Canad. Math. Bull. Vol. 43 (1), 2000 pp. 47-50

A Property of Lie Group Orbits

Mladen Božičević

Abstract. Let *G* be a real Lie group and *X* a real analytic manifold. Suppose that *G* acts analytically on *X* with finitely many orbits. Then the orbits are subanalytic in *X*. As a consequence we show that the micro-support of a *G*-equivariant sheaf on *X* is contained in the conormal variety of the *G*-action.

0

Subanalytic sets were introduced by Hironaka. They play a prominent role in various areas of mathematics. In this note we give examples of subanalytic sets that arise naturally in the representation theory of Lie groups. We show that if a Lie group acts on a real analytic manifold with finitely many orbits then the orbits are subanalytic in the ambient manifold. The main motivation for this note was to prove that the micro-support of an equivariant sheaf is contained in the union of conormal bundles of the orbits. This result is known in the case of a complex algebraic group acting on a complex algebraic variety [1]. However in the real analytic case, to our knowledge, its proof is absent from the literature (although it may be known to some specialists). The proof of Theorem 1 is elementary and uses only the basic properties of subanalytic sets.

I am grateful to Ivan Mirković for a number of useful suggestions and to the referee for correcting the proof of Lemma 2. The work on this paper was supported in part by a grant from the Ministry of Science and Technology of Croatia.

1

All manifold and maps will be real analytic. We refer to [2] for the theory of subanalytic sets. We fix at the beginning a manifold X. Let G be a connected real Lie group acting on X with finitely many orbits. Let

$$X = \bigsqcup_{1 \le i \le r} Q_i$$

be the orbit stratification on *X*. We remark that the orbits Q_i are locally closed in *X*. This fact was pointed out to me by D. Miličić (the proof can be found for example in [4, Lemma 5.2.4.1]). The aim of this note is to prove the following result:

Theorem 1 The orbits Q_i , i = 1, ..., r of *G*-action on *X* are subanalytic in *X*.

The proof of the theorem will be presented in a number of steps. First we need some notation. We denote by g the Lie algebra of G. For $x \in X$ let g_x be the Lie algebra of the stabilizer of x in G. Denote by $p: X \times g \to X$ the projection. Set

 $\tilde{\mathfrak{g}} = \{(x,\xi) \in X \times \mathfrak{g} : \xi \in \mathfrak{g}_x\} \text{ and } \tilde{Q}_i = \tilde{\mathfrak{g}} \cap p^{-1}(Q_i), \ 1 \le i \le r.$

Received by the editors April 8, 1998; revised July 9, 1998.

AMS subject classification: 32B20, 22E15.

[©]Canadian Mathematical Society 2000.

Clearly \tilde{Q}_i is a vector bundle over the orbit Q_i . Since the orbits Q_i are locally closed they are submanifolds of X. This implies that \tilde{Q}_i is a submanifold of $X \times g$.

Lemma 2 \tilde{g} *is subanalytic in* $X \times g$.

Proof Given a manifold *Y* we denote its tangent bundle by *TY*. We write Aff(TY, TY) for the bundle over *Y* whose fiber at $y \in Y$ is the set of affine endomorphisms of the tangent space T_yY . Denote by Hom(TY, TY) the subbundle of Aff(TY, TY) defined by the fiberwise linear endomorphisms of *TY*.

We view the Lie algebra g as the tangent space to *G* at the identity $e \in G$. The action of *G* on *X* determines the map $\alpha_x : g \times T_x X \to T_x X$, $x \in X$. Denote by 0 the zero vector in g and by 0_x the zero vector in $T_x X$. Then the formula

$$\Phi(x,\xi)(\nu_x) = \alpha_x(\xi,0_x) + \alpha_x(0,\nu_x), \quad x \in X, \ \xi \in \mathfrak{g}, \ \nu_x \in T_x X,$$

defines an affine endomorphism of T_xX . Hence we obtain a real analytic map $\Phi: X \times \mathfrak{g} \to Aff(TX, TX)$ of bundles over X. The above formula implies that the linearity of $\Phi(x, \xi)$ is equivalent to $\xi \in \mathfrak{g}_x$. Thus the set $\tilde{\mathfrak{g}}$ is equal to the preimage under Φ of Hom(TX, TX). Since Hom(TX, TX) is a closed submanifold of Aff(TX, TX), the claim of the lemma follows.

Next we summarize the properties of subanalytic sets that will be used below. Let *Y* be a manifold and *Z* a subanalytic subset of *Y*. Then the connected components of *Z* are locally finite and subanalytic. Recall that the set of smooth points Z_{reg} is defined as the subset of points $y \in Z$ such that there exists a neighborhood *U* of *y* such that $U \cap Z$ is a closed submanifold of *U*. Then the sets Z_{reg} and $Z \setminus Z_{\text{reg}}$ are subanalytic in *Y* and $\dim(Z \setminus Z_{\text{reg}}) < \dim Z$.

