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Abstract 

This study investigates the relationship between the number and type of prototypes developed in rapid 

prototyping contexts, a team's performance self-estimations, and final actual performance. Findings suggest a 

strong correlation between each of these elements, with the converse also found to be true, motivating the 

introduction of the concept of Design Delusion - a type of cognitive dissonance due to differences between 

perceived and actual states. The paper suggests that early prototyping helps identify and mitigate design 

delusion, improving design decisions and preventing technical debt. 
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1. Introduction and background 
Prototyping plays a pivotal role in Engineering Design  (Wall et al., 1992). It facilitates learning by 

creating tangible testable objects (Jensen et al., 2016) that support decision making (Lauff et al., 2018) 

and allows designers to evaluate specific aspects of a design (Houde and Hill, 1997). Most design 

projects inevitably involve iteration. Iteration enables the progressive generation of knowledge,  

concurrency, and integration of design changes (Wynn and Eckert, 2017), and has been shown to 

improve design performance (Dow et al., 2009). Yassine and Braha (2003) describe 3 reasons for why 

iterations are necessary:  

1. Designer cannot make all design decisions at once. 

2. A design cannot be computed directly from a set of requirements. 

3. Ambiguity and uncertainty often occur, demanding adjustments of initial plans.  

Despite these benefits, during compressed design scenarios such as those often experienced in industrial 

settings, with tight time constraints and limited resources, iteration can be discouraged because of 

increased duration and cost (Dow et al., 2009; Wynn and Eckert, 2017). Excessive iterations can also 

escalate sunk costs by consuming additional resources without guaranteeing proportional improvements 

in outcome (Viswanathan and Linsey, 2010).  

Prototypes can be broadly categorized into digital or physical. Physical prototypes are tangible 

representations of a product or system's features and have been emphasized for their role in enhancing 

design outcomes (Dow et al., 2009; Neeley et al., 2013). They facilitate early insights in the design 

process at a lower cost than digital simulations (Kriesi et al., 2016) and address the ambiguity of early-

phase design (Leifer and Steinert, 2011). Digital prototypes are typically observed in the embodiment 

and detailed design stages (Hsu and Liu, 2000; Otto and Wood, 2001) where the level of definition 

enables the generation of parametric geometry and simulations that can evaluate specific tasks and 

optimisation can occur (Hamon et al., 2014). Digital prototyping also often require deep domain 
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knowledge and skills, with a steep learning curve (Kent et al., 2021). Whilst there exist a range of 

strategies (Camburn et al., 2017; Christie et al., 2012; Menold et al., 2017) and recommendations for 

best prototyping practice (Lim et al., 2008) there remains a lack of clarity over when to use physical or 

digital prototyping (Ege et al., 2024a), or how and when to iterate.  

To address the above research gap, this paper investigates the impact of the number of prototypes 

generated in time-constrained design scenarios on performance and self-assessment of performance. It 

begins by introducing the IDEA Challenge hackathon, the source of the study's data, and explains how 

correlation analysis was employed to synthesize the findings. The results of the study lead to a discussion 

and development of theory, culminating in the proposition of the concept 'design delusion'. 

2. Methodology 
The following section reports how data for the study was captured and a description of it. It summarizes 

the hackathon where data was generated and provides a description of the analysis used. 

2.1. Data capture and benchmarking 

Data for this study was captured during and after the 2022 IDEA Challenge- a virtually hosted hackathon 

for design researchers, summarized in Figure 1. The different data points include a database of 

prototypes, answers to a self-estimate performance questionnaire, validation test results and a correlation 

analysis. Each data point is further described in the following paragraphs.  

 
Figure 1. Methodology diagram 

5 teams from universities across Europe competed in a prototyping challenge, while continuously 

uploading entries on all prototypes they produced to an online database. Prototypes were loosely defined 

as any representation used by a designer to explore or demonstrate some aspect of a future artifact 

(Houde and Hill, 1997), implying that this study does not differentiate between partial and full-system 

prototypes. Instead, it posits that each new artifact iteration inherently constitutes a prototype. 

More information on the IDEA Challenge (Ege et al., 2023b; Goudswaard et al., 2022) and the captured 

dataset (Ege et al., 2024b) can found elsewhere in literature, but short summary is provided here. 

The design challenge was given to participants on the first day of the challenge and mandatory supplies 

for testing designs were shipped to participants prior to the challenge, including stepper motors, material 

for rectifying circuits and a Adafruit INA260 power meter. Teams were challenged to prototype and 

build a small-scale hydro-power generator that could be powered by rainwater, with the aim of making 

a design that generates the most amount of power. The supplied stepper motor had to be used as a power 

generator, and the amount of power available to run the generator was limited. Teams had to deliver a 
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physical prototype for testing, supported by digital prototypes such as CAD, renders etc. Teams chose 

their own methods and strategies for developing prototypes. 

