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This paper examines the kinematic behaviour of the reduced velocity gradient tensor
(VGT), Ãij, which is defined as a 2× 2 block, from a single interrogation plane, of
the full VGT Aij= ∂ui/∂xj. Direct numerical simulation data from the fully developed
turbulent region of a nominally two-dimensional mixing layer are used in order to
examine the extent to which information on the full VGT can be derived from the
reduced VGT. It is shown that the reduced VGT is able to reveal significantly more
information about regions of the flow in which strain rate is dominant over rotation.
It is thus possible to use the assumptions of homogeneity and isotropy to place
bounds on the first two statistical moments (and their covariance) of the eigenvalues
of the reduced strain-rate tensor (the symmetric part of the reduced VGT) which in
turn relate to the turbulent strain rates. These bounds are shown to be dependent
upon the kurtosis of ∂u1/∂x1 and another variable defined from the constituents of
the reduced VGT. The kurtosis is observed to be minimised on the centreline of
the mixing layer and thus tighter bounds are possible at the centre of the mixing
layer than at the periphery. Nevertheless, these bounds are observed to hold for the
entirety of the mixing layer, despite departures from local isotropy. The interrogation
plane from which the reduced VGT is formed is observed not to affect the joint
probability density functions (p.d.f.s) between the strain-rate eigenvalues and the
reduced strain-rate eigenvalues despite the fact that this shear flow has a significant
mean shear in the cross-stream direction. Further, it is found that the projection of the
eigenframe of the strain-rate tensor onto the interrogation plane of the reduced VGT
is also independent of the plane that is chosen, validating the approach of bounding
the full VGT using the assumption of local isotropy.
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1. Introduction
The fine scales of turbulence are primarily characterised by the velocity gradient

tensor (VGT), which can be split into a symmetric and skew-symmetric tensor as
follows:

Aij = ∂ui

∂xj
= Sij +Ωij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
+ 1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
, (1.1)
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with the scalar analogues to strain rate (Sij) and rotation (Ωij) being dissipation (ε)
and enstrophy (ω2) respectively. In the Richardson–Kolmogorov phenomenology the
dissipative (Kolmogorov) length scale is defined from the mean rate of dissipation
within a flow and thus the VGT can be considered to provide one of the few rigid
definitions of ‘scales’ within the energy cascade (Tsinober 2009). The fluctuation of
enstrophy is a characterising feature of turbulent flows (Tennekes & Lumley 1972)
and it is used, for example, as a threshold quantity to distinguish between turbulent
and non-turbulent fluid in free shear flows, e.g. Bisset, Hunt & Rogers (2002) and da
Silva & Pereira (2008). For further details an excellent review of the phenomena of
the VGT can be found in Meneveau (2011).

The Navier–Stokes equations can be re-formulated to reveal the dynamics of the
strain-rate tensor and the rotation tensor as follows:

1
2

D(SijSij)

Dt
=−SijSjkSki − 1

4
ωiSijωj − Sij

∂2p
∂xi∂xj

+ νSij∇2Sij, (1.2)

1
2

Dω2

Dt
=ωiSijωj + νωi∇2ωi, (1.3)

where −SijSjkSki and ωiSijωj, the self-amplification of strain rate and the amplification
of enstrophy by vortex stretching respectively, are the inviscid source/sink terms
derived from the VGT. The term ωiSijωj, in particular, has been studied extensively
since the observation of Taylor (1938a) that 〈ωiSijωj〉> 0 for turbulent flows, where
〈·〉 denotes ensemble averaging. This mean increase in enstrophy by vortex stretching
is the only known mechanism by which energy is transferred from large scales
to small scales within the energy cascade and prompted Tsinober (2009) to state
that without 〈ωiSijωj〉 > 0 three-dimensional turbulence could not exist. This term is
representative of the interaction between strain and rotation within turbulence which
despite being often weak and non-local (Tsinober, Shtilman & Vaisburd 1997) is
observed to be highly intermittent in a variety of turbulent flows (Betchov 1975;
Tsinober, Kit & Dracos 1992). This term, and hence the interaction between strain
rate and rotation, can further be written as (Betchov 1956)

ωiSijωj =ω2si(êi · ω̂)2, (1.4)

where si are the (three) eigenvalues of Sij with corresponding eigenvectors ei , ·̂ implies
a unit vector and repetition of the subscript i implies summation.

The strain-rate eigenvalues si can be ordered such that s1 > s2 > s3 with s1 > 0
(extensive) and s3 6 0 (compressive). Continuity for an incompressible fluid requires
that s1 + s2 + s3 = 0 and thus the intermediate eigenvalue, s2, is either mildly
extensive or compressive but bounded by the magnitudes of s1 and s3. In this
way Betchov (1956) explains that the topological evolution of a fluid element is
determined by the sign of s2, with s2 > 0 implying two orthogonal extensive strain
rates and a further orthogonal compressive strain rate leading to the formation of
‘sheet-like structures’ and s2 < 0 implying two orthogonal compressive strain rates in
conjunction with a further orthogonal extensive strain rate leading to the formation of
‘tube-like’ structures. It has since been observed that the interaction between strain
rate and rotation is characterised by a surprising (considering that 〈ωiSijωj〉 > 0)
preferential parallel alignment between the vorticity vector and the intermediate
strain-rate eigenvector, i.e. (ê2 · ω̂)2 ≈ 1 in (1.4) (Ashurst et al. 1987; Tsinober
et al. 1992; Tanahashi, Iwase & Miyauchi 2001; Mullin & Dahm 2006), although
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it has subsequently been shown that the (ê1 · ω̂)2 alignment is more significant in
determining the sign of ωiSijωj (Buxton & Ganapathisubramani 2010).

A full topological classification of the flow, defined in terms of the strain rate and
rotation and their inviscid source/sink terms, can be achieved by examination of the
invariants of the characteristic equation for the VGT (Chong, Perry & Cantwell 1990):

λ3 + Pλ2 +Qλ+ R= 0. (1.5)

The first invariant is equal to the negative of the trace of the VGT (P=−Aii) which is
equivalent to the divergence of the flow field and is thus zero for an incompressible
flow. The state of fluid elements within a turbulent flow is thus described by the
second invariant Q= (‖Ωij‖2−‖Sij‖2)/2, which represents the local excess of rotation
over strain rate, and the third invariant R, which is defined as the negative of the
determinant of Aij, thus R = (−SijSjkSki − (3/4)ωiSijωj)/3 is the local excess of
self-amplification of strain rate over amplification of enstrophy. In P–Q–R space the
discriminant surface that separates purely real roots to (1.5) from one real root and a
complex-conjugate pair of roots is

27R2 + (4P3 − 18PQ)R+ (4Q3 − P2Q2)= 0 (1.6)

and thus for incompressible flows (P = 0) the discriminant can be given by
∆ = Q3 + (27/4)R2. When ∆ < 0 only real eigenvalues exist and the flow is purely
straining whereas when ∆> 0 the fluid is swirling (Perry & Chong 1994). The joint
probability density function (p.d.f.) of the second and third invariants produces a
distinct, characteristic ‘tear drop’ shape which is considered to be ‘universal’ for fully
developed turbulent flows (Elsinga & Marusic 2010). The line for ∆ = 0 acts as an
attractor, giving the ‘Vieillefosse tail’ (Vieillefosse 1982) which can be seen in the
bottom right quadrant of figure 1.

Invariants can also be computed for the strain-rate and rotation tensors individually.
For an incompressible flow both tensors have zero trace (the rotation tensor is skew
symmetric and thus has no trace by definition), hence PS = −Sii = −Aii = 0 and
PΩ =−Ωii= 0 and the determinant of the rotation tensor is zero meaning that RΩ = 0.
The remaining invariants are given by QS=−(SijSij)/2, RS=−(SijSjkSki)/3 and QΩ =
(ΩijΩij)/2 (the strain or rotation parts of the invariants of the VGT). The second
strain-rate and rotation matrix invariants are given physical meaning in the following
equations:

ε = 2νSijSij =−4νQS (1.7)
φ =− 1

4ΩijΩij = 1
2 QΩ, (1.8)

where ε is the dissipation of kinetic energy due to viscous friction and φ is the
enstrophy density (Perry & Chong 1994).

Despite the wealth of information that can be extracted from the VGT in a
developed turbulent flow it is only relatively recently that experimental techniques,
such as holographic particle image velocimetry (PIV) (Zhang, Tao & Katz 1997)
or tomographic PIV (Elsinga et al. 2006) have developed the capability to produce
the three-dimensional, three-component (3D3C) data that are required. However,
limitations in the spatial resolution and signal to noise ratio for these techniques are
still a significant hindrance to studying the kinematics of the VGT. Additionally, it is
not possible to acquire 3D3C data in real time with present technology levels (either
experimentally or numerically). Thus to formulate a model of the VGT, that can act

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.60


630 P. K. Rabey, A. Wynn and O. R. H. Buxton

–200 –150 –100 –50 0 50 100 150 200

–50

0

50

100

–9

–8

–7

–6

–5

–4

–3

–2

FIGURE 1. (Colour online) Joint probability density function (p.d.f.) between Q and R for
the mixing layer data of the present study. Contours scale logarithmically. The ‘teardrop’
shape is considered to be a ‘universal’ property for all fully developed turbulent flows.

as the observed state in a closed-loop feedback controller to ‘control’ velocity gradient
phenomena (such as dissipation, for example) it is necessary to place bounds upon
such phenomena from 2D2C data which can be acquired in real time. An example
of an experiment capable of acquiring such data would be two offset ‘X-wire’ CTA
(constant temperature anemometry) probes used in conjunction with Taylor’s frozen
flow field hypothesis (Taylor 1938b). For these reasons Cardesa et al. (2013) explored
the invariants of the reduced VGT, Ãij, which is defined as a 2× 2 matrix extracted
from the full VGT, and is thus comprised of 2D2C data that are readily obtainable
in a laboratory experiment. For convenience Cardesa et al. (2013) consider the upper
left 2× 2 block of the full VGT (velocity components u1 and u2 in the x1–x2 plane).