Lemma 3 Set $n = \dim G$. Then:

- (1) dim $\tilde{g} = n$;
- (2) $\tilde{\mathfrak{g}}_{\text{reg}} \cap \tilde{Q}_i$ is open in $\tilde{\mathfrak{g}}_{\text{reg}}$ for $1 \leq i \leq r$;
- (3) $\tilde{\mathfrak{g}}_{\text{reg}} \cap \tilde{Q}_i \neq \emptyset$ for $1 \leq i \leq r$.

Proof Let $y \in \tilde{g}_{reg}$. We choose a neighborhood U of y in $X \times g$ such that $U \cap \tilde{g}$ is a closed submanifold of U. Then if $U \cap \tilde{Q}_i \neq \emptyset$, it is a submanifold of $U \cap \tilde{g}$ of dimension n. Take i such that $y \in \tilde{Q}_i$. By shrinking U if necessary we may assume that $U \cap \tilde{Q}_i$ is closed in U. If $U \cap \tilde{g} \setminus U \cap \tilde{Q}_i \neq \emptyset$ we repeat the previous argument. Since $U \cap \tilde{g} \setminus U \cap \tilde{Q}_i = \bigcup_{i \neq j} U \cap \tilde{Q}_j$ we may use induction on r to conclude dim $U \cap \tilde{g} = n$. This proves (1). (2) is an immediate consequence of (1). In order to prove (3) assume that $\tilde{g}_{reg} \cap \tilde{Q}_i = \emptyset$. Then we would have $\tilde{Q}_i \subset \tilde{g} \setminus \tilde{g}_{reg}$. Since dim $(\tilde{g} \setminus \tilde{g}_{reg}) \leq n - 1$ and dim $\tilde{Q}_i = n$ we have a contradiction. This proves (3).

We endow $X \times \mathfrak{g}$ with G resp. \mathbb{R}^+ action (here \mathbb{R}^+ is the set of strictly positive real numbers) as follows:

 $g.(x,\xi) = (gx, Ad(g)\xi)$ resp. $c.(x,\xi) = (x,c\xi), g \in G, c \in \mathbb{R}^+, x \in X, \xi \in \mathfrak{g}.$

Lemma 4 Any connected component of \tilde{g}_{reg} is stable for the G resp. \mathbb{R}^+ action on $X \times \mathfrak{g}$.

48

Lie Group Orbits

Proof Clearly \tilde{g} is stable for the *G*-action and for $g \in G$ the map $(x, \xi) \mapsto (gx, Ad(g)\xi)$ is an analytic isomorphism of $X \times g$. This implies that \tilde{g}_{reg} is invariant for the *G*-action. Let *Z* be a connected component of \tilde{g}_{reg} . Then we have $Z \subset G.Z \subset \tilde{g}_{reg}$ and *G.Z* is connected since *G* is connected. It follows that Z = G.Z, as claimed. The proof for the \mathbb{R}^+ -action is analogous.

Lemma 5 Let $\pi: E \to Y$ be a real vector bundle over the manifold Y. Suppose that Z is a subanalytic \mathbb{R}^+ -invariant subset of E. Then $\pi(Z)$ is subanalytic.

Proof A slightly more general statement can be found in [3, 8.3.8]. For the convenience of the reader we reproduce the proof. Let U be a subanalytic open neighborhood of the zero-section of E such that $\overline{U} \to X$ is proper. Clearly we have $Z = \mathbb{R}^+ (Z \cap U)$ and therefore $\pi(Z) = \pi(Z \cap U)$. On the other hand $Z \cap U$ is subanalytic in U and the restriction of π to \overline{U} is proper and hence $\pi(Z \cap U)$ is subanalytic in X.

Now we can prove the theorem:

Proof of 1 We fix *i* and choose a connected component *Z* of \tilde{g}_{reg} such that $Z \cap \tilde{Q}_i \neq \emptyset$. This is possible by Lemma 3(3). We have $Z = \bigcup_{1 \le j \le r} (\tilde{Q}_j \cap Z)$ and by 3(2) any $\tilde{Q}_j \cap Z$ is open in *Z*. This implies further that $Z = Z \cap \tilde{Q}_i$, *i.e.*, $Z \subset \tilde{Q}_i$. It suffices now to apply Lemmas 4 and 5 to conclude that $p(Z) = Q_i$ is subanalytic in *X*.

