums are taken over all the observed lexis squares. Note that it is clear that R2

Dev ≤ 1, but unlike a
standard R2 it is not certain that R2

Dev ≥ 0, since this will depend on whether P̄ is a sub-model of
P or not.

Moreover, R2
Dev is possible to calculate both on the training and the validation part of the data,

by calculating the model likelihood, PS , according to equation (9). From the calculation of PS
using (9) it follows that this can only be done easily for the total likelihood. That is, it is not
possible to calculate logs or R2

Dev for a particular age or calendar year – something which often
is of interest when assessing predictive model performance. In order to, at least partly, overcome
this shortcoming, the following scoring rule is suggested

logs∗(P, d) := EX|D[ log P(X, d)]

which is equivalent to the “E”-step of the EM algorithm, described in section 3.5. The core of
the EM algorithm is that by improving logs∗(P, d) it follows that logs is improved as well, see
Dempster et al. (1977) or (Cappé et al. 2006, Ch. 10.1.2). Moreover, logs∗ is easy to calculate
for a single age or calendar year, since it only amounts to drawing approximate samples from
p(x0:t | d0:n), where t ≤ n′, with n′ being the last observed year in the validation data and n being
the last observed year in the training data, that is, n≤ n′. Here it is important to note that the
influence of d0:n on xt , n< t ≤ n′ is via the evolution of xn′+1:t based on the state vector x0:n′ –
an evolution entirely governed by the dynamics of the latent Gaussian Xt process. That is, given
the observed exposure to risk, the Poisson variation is not time dependent. Furthermore, by using
logs∗ it is natural to introduce

R2,∗
Dev :=

∑
S logs∗(PS , dS )−∑

S logs(PS , dS )∑
S logs(̂PS , dS )−∑

S logs(PS , dS )
(12)
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which follows by noting that logs∗( · )= logs( · ) unless P is used, and again note that R2,∗
Dev ≤ 1,

but R2,∗
Dev may be smaller than 0, due to the same reasons as for R2

Dev.
Another method of validating the model is use a lookback window on which the estimates are

based, comparing forecasts with observations, moving the window forward and repeating. The
methods discussed in this section could then be used, or as in Dowd et al. (2010) by verifying
that the residuals are consistent with the model assumptions. However, since the current model
fitting approach is computationally expensive this latter approach is not practically feasible. Still,
in section 6, apart from using the above measures, both in-sample and out-sample performances
are illustrated graphically with respect to the main quantities of interest.

5. Forecasting
The main goal of the present paper is to forecast mortality. In this section, a number of complica-
tions related to this are discussed. The specifics of the forecast depend on what is assumed to be
known and what one wants to forecast. For example:
1. The perhaps most basic quantity of interest when forecasting, regardless of the size of the

population, is the mean or (distribution) ofMSa,t .
2. When making forecasts for sub-populations, for example, individuals in an insurance portfo-

lio, the actual number of deaths is of interest and not only the mortality rate. In this situation,
the randomness from the Poisson process should be taken into account. Here, typically,
individual-level information is available.

3. When forecasting mortality in larger populations, the actual number of deaths may also be
of interest, for example, when making country-level demographic forecasts. In this situa-
tion, however, information on individual level may not be available or may be impractical
to incorporate.

Having fitted the model and obtained the filtering distribution of the state variables at present
time, forecasting the state variables is simple. One may either use Monte Carlo simulation to
iterate the recursion equation for the state variables, starting at the particle approximation of
the present time filtering distribution, to obtain approximations of the distribution at a future
time. Or, since the state variables are Gaussian, conditioned on each particle, the forecast will also
be Gaussian for each particle, with mean and covariance recursively calculable. In this way, it is
possible to obtain the predictive distribution of futureMSa,t , which covers Case 1 above.

Considering Case 2, assume that a forecast ofMSa,t =mSa,t has been produced, and the corre-
sponding forecasted death count will be conditioned on this value. Further, recall that the current
modelling approach is motivated by the structure of a Lexis diagram. This means that a single
individual of age a≥ 1 at year t, can experience one of the following three events during year t:

(a) With probability paa,t, die while being of age a.
(b) With probability pba,t, live until becoming of age a+ 1, but die before the end of year t.
(c) With probability pca,t, live throughout the entire year t.