Using an approach in which 2D2C data were used to describe three-dimensional
topological features of high-Reynolds-number, fine-scale turbulence, the recently
published study of Fiscaletti, Westerweel & Elsinga (2014) made use of the
reduced VGT to demonstrate the topology of intense dissipation and enstrophy in a
high-Reynolds-number (Reλ = 349) axisymmetric jet with excellent spatial resolution.
They made use of microscopic, planar PIV experiments (purely two-dimensional data)
to show the tendency for regions of high dissipation to be distributed as sheet-like
structures surrounding the perimeter of high-enstrophy tubes at a characteristic offset
that scales with the Kolmogorov length scale. These results are in agreement with the
scalings derived in much lower Reynolds number 3D3C simulations/experiments (e.g.
Jiménez et al. 1993 and Mullin & Dahm 2006) and thus demonstrate the capability
to infer fully three-dimensional topological velocity gradient information from the
reduced VGT.

The characteristic equation for the reduced VGT is given as

λ2 + pλ+ q= 0, (1.9)
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where p and q are the first and second invariants respectively. Unlike its 3D
counterpart, the first invariant of the reduced VGT, p = −tr(Ã), is usually non-zero
in an incompressible flow (if tr(Aij) = 0, tr(Ãij) = 0 only when A33 = 0) and so the
2D projection of an incompressible 3D flow appears compressible. The invariant
p determines the stability of the flow locally, with regions for which p < 0 being
unstable when perturbed (Perry & Chong 1987). The second invariant is computed
as q= det(Ã). Cardesa et al. (2013) showed that the joint p.d.f. of the invariants of
the reduced VGT has been found to also produce a characteristic ‘teapot’ shape for
a number of turbulent flows, with the discriminant ∆̃= (p2 − q)/4= 0 also acting as
an attractor, as in the 3D case. When ∆̃> 0 the reduced system has two real, distinct
eigenvalues and critical points in the flow will produce nodes or saddles; whilst when
∆̃ < 0 they will form foci (Perry & Chong 1987).

Cardesa et al. (2013) were able to derive a number of important statistical results
by using the assumption of local homogeneity, namely they showed that 〈p〉 = 0 and
〈q〉 = 0. Further, they are able to show that 〈pq〉 < 0 which is shown to follow
mathematically from the observation that 〈ωiSijωj〉 > 0 since under the further
assumption of local isotropy 〈pq〉 = −〈ωiSijωj〉/15. Finally, by consideration of
the eigenvalues of the reduced strain-rate tensor (s̃i) they are able to show that for
a limited number of points within the flow, namely s̃1 > s̃2 > 0 and s̃2 < s̃1 < 0
then the sign of the intermediate strain-rate eigenvalue (s2) can be inferred and
thus whether the fluid is undergoing ‘sheet-forming’ or ‘tube-forming’ topological
evolution. This manuscript makes further progress by seeking more rigid bounds
on 3D VGT quantities, such as s2, from their counterparts in the reduced VGT.
Additionally the instantaneous variation of these VGT quantities with their 3D VGT
counterparts will be considered as this is a vital step in the formulation of a model
of the VGT to close the feedback loop in which the reduced VGT plays the role of
the observed state.

2. Invariants of the full and reduced VGT
By using the assumptions of homogeneity and local isotropy Cardesa et al. (2013)

were able to derive the following relations:

〈pq〉 = 7
6 〈p3〉, (2.1)

〈pq〉 =− 1
15 〈ωiSijωj〉. (2.2)

We follow the convention of Cardesa et al. (2013) and choose to define the reduced
VGT as the upper left-hand 2 × 2 block of the VGT, i.e. gradients of u1 and u2 in
the x1–x2 plane. This choice is arbitrary and we subsequently discuss the choice of
the interrogation plane for the formation of the VGT in § 7. The invariants of the
reduced VGT can thus be expressed as p=−tr(Ãij)=−(A11+ A22) and q= det(Ãij)=
A11A22 − A12A21. Rewriting the second and third invariants of the full VGT, Q and R
respectively, we thus obtain

Q=−p2 + q− (A13A31 + A23A32), (2.3)
R=−pq+ (A11A23A32 + A22A13A31)− (A12A23A31 + A13A32A21). (2.4)

It is observed that the second invariant, Q, can be decomposed into a component
containing entries from only the reduced VGT and further terms that cannot be
deduced from the reduced VGT alone. Here Q is physically interpreted as the
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local excess of rotation over strain rate and is mathematically expressed as double
velocity gradient products which can be observed in a two-dimensional projection
of turbulence. However, p is a residual of the fact that the projection of an
incompressible three-dimensional velocity field onto a two-dimensional subspace
appears compressible, i.e. the reduced VGT has a non-zero trace excepting the trivial
case of ∂uz/∂z= 0, where z is the out of plane direction with respect to the reduced
VGT source plane. Contrastingly q, a difference between the normal and transverse
velocity gradients in the source plane of the reduced VGT, is thus more physically
meaningful than p. This is demonstrated in § 5 in which we compare the distributions
of Q against p and q to a test case flow consisting of the fully developed region of
a nominally two-dimensional mixing layer, described in § 4.

R, on the other hand, is a sum of triple velocity gradient products and reveals the
local excess of inviscid strain-rate amplification over enstrophy amplification. These
terms are not present in the dynamics of two-dimensional turbulence, with the only
mechanism by which enstrophy changes in time being via the direct action of viscosity
(Batchelor 1969). This is reflected in (2.4) in which no decoupling of the terms of
the reduced VGT and those not captured in the reduced VGT is possible with the
exception of the first term, −pq, the mean of which is shown to predict 〈ωiSijωj〉
under the assumption of isotropy in (2.2).

3. Relationship between the full and reduced strain-rate tensors

We now re-write the strain-rate tensor, Sij, as

Sij :=



A11 D12 D13
D12 A22 D23
D13 D23 −(A11 + A22)


 (3.1)

and, following Cardesa et al. (2013), the reduced strain-rate tensor S̃ij is taken to be
the upper-left 2× 2 block of Sij, that is,

S̃ij :=
(

A11 D12
D12 A22

)
. (3.2)

Recall that the eigenvalues of Sij are denoted si (with corresponding eigenvectors ei)
and are assumed to be ordered s1 > s2 > s3, while the eigenvalues s̃i (and corresponding
eigenvectors ẽi) of the reduced strain-rate tensor S̃ij are assumed to satisfy s̃1 > s̃2,
although no strict sign condition may be placed upon them. The purpose of this
section is to discuss to what extent information on the eigenvalues/eigenvectors of Sij

can be determined, given that S̃ij is known.

3.1. Eigenvalue bounds
Cardesa et al. (2013) showed that the sign of the intermediate eigenvalue s2 can be
determined when the two reduced eigenvalues have the same sign: if 0< s̃2 6 s̃1, then
s2 > 0; while if s̃2 6 s̃1 < 0 it follows that s2 < 0. Whilst interesting from the point
of view that the sign of s2 determines whether the flow is locally ‘sheet-forming’ or
‘tube-forming’, such a result does not place any bounds upon the magnitude of s2, nor
give any information regarding the remaining eigenvalues s1, s3.
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To provide such information, observe that since Sij is symmetric it follows from
Horn & Johnson (2013, Theorem 4.3.17), that the eigenvalues of the two matrices
are ‘interlaced’, namely,

s3 6 s̃2 6 s2 6 s̃1 6 s1. (3.3)

It is immediate that the result of Cardesa et al. (2013) follows from the central
pair of inequalities s̃2 6 s2 6 s̃1. Interestingly, (3.3) requires only the fact that Sij
is symmetric, whereas the proof presented in Cardesa et al. (2013) requires the
assumption of incompressibility. Furthermore, in addition to determining the sign of
s2, (3.3) now enables bounds to be placed upon the remaining eigenvalues of Sij.