Table 1 presents the demographics for each team, including average age, gender ratio, professional or 

academic status, years of design experience, and fields of expertise. Experience was defined to include 

relevant degrees, academia, and industry work. Every team had at least one member with both academic 

and industry experience. Participants, selected for their roles as researchers in the engineering design 

community across Europe, were invited for their expertise and engagement in the field. Participants 

attended the hackathon from their home institutions, utilizing tools and technologies they were already 

familiar with. Each team had access to well-equipped prototyping facilities with 3D printers, hand tools, 

CAD software, mechatronics, card modelling, sketching, junking, and construction kits. Each team 

except for Team 5 also had access to a laser cutter and CNC machines for the duration of the IDEA 

Challenge.  

Table 1. Participant demographics 

Team Average age Gender Current Position Field of study Experience 

1 24 4♂, 0♀ 4 PhD students 
3 Mech.Eng,    

1 Aero.Eng 
5 

2 29 4♂, 0♀ 4 PhD students 4 Mech.Eng 6,75 

3 31 3♂, 0♀ 3 PhD students 3 Mech.Eng. 6 

4 30 1♂, 2♀ 3 PhD students 
2 Mech.Eng.,    

1 Ind.Design 
8 

5 29 3♂, 1♀ 
3 PhD students, 1 

post-doc 

3 Mech.Eng.,   

1 Comp. Sci 
6 

 

At the midpoint of the challenge, by the end of the second day, participants were required to complete 

an online form to estimate the performance of their final designs, to measure the gap between teams 

estimated and actual performance. The performance was a measure of efficiency, indicating how well 

the design converts potential energy into output power, and was predicted as a percentage range from 

0% to 100%, with both a minimum and maximum value provided. 

Following the conclusion of the IDEA Challenge, the final physical prototypes from each team were 

shipped to the organizers to undergo an objective benchmarking and testing process. To ensure accurate 

and comparable test results, the test setup was consistent for all prototypes. We used an Adafruit 12V 

servo motor connected via a shaft coupler to each prototype, and energy output was measured using a 

rectifying circuit and an Adafruit INA260 power meter interfaced with an Arduino Uno. For all tests, a 

standard garden hose with an internal diameter (ID) of 13 mm and the same nozzle were employed to 

maintain uniformity. 

The potential energy (Ep) available for conversion by each prototype was calculated using the formula  

𝐸𝑝 = 𝑚𝑔ℎ. The source of the energy was a water reservoir containing 5 L of water suspended 10 meters 

above the ground, amounting to approximately 500 joules (𝐸𝑃 ≈ 5 ∗ 10 ∗ 10 ≈ 500𝐽. With the water 

reservoir emptied in 58 seconds, the potential power (Ppotential) was determined as 8.57 watts ( 

𝑃𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =
500𝐽

58𝑠
≈ 8.57𝑊). During testing, the power output of each prototype was measured and 

compared to Ppotential to ascertain the efficiency percentage. 

2.2. Correlation analysis 

Correlation analysis was used to evaluate the strength and direction of linear relationships between 

quantitative variables. Specifically, we were interested in exploring the linear relationships among four 

key variables: 1) number of prototypes, 2) number of physical prototypes, 3) self-estimated 

performance, and 4) tested performance.  
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The pairwise Pearson correlation coefficients for each combination of the aforementioned variables 

were calculated and presented in a correlation matrix. The Pearson correlation coefficient quantifies the 

degree of linear relationship between each of the two variables. Its value ranges from -1 to 1, with values 

closer to the extremes indicating stronger linear relationships. A positive value suggests a direct linear 

relationship, while a negative value indicates an inverse linear relationship. This correlation analysis 

was performed using the Pandas Python package(McKinney, 2010). 

3. Results 
The following section details how far teams had come in their design processes at the half-way point, 

each team's self-estimated performance measure and actual performance, and a correlation analysis 

between prototype counts, self-estimates, and performance.  