Concerning the age a= 0, it is clear that pa0,t = 1− pc0,t . Further, note that an individual i, born
at calendar time bi, which is a years old at the start of year t, was born in calendar year yi =
�bi� = t − (a+ 1). Thus, the time point during year yi at which individual i was born is given
by ui = bi − yi = bi − t + (a+ 1) ∈ [0, 1]. That is, in order to specify paa,t , pba,t and pca,t explicitly, it
suffices to know a ∈N, t ∈N, u ∈ [0, 1], andmSa,t :

Lemma 5.1. The probabilities for a single individual born at time b= t − (a+ 1)+ u, calculated
under the assumptions underlying Lemma 2.1, conditional on mSa,t and u, are given by
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⎧⎪⎪⎨⎪⎪⎩
paa,t(mS , u) = 1− e−umSa,t

pba,t(mS , u) = e−umSa,t (1− e−(1−u)mSa+1,t )

pca,t(mS , u) = e−umSa,t e−(1−u)mSa+1,t

for a≥ 1. For a= 0 it holds that

pa0,t(mS , u)= 1− e−umS0,t

and pc0,t(mS , u)= 1− pa0,t(mS , u).

The proof is a simple application of the probabilities used in the derivation of Lemma 2.1.
Therefore, given Lemma 5.1, it follows that an individual which is a years old at the start of

calendar year t that experiences event (a) will contribute to the death count of a-year-olds. But if
the same individual instead experiences event (b), will contribute to the death count of a+ 1-year-
olds. Thus, if Da,t denotes the total number of deaths in age group a during year t it follows that

Da,t |mS ∼
na,t∑
i=1

Be(paa,t(mS , ui))+
na−1,t∑
i=1

Be(pba−1,t(mS , ui)) (13)

where Be(p) denotes independent Bernoulli distributed random variables with probability of
success p and na,t is the number of a-year-old individuals alive at January 1st of year t. Note that
this forecast is only applicable for one year ahead forecasts. After that, the number of individuals
alive becomes random. But it is straightforward to implement multi-year forecasts either by
doing bookkeeping of which individual is alive after each forecasted year, or by forecasting each
individual’s path in the Lexis diagram separately.

In Case 3, we do not assume complete information on each individual, and we are also only
interested in the aggregate number of deaths each year. However, one needs to make assumptions
on the distribution of time of birth of the individuals. A simplification commonly used in this
situation is to assume that all individuals are born midyear, that is, ui ≡ 0.5 for all individuals i.
Another possible simplification is to assume that individuals are born uniformly during each year,
see Wilmoth et al. (2017, Sect. 2). These assumptions can of course be questioned, but are in many
situations satisfactory approximations. By assuming that the stochastic birth time during a year,
U , is uniform, that is, U ∼U(0, 1), it follows that paa,t and pba,t from Lemma 5.1 simplifies to⎧⎨⎩ p̃aa,t(mS ) = E[paa,t(mS ,U) |mS ]= 1− 1

mSa,t

(
1− e−mSa,t

)
p̃ba,t(mS ) = E[pba,t(mS ,U) |mS ]= 1

mSa,t

(
1− e−mSa,t

)− 1
mSa,t−mSa+1,t

(
e−mSa+1,t − e−mSa,t

)
(14)

where the expectation is taken over U , which is assumed to be independent ofmS
Note that formS � 1 it follows that

p̃aa,t(mS )≈ paa,t(mS , 1/2)≈ 1
2
mSa,t

p̃ba,t(mS )≈ pba,t(mS , 1/2)≈ 1
2
mSa+1,t

by using a Taylor expansion. Both approximations are therefore approximately equal.
Further, another observation is that, by plugging in the expressions for p̃aa,t and p̃ba,t into relation

(14), it follows that

Da,t |mS ∼ Bin(na,t , p̃aa,t(mS ))+ Bin(na−1,t , p̃ba−1,t(mS )) (15)
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For each simulated trajectory ofMS values, it is possible to forecast death counts, given the num-
ber of individuals alive. Note that the structure of (15) only relies on that all birth times are i.i.d.,
but not necessarily uniformly distributed.

We end this section by commenting on how to simulate in order to gain information on expo-
sure to risk or when one wants to use analytically intractable assumptions on birth times. In these
situations, one may use the following simulation procedure to simulate (a), (b) and (c):
(0) If the individual birth time of individual i is unknown, initialise individual i by drawing a

random birth time Bi from the distribution of birth times. The distribution of birth times
could be estimated from data or assumed to be, for example, uniform over the year.

(1) Draw a Ta,t ∼ Exp(mSa,t )-distributed random variable.
(a) If Ta,t ≤ Bi, individual i died being of age a and contributed with Ta,t to the exposure to

risk Ea,t.
(b) If Ta,t > Bi, individual i has survived age a during year t and contributes with Bi to the

exposure to risk Ea,t.
(2) Draw a Ta+1,t ∼ Exp(mSa+1,t )-distributed random variable.

(b) If Ta+1,t ≤ 1− Bi, individual i died being of age a+ 1 and contributed with Ta+1,t to the
exposure to risk Ea+1,t.