If we additionally assume that the flow is incompressible we can show that

kiSij kj = A33 =−(A11 + A22)= S̃ii =−(s̃1 + s̃2), (3.4)

where k is a unit vector in the x3 direction. Now, the Rayleigh–Ritz theorem (Horn
& Johnson 2013) states that the maximum and minimum eigenvalues of Sij provide
upper and lower bounds for the quantity sup{viSijvj:v2 = 1}. Consequently,

s3 6−(s̃1 + s̃2)6 s1. (3.5)

Combining (3.3) and (3.5), we can infer the following information regarding the
eigenvalues of Sij from the reduced strain-rate tensor S̃ij:

s3 6 min {s̃2,−(s̃1 + s̃2)} , s̃2 6 s2 6 s̃1, max {s̃1,−(s̃1 + s̃2)}6 s1. (3.6a−c)

Hence, incompressibility provides an improved bound on s3 when 2s̃2 + s̃1 > 0, and
an improved bound upon s1 when 2s̃1 + s̃2 < 0. We now derive asymmetric bounds
such that, for example, if s̃1 < 0 then, by (3.6), s1 >−(s̃1+ s̃2)>−2s̃1. These bounds,
which are specific examples of the more general (3.6), are summarised as follows:

s1 > −2s̃1|s̃1<0 , s1 >− 1
2 s̃2

∣∣
s̃2<0 ,

s3 6 − 1
2 s̃1

∣∣
s̃1>0 , s3 6−2s̃2|s̃2>0 .

}
(3.7)

It is important to emphasise that the bounds on the eigenvalues shown in (3.6)
were proven using only the facts that Sij is symmetric and trace-free, that is, that the
velocities were sampled from an incompressible flow. It is only the particular form
of the distributions within these bounds which captures the intricacies of the flow
physics.

3.2. Invariants of the full and reduced strain-rate tensor
As discussed in § 1, the invariants Q = (‖Ωij‖ − ‖Sij‖)/2 and R = (SijSjkSki −
(3/4)ωiSijωj)/3 of the VGT are convenient tools with which to describe the
instantaneous flow topology. Since the invariants of the strain-rate tensor are given
by

QS =− 1
2 SijSij, RS =− 1

3 SijSjkSki, (3.8a,b)

it is clear that evaluating these invariants has direct implications for the behaviour
of the full VGT. Furthermore, the first reduced strain-rate invariant determines the
dissipation of kinetic energy due to viscous friction as illustrated in (1.7).

It is therefore of interest to discuss the extent to which QS and RS can be estimated,
given that the reduced strain-rate tensor S̃ij is known. Analogously to the VGT,
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the reduced invariants of S̃ij are defined to be the coefficients of its characteristic
polynomial

pS =−(A11 + A22)=−(s̃1 + s̃2), qS = A11A22 − D2
12 = s̃1s̃2. (3.9a,b)

Since the full invariants can be expressed in terms of the eigenvalues of Sij as

QS = s1s2 + s1s3 + s2s3,

RS = −s1s2s3,

}
(3.10)

it appears that QS and qS are likely to be most closely related. Indeed, the bounds
identified in (3.6) allow QS to be estimated in terms of qS.

To this end, suppose first that qS 6 0. Then, by (3.6), s3 6 s̃2 6 0 6 s̃1 6 s1 and it
follows that s1s3 6 s̃1s̃2. Assuming incompressibility,

QS = s1s3 + (s1 + s3)s2 = s1s3 − s2
2 6 s̃1s̃2 = qS. (3.11)

Next, suppose that qS > 0. This occurs if either s̃1 > s̃2 > 0 or s̃2 6 s̃1 < 0. In the
former case, s3 =−(s1 + s2) can substituted into (3.10) to show that

QS =−3s1s2 − (s1 − s2)
2 6−3s1s2 6−3s̃1s̃2 =−3qS, (3.12)

where the final inequality follows from (3.6). In the latter, a similar argument provides
that same bound:

QS =−3s2s3 − (s2 − s3)
2 6−3s2s3 6−3s̃1s̃2 =−3qS. (3.13)

In summary,

QS 6

{
qS for qS 6 0,
−3qS for qS > 0.

(3.14)

3.3. Statistics of the reduced strain-rate tensor
In §§ 3.1 and 3.2 it has been shown that, as a consequence of incompressibility,
bounds can be placed upon the invariants and eigenvalues of Sij based only upon
knowledge of S̃ij. However, to determine how often these bounds can provide useful
information, it is of interest to understand the statistics of the reduced eigenvalues.

For example, to infer from (3.6) that the flow is either ‘tube-forming’ or ‘sheet-
forming’ requires s̃1 < 0 or s̃2 > 0, respectively, and it was noted in Cardesa et al.
(2013) that such situations occur in approximately 14.2 % of the studied data ensemble.
However, currently, the only known statistical information is that 〈s̃1〉 = −〈s̃2〉 and
that 〈s̃1s̃2〉=−(5/4)〈(∂u1/∂x1)

2〉. Under the assumptions of homogeneous and isotropic
turbulence, we now extend these results.

3.3.1. Expectation of s̃1, s̃2

A direct computation gives

s̃1,2 =−pS

2
± 1

2

√
p2

S − 4qS (3.15)
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and since 〈pS〉 = 〈p〉 = 0, it follows that

〈s̃1,2〉 =± 1
2

〈√
(A11 − A22)2 + 4D2

12

〉
=± 1

2

〈
X1/2

〉
. (3.16)

Here, we have defined the positive variable X = (A11 − A22)
2 + 4D2

12 = p2
S − 4qS.

Evaluating the expected value of the square root of X directly is difficult. However,
X depends only upon terms in the symmetric strain-rate tensor. Therefore, under the
assumption of isotropy and homogeneity, its moments can be expressed in terms of
the moments of ∂u1/∂x1 (Hierro & Dopazo 2003). Indeed, we obtain

〈X〉 = 6

〈(
∂u1

∂x1

)2
〉
, 〈X2〉 = 24

〈(
∂u1

∂x1

)4
〉
. (3.17a,b)

This information can be used to estimate 〈X1/2〉.
First, the Cauchy–Schwarz inequality implies that 〈X1/2〉6 〈X〉1/2. Next, suppose that

constants a,b>0 are chosen such that x1/2 >−ax2+bx, for all x>0. Then it is shown
in appendix A that

〈X1/2〉> 〈X〉1/2
(

b− a
〈X2〉
〈X〉2

)
. (3.18)

Hence, using (3.16) and (3.17),

√
3
2

〈(
∂u1

∂x1

)2
〉1/2 (

b− 2aκ
3

)
6 〈s̃1〉6

√
3
2

〈(
∂u1

∂x1

)2
〉1/2

, (3.19)

where κ := 〈(∂u1/∂x1)
4〉/〈(∂u1/∂x1)

2〉2 is the kurtosis of ∂u1/∂x1.
It is clear that the lower bound in (3.19) is only meaningful if c(a, b) := b −

2aκ/3 > 0, and that a larger value of this constant provides a tighter estimate of
〈s̃1〉. Consequently, we should aim to maximize c(a, b) subject to the constraint x1/2 >
−ax2+bx, for all x>0. It is shown in appendix A that the solution to this constrained
optimisation problem is cmax =√3/2κ . Hence,

√
3

2κ
6

〈s̃1〉
√

3
2

〈(
∂u1

∂x1

)2
〉1/2 6 1 (3.20)

and since 〈s̃2〉 =−〈s̃1〉,

−1 6
〈s̃2〉

√
3
2

〈(
∂u1

∂x1

)2
〉1/2 6−

√
3

2κ
. (3.21)

The estimates (3.20) and (3.21) agree with and extend the previously proven
(Cardesa et al. 2013) result that, assuming isotropy and homogeneity, 〈s̃2〉 = −〈s̃1〉6
0 6 〈s̃1〉.

Figure 2 shows the kurtosis (κ) profile of A11 throughout the mixing layer data we
introduce in § 4. The study of Van Atta & Antonia (1980) compiles the experimental
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FIGURE 2. Profile of κ(x2).

variation of κ for a variety of different turbulent flows over a range of turbulent
Reynolds numbers, Reλ. They show that in the range 102 < Reλ < 103 κ varies as
κ ∼ Rem

λ , where m is roughly bounded by 0.32 . m . 0.41. For a nominally two-
dimensional free shear flow, such as the mixing layer data, Reλ is evidently a function
of x2 requiring κ to be a function of x2 as illustrated in the figure. The value of κ
at x2 = 0 of 6.3 compares favourably to that for the mixing layer of Wyngaard &
Tennekes (1970) (6.0± 0.2) at a comparable Reλ≈ 300 for the data introduced in § 4.
It should be noted that since κ is minimised at the centreline of the mixing layer
(excluding the free stream) the bounding of 〈s̃i〉 is at its narrowest on the centreline
and increases towards the peripheries of the mixing layer.