3.1. State of development at half-way point 

At the time of the performance self-estimations, teams found themselves at vastly different 

development stages. At the time, Team 1 had developed 20 physical prototypes, and were currently 

testing various 3D printed bucket designs using a LEGO arm on a scale, suggesting a thorough iterative 

design process for component optimization. Team 2 had made 28 physical prototypes and were testing 

a fully integrated prototype made up of laser cut acrylic sheets (Figure 2a) and receiving actual insights 

on power output from their prototype. Team 3 had conversely made 3 physical prototypes, and where 

at the time of the performance self-estimation testing water flow from a suspended tank and hose. Team 

4, also having made 3 physical prototypes, were making card-board mock- ups (Figure2b) at the time, 

reflecting being in a conceptualization phase. Team 5 has finished an energy measuring system, 

enabling them to test forthcoming designs. The had made a total of 3 physical prototypes at the time, 

and were, as several teams, without experience of how designs would perform in real life when 

answering the self-estimation questionnaire. Interestingly, both Team 2 and 5 shared insights at the 

time of the self-estimations that the motor-friction the prototype had to overcome would be a challenge. 

Figure 2 visually illustrate some of the discrepancies among teams' development stages at the time of 

the performance self-estimation.  

   
Figure 2. Side-by-side comparison of a) a fully integrated prototype made by Team 2 and b) a 

card-board mock-up made by Team 4 at the time of the performance self-estimation 

3.2. Performance and self-estimations 

Table 2 show how the different teams' final designs performed in the objective tests. Team 2 had the 

best results, followed by 1 and 5. Team 4 did not send back a prototype for testing as they were 

unsuccessful in creating a working design. Team 3's design did not produce any power under the 

conditions of testing, with a water reservoir suspended at 10 meters and the limited water flow of a 

13mm ID garden hose.  
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Table 2. Validation test results post IDEA challenge 

 Team 1 Team 2 Team 3 Team 4 Team 5 

Watts 0,15 0,57 0,00 0,00 0,10 

Actual eff  1,79 6,66 0,00 0,00 1,17 

Predicted eff  25 15 40 35 18 

Delta 24,21 8,34 40,00 35,00 16,83 

Mid-point 

Prototypes 

38 46 7 7 7 

Mid-point Phys. 

Prototypes 

20 28 3 3 3 

Total Prototypes 66 95 14 18 47 

Total Phys. 

Prototypes 

45 54 10 14 18 

Final design 

     
 

Figure 3 shows team halfway self-estimates and final results (left axis) and the number of prototypes 

and physical prototypes created at the halfway point of the challenge (right axis). Self-estimates were 

given as a range bound by an upper and lower limit.  

  
Figure 3. Expected efficiency vs results and number of prototypes at halfway point 

Teams 1, 2 and 5 reported the most conservative self-estimations, at an average of 26%, 15% and 18 % 

respectively, with teams 1 and 2 having narrower ranges between top and bottom estimates compared 

to their counterparts. Notably, these two teams exhibited a higher prototyping rate, having made a 

significant number of both physical prototypes and other prototypes relative to other teams. Teams 1 

and 2 made a total of 38 and 46 prototypes respectively, with 20 and 28 of those being physical, 

contrasting the 3 physical prototypes made by each of the other teams. Team 5 differs from Team 3 and 

4 by having a higher prototype count, at 28 prototypes and a smaller range between top and bottom 

efficiency estimates.  

Team 2 achieved the best final result in the challenge, while Team 1 secured the second-best, 

underscoring the correlation between their prototype production and performance. Furthermore, the self-

estimations from both Teams 1 and 2 demonstrated a closer alignment with the actual results, suggesting 
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a more accurate self-assessment. Among them, Team 2's estimate was particularly noteworthy for its 

proximity to the actual result, a performance complemented by their leading count of physical 

prototypes.  

In contrast, Teams 3, 4, and 5 displayed comparable quantities of physical prototypes, with teams 

producing three each. Despite this similarity in prototype production, their performance outcomes 

varied: Team 5 secured the third position, Team 3 and 4 tied for last place, despite their high self-

estimations. Specifically, Teams 3 and 4 projected the highest upper-bound estimates at 50%. Team 4's 

range was the largest across teams with a lower-bound estimate standing at 20%.  

3.3. Correlation analysis 

The correlation matrix in Figure 4 shows the linear relationships between the variables denoted in Table 

3, where 1 indicates perfect correlation, 0 indicates no correlation, and -1 indicating perfect invers 

correlation.  