(c) If Ta+1,t > 1− Bi, individual i has survived age a+ 1 during year t and contributes with
1− Bi to the exposure to risk Ea+1,t.

6. Numerical Illustration
The purpose of this section is to illustrate how the models and methods introduced in the present
paper can be applied.We will focus our attention onmodel (M2), which explicitly allows for a ran-
dom drift term, a situation discussed in Pedroza (2006). The model is calibrated to Swedish and
US mortality data, collected from the Human Mortality Database (HMD), see Human Mortality
Database (2018). The reason for focusing on Sweden is due to its relatively small population
size, which ought to make observations noisier and, hence, parameter estimation and prediction
harder. The opposite argument apply to the US. Moreover, Swedish data are available from 1751,
although with partly questionable quality until the end of the 1800s, whereas US data only are
easily available from about 1935. In order to be able to use as much data as possible for out-of-
sample evaluation, the initial focus for Swedish data will be to use the time period 1930–1960 for
estimation and 1961–2017 for validation. For US data, we have avoided the second world war and
primarily use data from the years 1950 to 1980 for estimation and use the period 1981–2017 for
validation.

The parameter estimation is done as described in the summarised algorithm of section A, using
the following configuration:
1. Run Algorithm 4, with m= 50 particles L= 50 iterations with ci := 1, i= 1, . . . , 50. As start-

ing values, we set� to be the identity matrix,�0 as a diagonal matrix with the value 100 along
the diagonal. All other matrices are set as the identity matrix, and all mean vector are set to 0.

2. Use the estimated parameters from Step 1 as starting values for a second run using an m of
350 – 500 particles for L= 100 iterations, using ci := i−0.6, i= 1, . . . , 100, where 350 particles
were used for 1–3 EPCA components and 500 particles for four and five EPCA components.

The idea with using Step 1 is to hopefully avoid getting stuck close to possibly poor starting
values.

Concerning the data to be used, there are known differences between female and male
mortality, and our initial focus will be on Swedish males.

The convergence of ψ (i) in the SAEM algorithm, Algorithm 3, is illustrated in Figure 2 for
the situation with three EPCA components fitted on Swedish male data from 1930 to 1960. From
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Figure 2. Trace of the estimate of ψ l from the SAEM algorithm, Algorithm 3, fitted to Swedish male data from 1930 to 1960.
Each line corresponds to a component of the respective vector/matrix of parameters.

Figure 2, there are no obvious signs of poor convergence of the SAEM algorithm, and we continue
the analysis using the estimated ψ .

In Figure 3(a)–(c), the first three EPCA components are shown for Swedish males when the
model has been fitted on data from 1930 to 1960. As seen from the figures, the behaviour of the
EPCA components becomes increasingly irregular where the first component is the smoothest.
This observed increase in irregularity is the reason for using more particles in the analyses of
models containing more EPCA components.

In Figure 3(d)–(f), the in-sample validation results are displayed. The main conclusion here
is that the model does perform better in-sample with increasing number of EPCA components.
Also, the main improvement is seen when going from one to two components, while two to five
components give similar results. In particular, in Figure 3(e) and (f), it is seen that both MAE and
MIS favour increasing the number of EPCA components to be used for all ages. Note that the
increase in MAE and MIS with increasing age is not surprising, since the mortality rate increases
with age. This suggests that one instead could consider analysing MAE and MIS scaled with for
example the expected or observed number of deaths. When turning to R2,∗

Dev from (12), again,
the measure is improved when increasing the number of EPCA components, see Figure 3(d). It
is, however, clear that according to R2,∗

Dev, the performance is poorer for ages in the interval 45–
65. This indicates that the performance of model (M2) does not outperform the constant mean
mortality model, P̄ from (12), for these ages during the years 1930–1960. On the other hand, recall
that R2,∗

Dev is an approximation of R2
Dev from (11), introduced in order to be able to assess model

performance within for example specific ages, whereas R2
Dev only is possible to calculate over all

ages and time periods in total. In Table 1, R2
Dev is calculated for Swedish male data from 1930 to

1960, where it is seen that the in-sample performance is very good seen as a whole, and increases
when increasing the number of EPCA components being used, as expected.
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Table 1. Calculated values of R2Dev for model (M2) fitted to Swedish male data for the years 1930–1960

No. EPCA 1 2 3 4 5

R2Dev 0.9817 0.9953 0.9960 0.9964 0.9965
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Figure 3. Fig. 3(a)–(c): First three EPCA components, Swedishmales, 1930–1960. In Fig. 3(d)–(f), the number of EPCA compo-
nents, 1–5, are indicated by lines that are solid/brown, short dashed/dark green, dotted/light green, dash-dotted/dark brown
and long dashed/light brown, respectively. Fig. 3(d)–(f) shows, from left to right, R2,∗Dev, MAE andMIS, calculated in-sample for
the period 1930–1960 for Swedish males. Fig. 3(g): In-sample variance produced by the model for simulated mortality rates,
Swedish males, age 40, three EPCA components; total variance (solid line), population variance (dashed line). Fig. 3(h): 95%
yearly confidence levels for the simulated mortality rates M∗ for Swedish males using three EPCA components (grey area),
median (solid line), observedmortality rates, m̂, (circles). Fig. 3(i): Same as in Fig. 3(h), but for the simulated latentM-process.