3.3.2. Variance of s̃1, s̃2

To estimate the variance of the reduced eigenvalues, we first consider their second
moments, again assuming isotropy and homogeneity. Using (3.15),

s̃2
1,2 = 1

4(p
2
S + X)∓ 1

2 pS

√
X. (3.22)

Now 〈p2
S〉 = 〈A2

11+ A2
22+ 2A11A22〉 and using the result for double products of velocity

derivatives under the assumption of homogeneous isotropic turbulence

〈
∂ui

∂xl

∂uj

∂xk

〉
=
[

2δijδkl − 1
2
(δjkδil + δikδjl)

]〈(
∂u1

∂x1

)2
〉
, (3.23)

we obtain 〈p2
S〉 = 〈(∂u1/∂x1)

2〉. Hence, using (3.17),

〈s̃2
1,2〉 =

7
4

〈(
∂u1

∂x1

)2
〉
∓ 1

2

〈
pS

√
X
〉

(3.24)
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and since 〈s̃1〉 =−〈s̃2〉, the variances of the reduced eigenvalues are related by

σ 2
s̃1
− σ 2

s̃2
=−〈pS

√
X〉. (3.25)

Therefore, the sign of 〈pS

√
X〉 determines which of the reduced eigenvalues has the

greater variance. Furthermore, the bounds of (3.20), (3.21) and (3.24) can be used to
show that the variances are upper bounded by

σ 2
s̃1,2〈(
∂u1

∂x1

)2
〉 6

1
4

(
7− 9

κ
∓ 2〈pS

√
X〉
/〈(

∂u1

∂x1

)2
〉)

. (3.26)

Unfortunately, at present, we are unable to analytically determine the sign of
〈pS

√
X〉. However, since

√
X is positive and pS is zero-mean and negatively skewed,

we conjecture that 〈pS

√
X〉> 0 and, more specifically, that

〈pS

√
X〉〈(

∂u1

∂x1

)2
〉 = 1

2
, (3.27)

which is supported by its numerical value of 0.50 in the mixing layer data of § 4.
Finally, since 〈s̃1s̃2〉 = −(5/4)〈(∂u1/∂x1)

2〉, the bound of (3.20) can be used to
estimate the covariance σ(s̃1, s̃2)= 〈s̃1s̃2〉 − 〈s̃1〉〈s̃2〉 of the reduced eigenvalues:

1
4

(
9
κ
− 5
)
6

σ(s̃1, s̃2)〈(
∂u1

∂x1

)2
〉 6

1
4
. (3.28)

The fact that the above bound is asymmetric about zero is suggestive of the fact that
for the majority of data points, s̃2 < 0< s̃1. This condition is indeed met for 85.8 %
of the ensemble of the data of Cardesa et al. (2013) and 85.2 % of the ensemble of
the data presented in § 4.

4. Data
In order to observe the dependences discussed in § 2 and validate the bounds that

we derive in § 3 we must choose a suitable test case flow with access to the full VGT.
In order for our assumptions of incompressibility, homogeneity and isotropy to be
largely fulfilled we require data from a region of fully developed turbulence, which
in the Richardson–Kolmogorov phenomenology should exhibit statistical isotropy
and homogeneity at the small scales (but in practice of course will only closely
approximate this). George & Hussein (1991) illustrate that at finite Reynolds numbers
there is no such thing as a perfectly isotropic flow and thus quantify the degree of
(an)isotropy by using their parameters K1, K2, K3 and K4. Taylor (1935) derives the
value for all four of these parameters to be unity for homogeneous isotropic turbulence
(HIT). Further, George & Hussein (1991) produce an exhaustive list of the values of
these parameters in a wealth of different flow configurations and experiments (their
tables 1 and 2). Departure from unity for these parameters can thus be used to assess
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the degree of (an)isotropy of the small scales of a flow and this departure can easily
be compared to that for other flows.

In the event of small-scale anisotropy (to whatever extent) the choice of source
plane for the reduced VGT, i.e. which 2 × 2 block of the VGT, is no longer an
arbitrary choice but must be carefully considered. This is further discussed in § 7.
Whilst many numerical studies with excellent HIT data exist this will not allow us
to examine the effect of large-scale anisotropy on the choice of source plane for
the reduced VGT. In order to do this we must instead consider a shear flow. We
thus choose to use a mixing layer, which can be considered the most canonical of
all the free shear flows. Winant & Browand (1974) state, ‘the region between two
parallel streams moving at different speeds is the simplest free shear flow which can
be considered’ and is thus the ideal flow against which to test our analyses.

The data that we choose are identical to those used by Buxton, Laizet &
Ganapathisubramani (2011b) of a nominally two-dimensional, planar mixing layer
produced by means of a direct numerical simulation (DNS) of two flows of
different free-stream velocities (U1 and U2, in the ratio U1/U2 = 2) either side of a
splitter plate of thickness h, similar to the study of Laizet, Lardeau & Lamballais
(2010). The computational domain (Lx1 × Lx2 × Lx3) = (230.4h × 48h × 28.8h) is
discretised on a Cartesian mesh that is stretched in the cross-stream (x2) direction
of (2049 × 513 × 256) mesh nodes. The stretching of the mesh in the cross-stream
direction leads to a minimal mesh size of 1x2≈ 0.03h. The time step, 1t= 0.05h/Uc,
where Uc= (U1+U2)/2 is the mean convection velocity, is low enough to satisfy the
Courant–Friedrichs–Lewy condition, ensuring temporal stability of the solution.

A sub-domain that consisted of the final 301 (× 513 × 256) mesh nodes in the
streamwise (x1) direction was isolated and three time steps that were sufficiently well
spaced in time to ensure statistical independence were saved. This sub-domain is
in the far field of the mixing layer in which the turbulence is fully developed with
self-similar mean velocity profiles throughout, with all subsequent data and analysis
presented in this manuscript coming from this sub-domain. The Reynolds number
based on Uc and h (ReW) is 1000 and the Reynolds number based on the Taylor
microscale, computed assuming isotropic turbulence (Taylor 1935), is Reλ≈ 270 along
the centreline.

The code ‘incompact3d’ (Laizet & Lamballais 2009), based on sixth-order compact
schemes for spatial discretisation and second-order Adams–Bashforth schemes for time
advancement, is used to solve the incompressible non-dimensionalised Navier–Stokes
equations. To treat the incompressibility condition a projection method is used
requiring the solution of a Poisson equation for the pressure. This equation is fully
solved in spectral space via the use of the relevant three-dimensional fast Fourier
transforms (FFT). The boundary conditions are inflow/outflow in the streamwise
direction (velocity boundary conditions of the Dirichlet type), free slip in the
cross-stream direction at x2 = ±Lx2/2 and periodic in the spanwise direction at
x3=±Lx3/2. The pressure mesh is staggered from the velocity mesh to avoid spurious
pressure oscillations. Using the concept of modified wavenumber, the divergence-free
condition is ensured up to the machine accuracy. More details on the simulation,
including the generation of the inlet/initial conditions (including the boundary layers
on both sides of the splitter plate), can be found in Laizet et al. (2010) and more
details about the code, its validation and the original treatment of the pressure in
spectral space can be found in Laizet & Lamballais (2009).

In order to ensure that only data in the turbulent region of the flow are considered
a criterion based on the enstrophy was devised. Thresholds based on enstrophy have
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FIGURE 3. (Colour online) Instantaneous contours of enstrophy for a plane of constant x3.

been found to be the most suitable for the identification of turbulent/non-turbulent
fluid in free shear flows (Bisset et al. 2002). Thus a threshold based on the mean
enstrophy for each time step, ω2

thres. = 0.025〈ω2〉, was chosen based on figure 3 to
ensure that data from the potential flow region were discarded. Data points with
enstrophies below 2.5 % of the means were removed, accounting for some 30 % of
the original data.

4.1. Isotropy validation
The assumption of local isotropy requires that there is no statistically preferential
direction at a given point within the flow. Consequently the mean square of each
of the off-diagonal terms of the VGT ought to be equal to each other and equal to
twice the mean square of each of the diagonal terms (George & Hussein 1991). A
sixth-order Lagrange interpolating polynomial numerical scheme was used to compute
the velocity gradients. For grid flow, values of the isotropic parameters of George
& Hussein (1991) K1 ∈ [1.04, 1.09] and K3 ∈ [0.72, 0.8] are deemed reasonable
approximations of isotropy (Valente & Vassilicos 2014). Thus it can be seen that the
turbulence in the far field of the mixing layer can be reasonably approximated as
being locally isotropic (better in fact than these recent grid flows):

K1 = 2

〈(
∂u1

∂x1

)2
〉/〈(

∂u2

∂x1

)2
〉
= 1.0582, (4.1)

K2 = 2

〈(
∂u1

∂x1

)2
〉/〈(

∂u3

∂x1

)2
〉
= 1.0406, (4.2)

K3 = 2

〈(
∂u1

∂x1

)2
〉/〈(

∂u1

∂x2

)2
〉
= 0.8742, (4.3)
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Local isotropy condition Ãij estimate Percentage difference (%)

〈pq〉
〈p3〉 =

7
6

1.1384 −2.42

〈pq〉
〈ωiSijωj〉 =−

1
15

−0.0705 5.75

TABLE 1. Comparison of statistical results of the reduced VGT invariants with those
derived using the assumption of homogeneous isotropic turbulence in (2.1) and (2.2).

K4 = 2

〈(
∂u1

∂x1

)2
〉/〈(

∂u1

∂x3

)2
〉
= 0.9166. (4.4)

Under the assumption of local isotropy, the dissipation rate can be expressed as

ε =





15ν
〈
∂ui

∂xj

〉
if i= j,

7.5ν
〈
∂ui

∂xj

〉
if i 6= j.

(4.5)

For the current data the approximations ranged from 0.897〈ε〉 to 1.086〈ε〉, where 〈ε〉
is the mean rate of dissipation computed without assumption as 〈ε〉 = 2ν〈SijSij〉. The
closest dissipation estimate assuming local isotropy was obtained using the ∂u2/∂x2
component, giving a value of 1.011〈ε〉. Conventionally, the first diagonal term is used
which gives an estimate of 0.949〈ε〉.