Table 3. Correlation matrix variables 

Prot Number of prototypes created throughout the challenge 

Phy prot Number of physical prototypes created throughout the challenge 

2 day prot Number of prototypes created after 2 days 

2 day phy prot Number of physical prototypes created after 2 days 

Performance Measured efficiency post- challenge (final results) 

Self est. performance Midpoint of the self-estimated efficiency range 

Range Size of the range between low and high self-estimate 

Delta Size of the range between performance and self.est performance 

 
Figure 4. Correlation matrix showing pairwise Pearson coefficients with key values circled 
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Within the computed correlation matrix, several noteworthy associations emerged. A strong positive 

correlation was observed between the count of physical prototypes fabricated within the initial 2 day 

and the resultant outcomes (r = 0.89). Similarly, the total count of physical prototypes exhibited a strong 

correlation with outcomes (r = 0.87). These associations surpassed the correlations observed between 

actual results and the total number prototypes made on the first two days (r = 0.83). 

Conversely, a significant inverse relationship was discerned between the number of prototypes produced 

in the first two days and the average anticipated efficiency (r = -0.92). This negative trend persisted 

when comparing self-estimated efficiency with physical prototypes post the 48-hour mark (r = -0.76). 

Analogously, both the prototypes and physical prototypes made within the initial two days exhibited 

strong negative correlations with the Range, delineated by the highest and lowest anticipated 

efficiencies, with coefficients of r = -0.86 and r = -0.79, respectively. Interestingly, the performance and 

self-estimated performance exhibit an inverse correlation (r = -0.84). The strong inverse relation 

between Delta and prototypes made in the first 2 days (r =-0.91) indicate that teams prototyping the 

most had estimates closest to the true performance and vice versa with teams prototyping the least. 

4. Discussion 
The findings from this study provide a nuanced understanding of the relationship between prototyping 

frequency and the accuracy of performance self-estimates in compressed design scenarios. The data 

underscores the importance of iterative prototyping in enhancing predictive accuracy. Teams 1 and 2, 

which had higher prototyping rates, were more accurate in their performance predictions. Table 1 also 

indicates that, compared to their competitors, they had an advantage in learning from actual design tests 

rather than relying solely on assumptions. This suggests that the act of prototyping not only refines the 

design but also calibrates designers' expectations and experiences of reality, aligning well with previous 

studies on how prototypes aid learning (Lande and Leifer, 2009; Lauff et al., 2018).  

The strong positive correlation between the number of physical prototypes created within the initial two 

days and the final design outcomes is intriguing. It suggests that early engagement in physical 

prototyping might be a critical factor in achieving better design outcomes in compressed design 

scenarios. This study suggests that when the complexity (and difficulty) of design tasks increases, self-

estimates become more conservative, indicating that early prototyping made designers more aware of 

potential challenges- and providing more realistic estimates. In fact, teams testing designs early realized 

sooner the implications of using stepper motors for capturing energy, even without previous knowledge 

on the potential output the system could make. Simply connecting the stepper motor to the rectifying 

circuit and power sensor would let participants feel the amount of resistance the motor would have to 

overcome in order to turn (which was significantly higher than when the motor was not connected to 

the power sensor). Teams testing early realized sooner the large amount of resistance from the motor 

designs had to overcome with time left to account for it, as opposed to Team 3s' design that failed 

because it lacked the torque necessary to spin the motor. The inverse correlations between early 

prototyping and the range of self-estimates suggest that early prototyping might lead to more certainty 

in designers' predictions. This could be because early prototyping provides tangible feedback, reducing 

the ambiguity and uncertainty in designers' minds.  

Building on the finding that the performance and self-estimated performance exhibit an inverse 

correlation, we propose the term "Design Delusion". It refers to a type of cognitive dissonance 

experienced by a designer or design team due to differences between their perceived and actual states 

relating to design capabilities, progress in the design process, and/or product performance. 

Understanding and recognizing this delusion is crucial for several reasons. It emphasizes the importance 

of iterative prototyping as a tool not just for refining design outputs, but also for calibrating self-

perception. Secondly, by reducing this delusion, designers can make progress in their designs based on 

their actual position rather than their perceived and/or imagined position. 

Due to omnipresent ambiguity in design, design delusions will always exist to some extent. The 

challenge lies in keeping design delusions manageable, such that design decisions taken are sensible 

given the reality of a situation, not only its imagined state. Design delusions that are too high can result 

in technical debt due to leaving key design challenges unresolved, with design decisions potentially 

worsening the situation rather than improving it, and increasing the accumulation of technical debt in 

https://doi.org/10.1017/pds.2024.41 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.41


 
390  DESIGN INFORMATION AND KNOWLEDGE 

the future. This delusion can hinder growth and lead to stagnation, as it prevents an honest evaluation 

of work against industry standards or client expectations. Design delusion not only affects personal 

development but can also influence team dynamics, client relationships, and the end product's success. 