The measures MAE, MIS and R2,∗
Dev are all calculated using the model (M2), which is a model

for death counts, whilst many practitioners are more used to considering models for mortality
rates. Thus, from now on our focus will be on the latent M-process and the simulated mortality
rate processM∗ obtained according to

M∗
S = D∗

S
eS

(16)
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where D∗
S corresponds to the simulated death counts using m̂S from (2). It is possible to compare

M∗
S from (16) with the observed crude estimates m̂S from (2), that is,

m̂S = dS
eS

and in particular, it is possible to decompose the observed variation into a population (“Poisson”)
variation and variation stemming from the latentM-process (“signal”):

Var(M∗
S )= E[Var(M∗

S |MS )]︸ ︷︷ ︸
=“Poisson”

+Var(E[M∗
S |MS])︸ ︷︷ ︸

=“signal”

In Figure 3(g), this is illustrated for Swedish males of age 40, from which it is seen that essen-
tially all variation seen inM∗

S stems from the population part of the underlying process. Another
way of illustrating this is given in Figure 3(h) and (i) where the m̂S is compared with M∗

S and
MS , respectively. From these figures, it is evident that the variation in the M-process does not
capture the variation seen in the m̂:s – which is reasonable since the M-process is independent
of population size. Moreover, this suggests that Lee–Carter type models which do not explicitly
take the “Poisson” variation into consideration can lead to a misspecified latent mortality rate
process. This is discussed further in Appendix B where numerical examples are given based on
both the Lee–Carter model from Lee & Carter (1992) and the log-bilinear model from Brouhns
et al. (2002) that have been implemented using publicly available R packages. The example from
Appendix B clearly illustrates that using model (M2) together with the suggested estimation tech-
niques may lead to a substantial reduction in the variation of the latentmortality rate process. This
is particularly important when it comes to forecasting, since the predicted Gaussian variation will
grow as a function of the number of time steps being forecasted. Therefore, a misattribution of
variance will affect the forecast even if the purpose is to forecast death counts. Figure 4(a)–(c)
shows the out-of-sample performance in the period 1961–2016. The main conclusion here is that
MAE, MIS and R2,∗

Dev favour fewer EPCA components, compared to in-sample, where two or three
EPCA components seem to be the best compromise for all ages. One can, however, note that
R2,∗
Dev indicates a very poor out-of-sample performance for ages 40–80. For easier comparison with

the corresponding in-sample performance, see Figure 4(d), where R2,∗
Dev is plotted for model (M2)

using three EPCA components. Upon closer inspection, the lack of performance is due to a drastic
decline in mortality occurring around the year 1980 in the mentioned age span, see Figure 4(g)
for the model performance of 80-year-old Swedish males when using three EPCA components.
Thus, in light of Figure 4(g), the poor model performance is to be expected. Further, Figure 4(h)
shows the model performance when the model with three EPCA components has been fitted to
data from 1930 to 1990, hence including the discussed mortality decline for ages 40–80. Even if
the out-of-sample performance still is poor, one can note that the model behaves as expected: The
first ten years of the sharp decline in the mortality rates for ages 40 to 80 is now included in the
data being used for fitting, and the model reacts to these values as if they are part of a temporary
observed anomaly, since the predictions strive to return to an evolution similar to the historical
trend. Moreover, by inspecting R2,∗

Dev in Figure 4(d), it is also seen that by including parts of the
mortality decline in the data used for fitting, the overall in-sample performance is improved, but
at a cost of poorer predictive performance for a wider span of ages. In Figure 4(i), the model with
three EPCA components has been fitted to the period 1970 to 2000, and it is now clear that the
model has been able to adapt to the change in the observed mortality patterns. Still, the in-sample
performance is somewhat poorer in general, but descent as a whole, see Figure 4(d). Concerning
the out-of-sample R2,∗

Dev from Figure 4(d), the behaviour is highly erratic, but here one shall keep
in mind that each R2,∗