Cardesa et al. (2013) derived the relationships in (2.1) and (2.2), relating the
invariants of the reduced VGT to the mean enstrophy amplification rate 〈ωiSijωj〉
using the assumptions of homogeneity and local isotropy. A further consideration
of the validity of the assumption of local isotropy for the mixing layer data, in the
context of the reduced VGT, is presented in table 1. It can thus be seen that the flow
is, again, on the whole close to meeting the conditions for local isotropy.

5. Validation of our bounds against the mixing layer data
5.1. Invariants of the reduced VGT

Figure 4 shows the joint p.d.f. between p and q which again shows the characteristic
‘teapot’ shape reported in Cardesa et al. (2013) and Fiscaletti et al. (2014) for a
variety of turbulent flows. These new data add further credence to the notion that the
shape of the p–q joint p.d.f. is also a ‘universal’ feature of turbulent flows, similarly
to that for the full invariants Q and R (Elsinga & Marusic 2010).

The joint p.d.f.s between the invariants of the VGT and those for the reduced VGT
are presented in figure 5 which shows the joint p.d.f.s between Q and (−p2 + q) (a)
and R and −pq (b). There is a clear trend for Q to be distributed along the line Q=
(−p2+q), derived in (2.3), in figure 5(a), with a stretching of the contours of the joint
p.d.f. along this line meaning localised peaks (modes) in the conditional p.d.f.s of Q
against (−p2+ q). The contours are also observed to be stretched along (−p2+ q)= 0,
but this is subsequently shown to be a generic property of a trace-free 3× 3 matrix.
It can be seen that there is a much greater spread of the data for Q > (−p2 + q)
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FIGURE 4. (Colour online) Joint p.d.f. of reduced VGT invariants p and q. Contours scale
logarithmically.
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FIGURE 5. (Colour online) Joint p.d.f.s of Q (a) and R (b) against their constituent terms
from the reduced VGT. Contours scale logarithmically.

than for Q< (−p2 + q) indicating that as the excess of rotation (swirling) over strain
rate for the fluid element becomes greater, then less information regarding the VGT
is carried in the invariants of the reduced VGT. Figure 5(b) on the other hand shows
very little structure whatsoever to the contour levels of the joint p.d.f. between R
and −pq, derived in (2.4). This emphasises the difficulty in gleaning information on
the third invariant R, which is a property of three-dimensional turbulence that is not
present in two-dimensional turbulence, from the reduced VGT, which is of course a
two-dimensional projection of the full VGT.

The dependence of Q on the individual invariants, p (a) and q (b), of the reduced
VGT is illustrated in figure 6 with Q = −p2 and Q = q shown as the dashed lines
respectively. The first reduced invariant, p, is an indication of the compressibility
of the flow when projected onto a 2D plane. Buxton, Laizet & Ganapathisubramani
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FIGURE 6. (Colour online) Joint p.d.f.s of Q against the invariants of the reduced VGT
p (a) and q (b). Contours scale logarithmically.

(2011a) show that artificial compressibility introduced by experimental noise increases
and indeed alters the distribution of the Q–R joint p.d.f. No distribution around
Q = −p2 whatsoever is observed for the estimation of Q from the ‘compressibility’
invariant, p in the joint p.d.f. of figure 6(a). In contrast it can be seen from the joint
p.d.f. in figure 6(b) that the distribution of the contours about Q = q is similar to
that for Q = −p2 + q in figure 5(a) with strong peaks in probability observed for
Q= q. It is observed that the sign of q is an excellent predictor of the sign of Q for
Q< 0 (local excess of strain rate over rotation): 85.3 % of the data for which q< 0
exhibits concurrent Q < 0 (the bottom left-hand quadrant of figure 6b). However, q
being positive is a significantly inferior predictor of the sign of Q, with only 54.1 %
of data having a positive value of Q (local excess of rotation over strain rate) for
q> 0. By inspection of the joint p.d.f. contours it can also be seen that the variance
of the distribution of the joint p.d.f. when Q > 0 and q > 0 is significantly greater
than that for when Q < 0 and q < 0, further reducing the quality of predictions for
Q from q. It is thus argued that the two-dimensional projection of local straining
is a far more accurate guide to the underlying three-dimensional physics than the
projection of rotation.

In order to show that the strong dependence between Q and q is a property of
Navier–Stokes turbulence and not a generic property of trace-free 3 × 3 matrices
a synthetic divergence-free velocity field was produced for comparison. A 100 ×
100 × 100 domain of velocities modelled as Gaussian distributed uncorrelated noise
with the same extrema as the velocity components of the DNS data was generated.
Incompressibility was enforced by assigning u1, u2 and A33=−(A11+A22) and thereby
computing u3. The resulting joint p.d.f.s of Q against p and q (equivalent to those in
figure 6) are presented in figure 7. It can be seen that the shapes and peaks of the
joint p.d.f.s in figure 6 are distinct from those of figure 7, particularly that of the joint
p.d.f. between q and Q, and can therefore be assumed to result from the turbulent
flow being examined and thus the Navier–Stokes equations. The observed stretching
of the joint p.d.f. contours along q = 0 in figure 6(b) is additionally observed in
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FIGURE 7. (Colour online) Joint p.d.f.s of Q against p (a) and q (b) for a synthetic
velocity field of Gaussian noise. Contours scale logarithmically.

figure 7(b), showing that this is a property of a trace-free 3 × 3 matrix as opposed
to representing the underlying physics of the Navier–Stokes equations.

5.2. The reduced strain-rate tensor
Figures 8 and 9 show joint p.d.f.s of the reduced and full strain-rate eigenvalues for
the mixing layer data. Note that the interlacing bounds of (3.3) all hold and are sharp
in the sense that the joint densities are non-zero arbitrarily close to each bound. The
bounds derived in (3.7) are also observed to hold and are also sharp. The fact that
these bounds are derived merely from incompressibility and are not representative of
any physics themselves is illustrated in figure 10. This shows a similar series of joint
p.d.f.s between si and s̃2 formed from the synthetic, divergence-free, velocity field
consisting of Gaussian distributed noise. The physics of Navier–Stokes turbulence are
encapsulated in the statistical distributions of the joint p.d.f.s of figures 8 and 9 within
these bounds.

It can be seen from figure 8 that the joint p.d.f.s are more skewed towards the
bound given by s1 =−2s̃1 than that given by s1 = s̃1, and towards s3 =−s̃1/2 rather
than s3= s̃1. Similarly, figure 9 shows that the joint densities for s̃2 are skewed towards
s1 =−s̃2/2 as opposed to s1 = s̃2, and towards s3 =−2s̃2 rather than s3 = s̃2.

The modal values of the intermediate eigenvalue are seen to approximately follow
s2 = s̃1/4 and s2 = −s̃2/3. The exact equations for the modal values of the full
eigenvalues for each of the given reduced eigenvalues are

s1 =−2.38s̃1 + 2.54〈s̃1〉, s1 =−0.72s̃2 − 0.79〈s̃2〉, (5.1a,b)

s2 = 0.22s̃1 + 1.31〈s̃1〉, s2 =−0.33s̃2 − 0.23〈s̃2〉, (5.2a,b)
s3 =−1.25s̃1 − 1.53〈s̃1〉, s3 =−2.32s̃2 + 3.43〈s̃2〉. (5.3a,b)

Figure 11 shows the first three standardised moments of the full eigenvalues si,
conditioned upon the respective reduced eigenvalues s̃1, s̃2. The nomenclature M(si|s̃i)
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FIGURE 8. (Colour online) The joint p.d.f.s of s̃1 against s1, s2 and s3, (a)–(c) respectively.
Contours scale logarithmically.
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FIGURE 9. (Colour online) The joint p.d.f.s of s̃2 against s1, s2 and s3, (a)–(c) respectively.
Contours scale logarithmically.

denotes the statistical moment of si given s̃i, where M is either µ (mean, 〈si〉), σ 2

(variance, 〈si
2〉 − 〈si〉2) or γ (skewness, 〈si

3〉/〈si
2〉3/2).

For the most commonly occurring case of s̃1 > 0 and s̃2 < 0 it can be seen that
µ(s2|s̃i)> 0. For 0< s̃1/〈S̃ijS̃ij〉1/2< 1 and −1< s̃2/〈S̃ijS̃ij〉1/2< 0 it is observed that the
ratio µ(s3|s̃i):µ(s2|s̃i):µ(s1|s̃i) is approximately −4.8:1:3.8, which is slightly higher
than the reported modal ratios of roughly −4:1:3 (Ashurst et al. 1987; Tsinober et al.
1992) in other turbulent flows (for completeness the modal ratio for the entirety
of the turbulent region of the mixing layer data is −3.6:1:2.6). Whilst the ratio
µ(s3|s̃i):µ(s2|s̃i):µ(s1|s̃i) is observed to remain largely constant as s̃1 is increased
it is observed to decrease to approximately −3.5:1:2.5 for large magnitudes of
(negative) s̃2. This is indicative of a relatively stronger extensive intermediate strain
rate and hence more aggressive ‘sheet-forming’ topological evolution when s̃2 is a
higher magnitude negative value. Thus knowledge of the reduced strain-rate tensor
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FIGURE 10. (Colour online) Joint p.d.f.s of s̃2 against s1, s2 and s3, (a)–(c) respectively,
for a synthetic velocity field consisting of Gaussian distributed noise. Contours scale
logarithmically.

eigenvalues gives us an indication of the intensity of the topological evolution of the
fluid element in three dimensions.