2

In this section we show that the micro-support of a sheaf on *X* constructible with respect to the orbit stratification is contained in the union of conormal bundles of the orbits. First we need some preparation. Our approach will be based on [3].

Let *X* be a manifold and *A*, *B* \subset *X*. We choose a local coordinate system at $x \in X$. The tangent cone $C_x(A, B)$ is defined as the set of limits of the sequences $c_n(x_n - y_n)$, where $c_n \in \mathbb{R}$, $c_n > 0$, $x_n \in A$, $y_n \in B$ and $\lim x_n = x = \lim y_n$. We regard $C_x(A, B)$ as a subset of $T_x X$.

We write T_x^*X for the cotangent space at x and T^*X for the cotangent bundle of X. We denote by $\pi: T^*X \to X$ the natural projection. Let $M \subset X$ be a submanifold. We denote by T_M^*X the conormal bundle to M in X. Then the fiber of T_M^*X over $x \in M$ is equal to $(T_xM)^{\perp}$, *i.e.*, the set of linear forms on T_xX vanishing on T_xM . For a morphism of manifolds $f: X \to Y$ we denote by $T_x(f): T_xX \to T_{f(x)}Y$ the tangent map at $x \in X$ and by ${}^tT_x(f): T_{f(x)}^*Y \to T_x^*X$ the cotangent map.

Let $H: T(T^*X) \to T^*(T^*X)$ be the Hamiltonian isomorphism defined using the canonical symplectic stucture on T^*X [3, A.2]. Let $M, N \subset X$ be submanifolds of X. We say that the pair (M, N) satisfies the μ -condition [3, 6.2.4, 8.3.19] if for any $p \in \pi^{-1}N$ we have

$$({}^tT_p(\pi))^{-1}(H_pC_p(T_M^*X,T_N^*X)) \subset (T_{\pi(p)}N)^{\perp}.$$

We remark that the μ condition is closely related to the Whitney conditions [3, exercise VIII.12].

Lemma 6 With the same assumptions as in Theorem 1, let M and N be the G-orbits. Then (M, N) satisfies the μ -condition.

Proof We begin the proof with a general remark. Let $f: X \to Y$ be a morphism of manifolds. A simple computation in local coordinates yields $T_x(f)(C_x(A,B)) \subset C_{f(x)}(f(A), f(B)), A, B \subset X$. In particular, if *A* and *B* are invariant for an automorphism *f* of *X* we have $T_x(f)(C_x(A,B)) = C_{f(x)}(A,B)$. We apply this formula to the automorphism of T^*X determined by the action of an element $g \in G$. Furthermore, a short computation shows that the Hamiltonian isomorphism intertwines isomorphisms on $T(T^*X)$ and $T^*(T^*X)$ induced by the action of $g \in G$. It follows that the μ -condition is *G*-invariant in $p \in \pi^{-1}(N)$.

Since *M* and *N* are subanalytic in *X* the μ -condition is satisfied at some point in *N* [3, 8.3.20]. By the equivariance, the μ -condition is then satisfied for any point in *N*.

We say that a partition $X = \bigsqcup_{i \in I} X_i$ is a μ -stratification if the following conditions are satisfied:

(1) for any $i \in I$, X_i is a locally closed subanalytic submanifold of X;

(2) the family $(X_i, i \in I)$ is locally finite and if $\bar{X}_i \cap X_j \neq \emptyset$, $i, j \in I$, then $X_i \subset \bar{X}_i$;

(3) any pair (X_i, X_j) such that $X_j \subset \overline{X}_i \setminus X_i$ satisfies the μ -condition.

Proposition 7 The orbit stratification $X = \bigsqcup_{1 \le i \le r} Q_i$ is a μ -stratification. In particular, if \mathcal{F} is a sheaf of complex vector spaces on X whose restrictions to the orbits are locally constant then the micro-support SS(\mathcal{F}) of \mathcal{F} [3, 5.1.2] satisfies:

$$SS(\mathcal{F}) \subset \bigsqcup_{1 \leq i \leq r} T^*_{Q_i} X.$$

Proof The first statement follows from 1 and 6. The second statement is [3, 8.4.1].

References

- [1] W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces III. Invent. Math. 80(1985), 1-61.
- [2] E. Bierstone and P. D. Milman, Semi-analytic and subanalytic sets. Inst. Hautes Études Sci. Publ. Math. 67(1988), 5–42.
- 3] M. Kashiwara and P. Schapira, Sheaves on Manifolds. Springer-Verlag, 1990.
- [4] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups I. Springer-Verlag, 1972.

University of Zagreb Department of Geotechnics Hallerova aleja 7 42000 Varaždin Croatia email: bozicevi@cromath.math.hr

50