Dev value is only calculated as an average of 16 years. In Figure 5(a)–(c), the
simulated total, in-sample and out-of-sample trajectories for Swedish males of age 10, 40 and 80
are shown, using three EPCA components, fitted to the years 1970 to 2000, and it is seen that the
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Figure 4. Fig. 4(a)–(c) shows the out-of-sample analog of Fig. 3(d)–(f), where all parameters have been estimated based on
Swedish male data from 1930 to 1960, and the predictions are made for the period 1961 to 2016. Fig. 4(d)–(f): R2,∗Dev where
solid lines correspond to in-sample performance and dashed lines correspond to out-of-sample performance when using
three EPCA components –models fitted using data from 1930 to 1960, 1930 to 1990 and 1970 to 2000, respectively. Fig. 4(g)–
(i): 95% yearly confidence/prediction intervals (grey area) for simulated mortality rates M∗, Swedish males, age 80, three
EPCA components, median (solid/dashed line), observed mortality rates, m̂, (circles) – models fitted using data from 1930 to
1960, 1930 to 1990 and 1970 to 2000, respectively.

overall performance is satisfactory. One can also note that R2
Dev from (11) increases, compared

to using data from 1930 to 1960, when fitting the models to data from 1930 to 1990 and 1970 to
2000 – attaining the highest value for the latter time period.

Continuing in Figure 5(d)–(f), the model performance for Swedish females of ages 10, 40 and
80 is illustrated for model (M2) with two EPCA components fitted on data from 1950 to 1980, and
Figure 5(g)–(i) shows the same situation for US females when using model (M2) with three EPCA
components. From the figures for the Swedish females, it is seen that there is a similar decline
in mortality for age 40, but less pronounced than the one seen in Figure 4(g) for 80-year-old
Swedish male. Also note that no sudden drop in mortality is seen for 80-year-old Swedish female.
Concerning the US females the mortality pattern is more irregular, and there are signs of a change
in trend around 1990 where the mortality seems to increase, which is something not captured by
the model. Moreover, when inspecting 80-year-old US female, the in-sample variation seems to
be too small.
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Figure 5. In all figures, 95% confidence/prediction intervals for the simulated centralisedmortality rates (grey area), median
(solid/dashed line) and observed centralised mortality rates (circles). In all figures, from left to right, age 10, age 40 and age
80, respectively. Fig. 5(a)–(c): Swedish males, three EPCA components, model fitted using data from 1970 to 2000. Fig. 5(d)–
(f): Swedish females, five EPCA components, model fitted using data from 1950 to 1980. Fig. 5(g)–(i): US females, three EPCA
components, model fitted using data from 1950 to 1980.

To summarise the above numerical illustration, it is seen the importance of using predictive
measures for model selection, as well as the importance of assessing model performance based
on death counts or scalings thereof (i.e. m̂ versus M∗). We have also described in detail how
model (M2) may be used in practice and shown that the model is able to capture most of the
relevant dynamics observed in the analysed historical data. Moreover, we have also seen that
the model behaves as expected when data used for fitting contains drastic changes in mortal-
ity trends. Another important observation is that the analyses imply that by not explicitly (and
correctly) accounting for the Poisson part of the variation, the variation attributed to the latent
mortality rate process may become substantially misspecified. This may, hence, be a problem for
Lee–Carter-type models.
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7. Conclusions
In the present paper, it has been argued for using a Poisson state-space model for mortality
forecasting. The Poisson part of the model arises naturally from the mortality dynamics of a con-
tinuous time Lexis diagram. The unobservable state process corresponding to a mortality rate
process is modelled as a multivariate Gaussian process inspired by the Lee–Carter model and its
extensions, see Booth & Tickle (2008) and Haberman & Renshaw (2011). The suggested model
class provides models for death counts, as opposed to, for example, Lee–Carter like models, which
are models for mortality rates. Furthermore, most Lee–Carter like models are fitted in a two-
step procedure, where first raw mortality estimates are obtained according to, for example (2),
and then, in a second step, a stochastic process is fitted to the raw mortality rates. By using the
suggested Poisson state-space models, estimation may be done coherently in a single step using
particle filter techniques and the SAEM algorithm. Moreover, since all model parameters are esti-
mated using maximum likelihood, it is argued that it is natural to use versions of logarithmic
scores for model performance assessment. In particular, an R2-like measure is introduced, which
is closely connected to the “E”-step in the SAEM algorithm. This measure is possible to calculate
both in-sample and out-of-sample for specific ages and time periods and is a proper scoring rule.