The conditional means µ(s1|s̃1) and µ(s3|s̃1) behave similarly to the bounds of (3.6),
in that their gradients change by a factor of around −1/2 as s̃1 passes zero. The
reduction in gradient of µ(s2|s̃1) as s̃1 passes zero does not appear to be related to
the bounds considered in the previous section. The means of the full eigenvalues s1
and s3 conditioned upon s̃2, shown in figure 11(b), behave similarly. However, when
conditioned upon s̃2 it is observed that the gradient of µ(s2|s̃2) not only changes its
magnitude as it passes s̃2= 0 but also its sign, meaning that 〈s2〉 remains positive for
all s̃2 and hence ‘sheet-forming’ is favoured over ‘tube-forming’. Thus µ(s2|s̃1) more
closely follows µ(s3|s̃1), whereas µ(s2|s̃2) varies as µ(s1|s̃2), resulting in preferential
‘tube-forming’ topological evolution when s̃1 < 0, in agreement with Cardesa et al.
(2013).

Such dependence upon the sign of the reduced eigenvalues is also prominent in the
case of skewness. In particular, γ (s2|s̃1) abruptly changes from positive to negative as
s̃1 passes zero. An explanation for this behaviour is suggested by the structure of the
joint p.d.f. presented in figure 8(b). In particular, for s̃1 < 0 the conditional density of
s2 is monotonic until the upper bound s2 = s̃1. However, for s̃1 > 0, the conditional
density has a maximum value strictly before the upper bound is met. Again, this
behaviour is not indicated by the eigenvalue bounds of (3.6). Opposite behaviour to
this is observed for γ (s3|s̃1) with a decrease (and negative skewness) observed up until
s̃1/〈SijSij〉1/2≈ 1 before subsequently increasing as the unimodal behaviour of the joint
p.d.f. of figure 8(c) becomes more significant. The skewness for all of the turbulent
strain rates is subsequently observed to be uniform for large values of s̃1.

A similar change in γ (s3|s̃2) can be observed in figure 11(f ). Again, it can be seen
from figure 9(c) that the conditional density changes from monotonic to unimodal as
s̃2 changes sign. This time, however, the change can be attributed to the bound s3 6
min{s̃2, −(s̃1 + s̃2)}. In particular, the second bound s3 6 −(s̃1 + s̃2) is active when
2s̃2 + s̃1 > 0, and this is most likely to be the case when s̃2 is positive. Hence, in
this range, the behaviour of s3 is influenced by both reduced eigenvalues, serving to
push the peak of the conditional p.d.f. away from the conservative bound s3 6−2s̃2
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FIGURE 11. Statistical moments of the strain-rate eigenvalues conditioned on s̃i. (a) Mean
µ(si|s̃1), (b) µ(si|s̃2), (c) variance σ 2(si|s̃1), (d) σ 2(si|s̃2) (e) skewness γ (si|s̃1) and
(f ) γ (si|s̃2).

indicated in figure 9. It is observed that γ (s1|s̃2) and γ (s2|s̃2) follow a contrasting
pattern to that for γ (s3|s̃1), with constant skewness seen for lower magnitudes of s̃2
and negative skewness seen at larger (negative) magnitudes.

The conditional variances represent the quality of information that each of the
reduced eigenvalues s̃1, s̃2 contains about the full eigenvalues si. For example,
figure 11(c) shows asymmetry of σ 2(s1|s̃1), with higher conditional variance for
s̃1 < 0. Again, this is explained by the nature of the bound of (3.6): in the range
s̃1 < 0 the active bound on s1 from (3.6) is s1 > −(s̃1 + s̃2); while in the range
s̃1 > 0 the bound s1 > s̃1 is most likely active. Hence, it is not unexpected that for
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FIGURE 12. (Colour online) Joint p.d.f. of QS against qS. Contours scale logarithmically.

a given α > 0, we have σ 2(s1|s̃1 = −α) > σ 2(s1|s̃1 = α). The variances for all si are
observed to drop dramatically at s̃i= 0 (although this is accentuated for s1 due to the
‘peakiness’ of the distributions). This can be explained by the fact that for s̃i = 0 the
bounds observed in figures 8 and 9 force the modal values of the p.d.f.s of si to be
located at zero, with monotonic, logarithmically decreasing tails, whereas the modal
value moves away from the origin for all other s̃i, thereby increasing the variance.

Figure 12 shows the joint p.d.f. between QS and qS. The asymmetric sector bounds
derived in (3.14), dependent upon the sign of qS, are again observed to be sharp. It
can be seen that the distribution is slightly skewed towards the bound of QS 6 qS for
qS 6 0.

We show in (3.20) and (3.21) that the bounds on the mean values of the reduced
strain-rate eigenvalues, 〈s̃i〉, are a function of the kurtosis of A11 (κ). Further, figure 2,
illustrates that κ is itself a function of the cross-stream direction x2. Incorporating
the entire turbulent region of the mixing layer as defined by the region in which the
enstrophy exceeded the enstrophy threshold (see § 4) the mean kurtosis is computed
to be κ = 9.4 leading to the bounds

0.40 6
〈s̃1〉

√
3
2

〈(
∂u1

∂x1

)2
〉1/2 6 1, −1 6

〈s̃2〉
√

3
2

〈(
∂u1

∂x1

)2
〉1/2 6−0.40, (5.4a,b)

which are indicated by vertical lines on the inset of figure 13 showing the p.d.f.s of
s̃i. Equations (3.20) and (3.21) and figure 2, however, illustrate that tighter bounds on
〈s̃i〉 can be found closer to the centreline of the mixing layer than the periphery. The
appropriately normalised expected values are 0.58 and −0.66, respectively, which can
be seen to lie within the expected ranges. We observe, however, that −〈s̃1〉/〈s̃2〉= 0.88
instead of taking the value 1, which would be the case if the flow were truly isotropic.
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FIGURE 13. P.d.f. of the reduced strain-rate tensor eigenvalues. The inset shows the
bounds on 〈s̃i〉 derived in (3.20) and (3.21).

Further, assuming that (3.27) holds and using κ=9.4, the upper bounds of σ 2
s̃1,2

from
(3.26) are 1.26 and 1.76, respectively. These compare to their respective numerical
values of 0.980 and 1.388. We note that the conjecture 〈pS

√
X〉> 0 is supported by

the distributions of the reduced eigenvalues shown in figure 13, where it can be seen
that s̃2 takes a wider range of values than s̃1. This supports the observation of Cardesa
et al. (2013) that the tails of the p.d.f. of s̃2 are more extensive than those of s̃1.

Equation (3.3) shows that knowledge of the magnitude of the reduced strain-rate
eigenvalues allows us to place bounds on si. By making use of the properties of the
expectation operator we may additionally write

〈s3〉6 〈s̃2〉6 〈s2〉6 〈s̃1〉6 〈s1〉 (5.5)

and thus we can see that we may bound the mean values of the strain-rate eigenvalues
themselves from (3.20) and (3.21). Figure 13 shows that these bounds are actually
reasonably tight for a typical free shear flow. Furthermore, knowledge of higher-order
moments of s̃1 and s̃2 (such as σ 2

s̃1,2
), will give us a better indication of the strength

of these bounds that we may place on si.

6. Eigenvectors of Sij and S̃ij

Further to the discussion presented in § 1, (1.4) shows that the interaction between
strain rate and rotation, and the enstrophy amplification term ωiSijωj is strongly
dependent upon the alignment cosines between the vorticity vector and the strain-rate
eigenvectors. The mean value of the enstrophy amplification term can be shown to
relate to the skewness of one of the components of the VGT under the assumption
of local isotropy (Betchov 1956):

〈ωiSijωj〉 =− 7

6
√

15
〈ω2〉3/2γ0, (6.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.60


Kinematics of the reduced VGT in a turbulent free shear flow 649

p.d.f.

5

10

15(a) (b) (c)

1

2

3

4

5

6

0.2 0.4 0.6 0.8 1.000.2 0.4 0.6 0.8 1.000.2 0.4 0.6 0.8 1.00

2

4

6

8

10

12

14

16

18

FIGURE 14. P.d.f.s of the alignment cosines between the three-dimensional embedding
of the eigenvectors of S̃ij and the eigenvectors of Sij.

γ0 =
〈(

∂u1

∂x1

)3
〉/〈(

∂u1

∂x1

)2
〉3/2

, (6.2)

and γ0 can be directly measured without recourse to 3D3C data. Cardesa et al. (2013)
extended this to consideration of the reduced VGT invariants and showed, via (2.1)
and (2.2) that

〈ωiSijωj〉 =−15〈pq〉 =− 105
6 〈p3〉. (6.3)

However, this does not reveal anything of the directionality of the two-dimensional
projection of the three strain-rate eigenvectors instantaneously, or indeed whether this
is reflected in the eigenvectors (eigenframe) of the reduced strain-rate tensor. These
are defined in a similar convention to those of the full strain-rate tensor, with ẽ1
corresponding to the first reduced eigenvalue, s̃1, and ẽ2 corresponding to s̃2.