Recognizing and overcoming this delusion is critical for achieving true excellence in design. 

Team 4's inability to produce a working design and Team 3's design not producing power under the 

given conditions highlight the challenges inherent in compressed design scenarios. Rapid prototyping 

might not always lead to successful outcomes, especially when faced with tight constraints or complex 

challenges. 

The findings have specific implications for design hackathons or similar  compressed design scenarios. 

Emphasizing early and frequent prototyping might be a strategy to enhance both design outcomes and 

predictive accuracy. Though the findings are from a specific scenario, it can be argued that a hackathon 

setting shares several analogous characteristics with ordinary design processes, making findings from 

one domain relevant to the other. Both environments prioritize rapid ideation, prototyping, and problem-

solving within a constrained timeframe. In a hackathon, participants often iterate on their solutions, 

refining their ideas based on feedback, much like designers do in iterative design processes. 

Additionally, both settings emphasize collaboration, cross-disciplinary thinking, and adaptability in the 

face of unforeseen challenges. Given these parallels, insights derived from this paper  can offer valuable 

perspectives on improving design processes and strategies. 

For educators and mentors in design and engineering, emphasizing the importance of early and frequent 

prototyping might be a key takeaway. Encouraging students to engage in hands-on prototyping early in 

the design process could enhance both their design skills and their ability to predict design outcomes. 

For design teams, especially those working in rapid innovation contexts, the findings suggest that 

investing in early and frequent prototyping could be beneficial. This might involve allocating resources, 

time, and effort towards prototyping early in the design process. 

4.1. Further work 

In this paper, the team with the most physical prototypes (and prototypes in total) emerged as the top 

performer. This observation prompts further exploration into the nuances of prototyping and its 

relationship with design success. Firstly, it's essential to discern whether the observed association 

between the number of prototypes and performance indicates a causal relationship. Does the act of 

creating more prototypes inherently lead to superior outcomes, or might highly experienced and/or 

capable teams naturally gravitate towards more frequent prototyping due to other intrinsic qualities or 

strategies? Secondly, the emphasis shouldn't solely be on the quantity of prototypes but also their 

quality, i.e. that they contribute to the right knowledge for the least amount of time or cost possible. It's 

crucial to investigate whether the more successful teams are producing higher fidelity prototypes or if 

their iterative process is inherently more focused and efficient. Lastly, beyond sheer numbers, 

understanding the specific strategies or methodologies employed during the prototyping phase can be 

enlightening. These considerations highlight the multifaceted nature of prototyping in design and 

underscore the need for a deeper, more nuanced understanding of its role in driving successful outcomes. 

4.2. Limitations 

The study's findings are constrained by several factors: the limited number of teams participating 

reduces the statistical robustness and broader applicability of the results, while the homogeneity of the 

designers involved may not adequately represent the diversity of design approaches that exist in the 

field. While the observed correlations were strong, the limited data points make the results more 

susceptible to the influence of outliers and may not accurately represent the broader population. It's 

essential to interpret the results with caution, and further research with a larger sample is recommended 

to validate and expand upon these findings. Furthermore, the investigation's focus on a single design 

task limits the ability to extrapolate the findings to different types of design challenges, which can vary 

widely in nature and complexity. Additionally, the lack of detailed information on the designers' levels 

of expertise means that the study only provides a surface-level understanding of the participants' design 

processes and how their experience might have influenced their process and answers- although it has 

been shown that even novice designers actions coincide with design experts (Cash et al., 2013).  
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5. Conclusion 
The present study explores the relationship between the frequency of prototyping, the predictive 

accuracy of designers, and performance in compressed design scenarios. The data reveals that teams 

that made the most physical prototypes early on not only achieved better design outcomes but also 

demonstrated a heightened accuracy in their performance predictions, with the converse also found to 

be true (8.34% difference between predicted and actual vs. 40.0%), The concept of "Design Delusion"—

the cognitive dissonance arising from a discrepancy between perceived and actual design capabilities 

and progress—emerges as a critical phenomenon to be understood and managed because of these 

findings. By engaging in early prototyping, designers become aware of potential design challenges and 

adjust their performance estimates accordingly, leading to more informed and effective design decisions. 

Recognizing and addressing the risks of "Design Delusion" early on can prevent the accumulation of 

technical debt, leading to more robust and reliable design solutions. While the findings offer valuable 

insights, they should be interpreted with care because of a small sample size and specific scenario, 

prompting further exploration and validation in broader contexts. Future research might further 

investigate the optimal balance between prototyping frequency, quality, and strategy, and how these 

factors interplay to influence design success. 
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