A large number of numerical illustration is also provided, where the necessary steps to fit the
model and make forecasts have been discussed. In this numerical illustration, it was also shown
that by using the Poisson state-space model for death counts it is possible to decompose the
observed variability in terms of “population” (or Poisson) variation and “signal” (or mortality
rate) variation. For the Swedish data, it is clear that the Poisson part of the variation is dominat-
ing in-sample. Further, the numerical examples illustrate that not explicitly accounting for these
separate sources of variation, as in in the case of the Lee–Carter model, may lead to a misspecified
latent mortality rate process, which will affect the forecasting ability of the model negatively.
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Appendix A. Summary of Model Fitting

Algorithm A1. Summary

• Use EPCA to reduce the dimension. This gives the estimate ϒ̂ .

• Initialize ψ =ψ (0) , and Ŝ0 = 0. Do for l = 1, 2, . . . , L:

1. Use Algorithm 1 with q(xt | dt , xt−1) being the t-distribution with location and shape as in
section 3.4. This gives samples Xi

0:t from the filtering distribution.

2. Use Xi
0:t as inputs to Algorithm 2. This gives samples X̃0:t from the smoothing distribution.

3. Calculate the sufficient statistics from X̃0:t and update Ŝ and ψ as in Algorithm 3.

• ψL approximates the MLE of ψ .
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Figure B1. Columns: From left to right, model (M2) with three EPCA components, the Lee–Carter model, and the Poisson log
bilinear model from Brouhns et al. (2002). Rows: First row shows the latent mortality process, and the second row shows
the simulatedmortality rates according to (16) when assuming that death counts are (conditionally) Poisson distributed. All
figures show Swedish male mortality for the age 40, and all models have been fitted based on the ages 0–90 and the time
period 1930–1960. The area in grey corresponds to 95% confidence regions, solid lines correspond to the median and the
actual observations are indicated by circles.

Appendix B. Attribution of Mortality Rate Variation – A Numerical Illustration
In this section two examples of other mortality rate models will be considered and their ability
to capture the variation seen in actual mortality rates given by the point estimates from (2) will
be illustrated. For the first model, the classical Lee–Carter model from Lee & Carter (1992), the
analysis is based on the R package Demography, using the lca model class. The second model
is the Poisson log-bilinear model from Brouhns et al. (2002), and the analysis is based on the R
package StMoMo using the lcmodel class. Note that it is clear that these models will have different
numbers of parameters, and, hence, different ability to capture non-linear behavior. In order to
account for this, all models have been estimated using a period and age where all models fit data
well. The chosen data is Swedish male data, ages 0-90, during the years 1930–1960. The exam-
ple will be restricted to in-sample performance, due to that we are here primarily interested in
comparing the attribution of variance between the different models and not the actual predictive
performance. In order to obtain in-sample variability for the Lee–Carter model first the lca model
class was fitted to data, and then, in a second step, the Arima package was used. An example of the
in-sample performance is given in Figure B1 for the age 40. Perhaps not surprisingly, by compar-
ing the latent mortality rate process from the Lee–Carter model, see Figure B1(b), which has no
explicit Poisson part, with the latent mortality rate process frommodel (M2), see Figure B1(a), the
Lee–Carter models shows a clear tendency to attribute too much variation to the latent mortality
rate process. Note that the Lee–Carter model needs one observation for initiation of the random
walk process with drift governing the calendar time dynamics of the model. This explains why the
first observation in Figure A1(b) lacks a confidence interval. Turning to the Poisson log-bilinear
model from Brouhns et al. (2002), this model has an explicit Poisson part, and may be seen as
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an approximation of model (M2). From Figure A1(f) it is clear that this model attributes much
less variation to the latent mortality rate process than the Lee–Carter model, but still consider-
ably more than seen in the latent Gaussian process from model (M2). Again, note that the first
observation lacks a confidence interval due to the same reason as for the Lee–Carter model.

Furthermore, an illustration of simulated mortality rates following (16) are given in
Figure B1(d)–(f). Again, it is seen that the standard Lee–Carter model’s performance is the worst,
but the Poisson log-bilinear model is now closer to model (M2). Still, even when it comes to fore-
casts of death counts, the Gaussian part of the model will after only a few predicted future time
points dominate the variation. Consequently, when making predictions on moderate to long time
horizons it is particularly important to make as correct attribution of variation as possible.

Appendix C. Proofs and Mathematical Motivations
C.1. Proof of Lemma 2.1
Following standard theory of counting processes with multiplicative intensity processes, see
Andersen et al. (1993); Aalen et al. (2008): Let t̃i denote the last time point when individual i was
observed to be alive, bi ≤ t̃i ≤ qi, let δi = 1 if individual i died at t̃i and 0 otherwise. If we further
assume that all individuals are independent, we get that the log-likelihood function is given by

l(m)∝
n∑
i=1

δi logm(ai(̃ti), t̃i)−
n∑

i=1

∫ t̃i

t
λi(t)dt

=
n∑

i=1
δi logm(̃ti − bi, t̃i)−

n∑
i=1

∫ t̃i

t
m(t − bi, t)Yi(t)dt

Thus, if we consider the situation with constant hazard rates on yearly Lexis squares, that is,M={
mS | S ∈ S̄

}
, it follows that

l(M)∝
n∑
i=1

∑
S∈S̄

δi1{(ai ,̃ti)∈S} logmS −
n∑
i=1

∑
S∈S̄

mS
∫ t̃i

t
Yi(t; S)dt

=
∑
S∈S̄

(dS logmS − eSmS )

which is exactly the result from Lemma 2.1.