P.d.f.s of the alignment cosines between the three-dimensional embedding of ẽi ,
defined as ẽ3D

i =[ẽix1, ẽix2,0]T, and ei are presented in figure 14. This three-dimensional
embedding of the reduced strain-rate eigenvectors was used such that the out of plane
component of ei , eix3 , was included in the norm of ei when computing the alignment
cosines

|cos θ | =
∣∣∣ ˆ̃e3D

i · êi

∣∣∣ (6.4)

in which â denotes a (normalised) unit vector. This is an important consideration for
the case in which the eigenvectors of the strain-rate tensor are predominantly oriented
perpendicularly to the source plane of the reduced VGT. In this case the alignment
between the two-dimensional projection of ei (=[eix1, eix2]T) and ẽi is heavily distorted
by the artificially small norm of the two-dimensional projection of vector ei .

Figure 14 shows that there is a very strong preferential alignment between e1 and
the three-dimensional embedding of ẽ1. Whilst there is a progressively increasing
probability of the cosine of the angle between the two vectors for increasing |cos θ |
there is an extremely sharp spike at |cos θ | = 1. Qualitatively similar behaviour is also
observed for the alignment cosine between e3 and the three-dimensional embedding
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of ẽ2, the most compressive of the reduced strain-rate eigenvectors. This evidences
the fact that as long as the norm of ei factors in the out of plane component (with
respect to the reduced VGT source plane) then the eigenvectors of the reduced
strain-rate tensor are an excellent predictor of the two-dimensional projection of
the full, three-dimensional strain-rate eigenvectors. Evidently the two-dimensional
projection of the strain-rate eigenvectors can be described by a vector sum of the
unit eigenvectors of S̃ij. This requires that in cases in which the two-dimensional
projection of ei is instantaneously aligned in parallel with ẽ1 it must be aligned
perpendicularly to ẽ2 and so forth. This is also reflected in the figure with large
modal peaks at |ê1 · ˆ̃e3D

2 | ≈ 0 and |ê3 · ˆ̃e3D
1 | ≈ 0. The loci of the alignment cosines

between the two-dimensional projections of ei and ẽi are thus circles centred upon
the origin with unity radius.

In contrast figure 14 also shows that the alignment between e2 and the three-
dimensional embedding of the reduced strain-rate eigenvectors is bimodal. There are
peaks corresponding to parallel and perpendicular alignment with both ẽ3D

1 and ẽ3D
2 ,

although parallel alignment is more likely for both. It can therefore be seen that
there is a minimum preferential alignment at approximately |ê2 · ˆ̃e3D

1 | = 0.64, which
corresponds to an angle θ

ê1,
ˆ̃e2
≈ 0.9 between the two vectors and a corresponding

minimum preferential alignment at approximately |ê2 · ˆ̃e3D
2 | = 0.73 corresponding to

θ
ê1,
ˆ̃e2
≈ 0.7.

Whilst s̃2 6 s̃1, by definition, both s̃1 6 0 and s̃2 > 0 are possible meaning that
the ‘most extensive’ reduced eigenvalue can in fact be compressive and the ‘most
compressive’ reduced eigenvalue can be extensive. Figure 15 shows the alignment
cosines between ei and the three-dimensional embedding of ẽi , similar to figure 14,
conditioned on the special cases of s̃1< 0 (a–c) and s̃2> 0 (d–f ). Both of these special
cases are shown to have higher-order statistical moments of greater magnitude for
the strain-rate eigenvalues conditioned on s̃i than for the more common occurrences
of s̃1 > 0 and s̃2 < 0 in figure 11, in addition to larger gradients of these statistical
moments with respect to s̃i.

We observe the same trend for a dominant parallel alignment tendency between the
most compressive reduced strain-rate eigenvector (ẽ2) and the compressive strain-rate
eigenvector (e3) in the case of two compressive reduced strain rates, s̃2 6 s̃1 < 0
(figure 15c). Similarly, there is a preferential parallel alignment between the most
extensive reduced strain-rate eigenvector (ẽ1) and the extensive strain-rate eigenvector
in the case of two extensive reduced strain rates, 0 < s̃2 6 s̃1 (figure 15d). The
alignment of the intermediate strain-rate eigenvector with ẽi is now no longer bimodal.
It can be seen that there is now a preferential alignment with the three-dimensional
embedding of the most extensive reduced strain-rate eigenvector (ẽ1) for the case
of two compressive reduced strain rates (figure 15b) and with the most compressive
reduced strain-rate eigenvector (ẽ2) for the case of two extensive reduced strain rates
(figure 15e). It is thus observed that the intermediate strain-rate eigenvector, whose
corresponding eigenvalue magnitude is bounded by the extensive and compressive
strain rates, preferentially aligns in parallel with the eigenvector of the lower
magnitude reduced strain-rate eigenvalue in these special cases. The alignment
tendencies of |ê1 · ˆ̃e3D

i | in figure 15(a) and |ê3 · ˆ̃e3D
i | in figure 15(f ) shows that there

is zero probability of parallel alignment between the three-dimensional embedding
of the reduced strain-rate eigenvectors and the extensive strain-rate eigenvector for
the case of two compressive reduced strain rates (figure 15a) and the compressive
strain-rate eigenvector for the case of two extensive reduced strain rates (figure 15f ).
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FIGURE 15. Conditional p.d.f.s of the alignment cosines between the three-dimensional
embedding of the eigenvectors of S̃ij and the strain-rate eigenvectors, similar to figure 14.
(a–c) Conditioned on s̃1 < 0, (d–f ) conditioned on s̃2 > 0.

This is indicative of the fact that for these special cases, for which Cardesa et al.
(2013) were directly able to infer the sign of s2 from the reduced VGT data, the
corresponding strain-rate eigenvectors are oriented out of plane with respect to the
source plane for the reduced VGT.

7. Reduced VGT interrogation plane

The assumption of local isotropy for turbulence is a restrictive one that is often
only closely approximated by real turbulent flows (George & Hussein 1991), requiring
statistical invariance to any direction within the flow. Indeed it can be seen in § 4.1
that although the assumption is considered to be reasonable for the present data it is
not fulfilled precisely. This led to the development of the less restrictive assumption
of local axisymmetry (Batchelor 1946; Chandrasekhar 1950) in which there is a
rotational symmetry about a given axis for the statistics of the VGT. (NB for both
isotropic and axisymmetric turbulence the assumption of homogeneity, that is a
statistical independence from location within the flow field, is additionally required.)
The assumption of local axisymmetry is thus particularly relevant to flows that have
an obvious preferential direction with regards to the VGT. In the present study the
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Local axisymmetry condition LHS/RHS
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0.862/0.937

TABLE 2. Conditions on velocity gradients for locally axisymmetric turbulence (from
George & Hussein 1991).

boundary conditions in the x3 direction are periodic, and the growth rate of the
mixing layer (and hence mean shear in the streamwise direction) is considered small
in the far field, whereas there is a significant shear in the cross-stream (x2) direction.

George & Hussein (1991) derived seven velocity gradient relations that are satisfied
by locally axisymmetric turbulence, given in table 2, in which xx is defined as the
preferred flow direction which is assumed to be in the x2 direction of the present
mixing layer. The two axes that define the symmetry plane, assumed to be the x1–x3
plane for the present mixing layer, are denoted xrθ1 and xrθ2 . It can be seen that the
data largely satisfy the conditions for axisymmetric turbulence with the exception
of the first condition which compares the square of the VGT components of the
u2 velocity in the x1 direction, in which the mixing layer is spreading, and the u2
velocity in the x3 direction in which the boundary conditions are periodic. Some of
the discrepancies may also be due to the ‘incorrect’ choice of preferred direction,
which is likely to have components in both the x2 and x1 directions.

Approximations for the dissipation rate under the assumption of local axisymmetry
were derived by George & Hussein (1991), with values compared to those computed
with no assumptions:

ε = ν

[
5
3
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〉
+ 2

〈(
∂ux

∂xrθ2

)2
〉
+ 2
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+ 8
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)2
〉]

= 1.042〈ε〉

= ν

[
−
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)2
〉
+ 2

〈(
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)2
〉
+ 2

〈(
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)2
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+ 8
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〉]

= 0.968〈ε〉, (7.1)
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FIGURE 16. (Colour online) Joint p.d.f.s of full invariant Q against invariants p (a)
and q (b) of the reduced VGT formed from data in the x1–x3 plane. Contours scale
logarithmically.

The range in dissipation estimates is lower than those computed under the assumption
of local isotropy and the errors of 4.2 % and −3.2 % are small. The difference in the
two values indicates that the flow is not truly locally axisymmetric; however, it can
be seen that the two estimates are close to and encompass the true value.