C.2. Proof of Lemma 3.1
These are standard results for VAR processes, see Hamilton (1994), which are included for the
sake of completeness. This section is split into two parts, one for model (M1) and one for model
(M2).

Here we use that for matrices X and Y of suitable dimensions,

∂

∂X
log | det X| = (X′)−1

∂

∂X
tr (XY)= Y ′
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Model (M1)
By combining (7) and (4),

fψ (x0:n)= v(x0)
n∏

t=1
fψ (xt | xt−1)

∝ |�|−n
2 exp

{
− 1

2

n∑
t=1

(xt − �xt−1 −μ)′�−1(xt − �xt−1 −μ)

}

That it is an exponential family is clear since it is multivariate normal and that it is curved fol-
lows by finding the natural parameters and sufficient statistics. Since the quadratic form in the
exponential function is a scalar and

tr (AB)= tr (BA)= tr (A′B)= vec (A) · vec (B)

it follows that

− 1
2

n∑
t=1

(xt − �xt−1 −μ)′�−1(xt − �xt−1 −μ)

= vec

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�−1

−2�−1�

�′�−1�

−2μ′�−1

μ′�−1�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
· vec

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑n
t=1 xtx′

t∑n
t=1 xt−1x′

t∑n
t=1 xt−1x′

t−1∑n
t=1 xt∑n
t=1 xt−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ nμ′�−1μ

We see that the dimension of the natural parameter is larger than that ofψ , and so the exponential
family is curved. Let us denote the sufficient statistic as

S(x0:n)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1(x1:n)

S2(x0:n)

S3(x0:n−1)

S4(x1:n)

S5(x0:n−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑n
t=1 xtx′

t∑n
t=1 xt−1x′

t∑n
t=1 xt−1x′

t−1∑n
t=1 xt∑n
t=1 xt−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Towards finding the ML estimators, define

ε̂t := xt −
[
μ̂ �̂

] [ 1
xt−1

]
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The log-likelihood as a function of � and μ is, ignoring constants, given by

−2l(�, μ)=
n∑

t=1

(
xt −

[
μ �

] [ 1
xt−1

])′
�−1

(
xt −

[
μ �

] [ 1
xt−1

])
= tr

(
�−1

n∑
t=1

ε̂t̂ε
′
t

)

+ tr

(
�−1

n∑
t=1

([
μ̂−μ �̂ − �

] [ 1
xt−1

])([
μ̂−μ �̂ − �

] [ 1
xt−1

])′)

+ 2 tr

(
�−1

n∑
t=1

ε̂t
[
1 x′

t−1
] [μ̂′ −μ′

�̂′ − �′

])

If �̂ is such that the third term above is 0, it is clear that �= �̂ is a minimum. Therefore, the
condition for a minimum is that

n∑
t=1

ε̂t
[
1 x′

t−1
]=

n∑
t=1

(
xt −

[
μ̂ �̂

] [ 1
xt−1

]) [
1 x′

t−1
]

= [
S4 S′

2
]− [

μ̂ �̂
] [ n S′

5

S5 S3

]
= 0

with solution

[
μ̂ �̂

]= [
S4 S′

2
] [ n S′

5

S5 S3

]−1

Consequently, the log-likelihood as a function of�−1, evaluated at �̂ and μ̂, is given by

−2l(�−1; �̂, μ̂)= −n log |�−1 | + tr�−1
n∑

t=1
ε̂t̂ε

′
t

which yields

d
d�−1

[−2l(�−1; �̂, μ̂)
]= −n� +

n∑
t=1

ε̂t̂ε
′
t

resulting in the following MLE

�̂ = 1
n

n∑
t=1

ε̂t̂ε
′
t =

1
n

n∑
t=1

(
xt −

[
μ̂ �̂

] [ 1
xt−1

])(
xt −

[
μ̂ �̂

] [ 1
xt−1

])′

= 1
n

(
S1 − [

S4 S′
2
] [μ̂′

�̂′

]
− [
μ̂ �̂

] [S′
4
S2

]
+ [
μ̂ �̂

] [ n S′
5

S5 S3

] [
μ̂′

�̂′

])

Model (M2)
By using analogous arguments as those used for model (M1) the MLE of �K is given by

�̂K = S′
2(k0:n)S

−1
3 (k0:n−1)

and of �K by,

�̂K = 1
n
(
S1(k1:n)+ �̂S3(k0:n−1)�̂′ − S′

2(k0:n)�̂
′ − �̂S2(k0:n)

)
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For �X and μ, the condition for the MLE is that
n∑

t=1

(
xt − kt−1 − [

μ̂ �̂X
] [ 1

xt−1

]) [
1 x′

t−1
]

= ([
S4(x1:n) S′

2(x0:n−1)
]− [

S5(k0:n−1)
∑n

t=1 kt−1x′
t−1

])
− [
μ̂ �̂X

] [ n S′
5(x0:n−1)

S5(x0:n−1) S3(x0:n−1)

]
= 0

with solution[
μ̂ �̂X

]= ([
S4(x1:n) S′

2(x0:n−1)
]− [

S5(k0:n−1)
∑n

t=1 kt−1x′
t−1

]) [ n S5(x0:n−1)′
S5(x0:n−1) S3(x0:n−1)

]−1

The MLE of � is then

�̂ = 1
n

n∑
t=1

(
xt − kt−1 − [

μ̂ �̂
] [ 1

xt−1

])(
xt − kt−1 − [

μ̂ �̂
] [ 1

xt−1

])′

= 1
n

(
S1(x1:n)+ S3(k0:n−1)+

[
μ̂ �̂

] [ n S′
5(x0:n−1)

S5(x0:n−1) S3(x0:n−1)

] [
μ̂′
�̂′

]

−
n∑

t=1
xtk′

t−1 −
n∑

t=1
kt−1x′

t −
[
S4(x1:n) S′

2(x0:n)
] [μ̂′

�̂′

]
− [
μ̂ �̂

] [S′
4(x1:n)
S′
2(x0:n)

]

+ [
S5(k1:n)

∑n
t=1 kt−1x′

t−1
] [μ̂′

�̂′

]
+ [
μ̂ �̂

] [ S′
5(k1:n)∑n

t=1 x′
t−1kt−1

] )

C.3 Proof of Lemma 3.2
We will now show that − log gϒ (d0:n | x0:n) is bi-convex inϒ and x0:n in the sense of (Gorski et al.
2007, Def. 1.2), but not jointly convex in (ϒ , x0:n).

First, note that ϒ ∈R
m×p and xt ∈R

p, t = 0, . . . , n, are both elements of convex sets. Further,
note that

− log gϒ (d0:n | x0:n)= −
n∑

t=0
log gϒ (dt | xt)

can be decomposed into a sum of terms of the form

h(z; k, d)= kez − dz

where k> 0 and d> 0 are constants, that is

− log gϒ (dt | xt)=
k∑

i=1
h((ϒxt)i; (et)i, (dt)i)

By straightforward differentiation, it is clear that h(z; k, d) is convex in z, but not monotone.
Moreover, let xt := (xt , . . . , xt) ∈R

m×p and let 1i denote themp×mpmatrix whose off-diagonal
elements are 0 with a diagonal consisting of zeros and ones defined so that the following relation
holds

vec (ϒ)′1i vec (xt)= (ϒxt)i ∈R
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By using this representation it follows that
vec (ϒ)′1i vec (xt)=:Aϒ ,i vec (xt)

=:Axt,i vec (ϒ)
and, in particular,

− log gϒ (dt | xt)=
k∑

i=1
h((ϒxt)i; (et)i, (dt)i)

=
k∑

i=1
h(Aϒ ,i vec (xt); (et)i, (dt)i)

=
k∑

i=1
h(Axt ,i vec (ϒ); (et)i, (dt)i)

which corresponds to compositions of affine mappings of a convex function. This shows that
− log gϒ (dt | xt) is convex inϒ given xt , as well as, convex in xt givenϒ , see Boyd (2004), Ch. 3.2.
The argument can be repeated to show that − log gϒ (d0:n | x0:n) is bi-convex with respect to ϒ
and x0:n.

The following counter example shows that − log gϒ (d0:n | x0:n) is not jointly convex:
h
(
(pu1 + (1− p)u2)(pv1 + (1− p)v2); k, d

)
> ph

(
u1v1; k, d

) + (1− p)h
(
u2v2; k, d

)
when k= d = 1, p= 0.8 and (u1, v1)= (− 1.5, 1), (u2, v2)= (− 0.5, 1.5).

Consequently,− log gϒ (d0:n | x0:n) is bi-convex inϒ and x0:n separately, but not jointly convex
in both ϒ and x0:n.
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