For convenience Cardesa et al. (2013) chose the reduced VGT to consist of the
upper left-hand quadrant of the VGT, encompassing all gradients in the streamwise
and cross-stream directions. To some extent, however, this is an arbitrary choice as
a reduced VGT can be formed from any plane within the flow for which data are
available. A priori information on a flow field such as the planar mixing layer of this
study would make it obvious that for an ‘infinite’ region of the flow (simulated here
with periodic boundary conditions in the x3 direction) the preferred plane to choose
would indeed be the x1–x2 plane. On the other hand if the flow is assumed to be well
approximated by local axisymmetry, as is suggested by the results of (7.1), then the
kinematics of the reduced VGT would not be expected to be identical if formed from
the x1–x3 plane (which is assumed to be the rotationally symmetric plane) as opposed
to the x1–x2 plane.

Figure 16 shows the joint p.d.f.s between Q and the invariants p (a) and q (b) of
the reduced VGT formed from data in the x1–x3 plane, similar to figure 6 which uses
the reduced VGT formed in the x1–x2 plane. It can be seen that both sets of figures
look virtually identical. Furthermore the prediction of the sign of Q from the sign of
q is also extremely similar to the data produced from the x1–x2 plane with negative
Q concurrent to negative q 85.6 % of the time (cf. 85.3 %) and positive Q concurrent
to positive q 52.1 % of the time (cf. 54.1 %). Joint p.d.f.s of the eigenvalues of the
strain-rate tensor against those from the reduced strain-rate tensor formed in the x1–x3
plane were also found to be almost identical to figures 8 and 9 but are not shown for
brevity.

Q and si, however, are scalars whereas in § 6 it is shown that the reduced VGT
can also act as a predictor for the projection of the strain-rate eigenvectors onto the
plane defining the reduced VGT. Figure 17 shows the p.d.f.s of the alignment cosines
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FIGURE 17. P.d.f.s of the alignment of the reduced strain-rate eigenvectors ẽ1 and ẽ2 in
the x1–x3 plane with the full strain-rate eigenvectors e1, e2 and e3.

between the three-dimensional embedding of the eigenvectors of the reduced strain-
rate tensor formed from data in the x1–x3 plane and the strain-rate eigenvectors, similar
to figure 14 for S̃ij from the x1–x2 plane. It is observed that the quantitative trends for
the alignment tendencies of ei with the reduced strain-rate eigenvectors in figures 14
and 17 are almost identical. It can thus be concluded that the reduced VGT is a good
predictor of the behaviour of the fully three-dimensional strain-rate tensor in a shear
flow, both in terms of vector and scalar quantities, without a priori knowledge as to
the orientation of the mean strain. This provides evidence that the fine scales of the
strain-rate tensor, at least, behave in a more locally isotropic manner than in a locally
axisymmetric manner, reinforced by the near unity values of the isotropy parameters in
§ 4.1. This observation further validates the approach that is taken in this manuscript
of bounding Sij from S̃ij under the assumption of local isotropy and thus increases the
confidence with which one may use the reduced VGT as an observable state of the
full, three-dimensional VGT.

8. Conclusions

The reduced VGT (Ãij) is defined as a 2 × 2 block, from a single interrogation
plane, of the full VGT. It has subsequently been shown in the study of Cardesa et al.
(2013) that the joint p.d.f. of the invariants, p and q, for the characteristic equation
for Ãij displays a characteristic ‘teapot’ shape for a number of turbulent flows. This
distribution is confirmed in this study, lending credence to the notion that this shape
is also a ‘universal’ feature of turbulent flows similar to the ‘teardrop’ shape for the
joint p.d.f. between the second and third invariants of the full VGT.

The third invariant, R, of the VGT is comprised of the inviscid source/sink terms
in the dynamics of strain rate (symmetric part of VGT) and rotation (skew-symmetric
part of VGT), as emphasised in (1.2) and (1.3) respectively, and thus consists of sums
of triple velocity gradient products. These terms are not present in two-dimensional
turbulence and thus it is observed that the invariants of the reduced VGT are poor
predictors of the kinematics of R, despite the fact that the ensemble average 〈ωiSijωj〉
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can be related to 〈pq〉 by (2.2). Contrastingly the second invariant Q reveals the local
excess of rotation over strain rate, something that is described by two-dimensional
turbulent phenomena. It is subsequently found that whilst the first invariant of Ãij, p,
which effectively reveals the ‘compressibility’ of the reduced VGT is a poor predictor
of Q, the second invariant, q, carries significant information on Q.

Further, it was observed that the ability to make predictions about the three-
dimensional VGT from Ãij was significantly increased for straining regions of the
flow (Q < 0) as opposed to swirling regions of the flow (Q > 0). This is evidenced
by the greater variance of the joint p.d.f. between Q and q of figure 6 for Q > 0
and subsequent ability to predict the sign of Q based on q. This observation can
be rationalised as follows: Q > 0 requires a dominance of rotation (skew-symmetric
tensor) over strain rate (symmetric tensor). In three dimensions swirling is defined by
a real and complex-conjugate pair of roots to the characteristic equation for Aij, with
the real eigenvector normal to the complex plane and defining the normal vector to
the local swirling (Zhou et al. 1999). In two dimensions this real eigenvector cannot
exist with only real or a complex-conjugate pair of roots being permissible for the
characteristic equation for Ãij. To successfully describe swirling via the reduced VGT
it is thus necessary to project this swirling eigenvector onto the two-dimensional plane
from which the reduced VGT is formed. Whilst it is shown that the interrogation
plane, that from which the reduced VGT is formed, is unimportant in the ability
to predict the kinematics of both scalar quantities and vectors in three dimensions,
the eigenframe of the strain-rate tensor will always have at least two vectors with
a significant component in the interrogation plane. This is not necessarily the case
for a single swirling eigenvector. Figure 15 shows that the special cases of s̃1 and s̃2
both having the same sign arise when there is a negligibly small component of e1 or
e3 within the interrogation plane. There is evidently a higher likelihood of a single
vector having a small component in the interrogation plane than an eigenframe of
three vectors, hence the reduced ability of the reduced VGT to predict the full VGT
in rotationally dominated regions of the flow.

Compared to the case of the full VGT, significantly more information can be derived
about the strain-rate tensor Sij from its reduced counterpart. A simple consequence
of the fact that Sij is symmetric implies that the full and reduced eigenvalues are
‘interlaced’ according to (3.3), meaning that knowledge of the reduced eigenvalues
s̃i restricts the location of the full eigenvalues si to certain intervals of the real
line. If incompressibility is assumed, then stronger bounds can be placed upon the
most extensive and compressive eigenvalues of Sij, with these bounds implying
that s1 and s3 lie in triangular cones in (s̃1, s̃2, s1)-space and (s̃1, s̃2, s3)-space,
respectively. Furthermore, whilst it has been shown that 〈s2〉 > 0 for turbulent flows
(Ashurst et al. 1987; Tsinober et al. 1992; Lund & Rogers 1994), suggesting a mean
tendency towards ‘sheet-forming’ topological evolution, 〈s2〉< 0 and hence preferential
‘tube-forming’ is observed for regions of the flow in which s̃1 < 0.

Since the characteristic ‘teardrop’ shape of the p.d.f.s of Q and R is thought to be
‘universal’ for turbulent flows, it is not unreasonable to expect that simpler quantities
such as the p.d.f.s of the reduced eigenvalues s̃i enjoy a similar property. To begin to
address this question, bounds have been derived upon the first two statistical moments
of s̃i, under the assumptions of isotropy and homogeneity. For example, the expected
value 〈s̃1〉 must lie in a strictly positive interval, the lower end of which depends upon
the kurtosis κ of ∂u1/∂x1, and tighter bounds are obtained for smaller values of κ .
Whether this suggests that 〈s̃1〉 is itself dependent upon κ , or simply that the proven
bound varies with κ , is an open question. Interestingly, the numerical data suggest that
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the κ-independent bound on the upper end of the interval, proven by an application
of the Cauchy–Schwarz inequality, is actually the most conservative.

Using the proven bounds for the expected values of s̃i, bounds are also placed upon
the variances and the covariance of the two eigenvalues. The covariance σ(s̃1, s̃2) is
shown to lie in the interval [1/4((9/κ)− 5), 1/4] which appears conservative, since it
is expected that σ(s̃1, s̃2) < 0 by virtue of the fact that s̃2 < 0< s̃1 for over 85.2 % of
spatial locations. However, the upper bound of 1/4 may be lowered if a better upper
bound can be found for 〈s̃1〉, again suggesting that attention should be focused upon
improving this bound. Finally, we note that figure 13 suggests that s̃1 is positively
skewed, while s̃2 is negatively skewed. Whether these properties can be inferred for
isotropy and homogeneity presents an interesting question for future research.
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Appendix A
Suppose that a, b> 0 are constants such that

x1/2 >−ax2 + bx, x > 0. (A 1)

Since 〈X〉> 0, it follows from substituting y= x/〈X〉 into (A 1) that

y1/2 >

(
−a

y2

〈X〉2 +
b
〈X〉y

)
〈X〉1/2, y > 0. (A 2)

Now, let fX be the p.d.f. of the fluctuating variable X, which is assumed to be
continuous. Then,

〈X1/2〉 =
∫ ∞

0
y1/2fX(y)dy >

(
− a
〈X〉2

∫ ∞

0
y2fX(y)dy+ b

〈X〉
∫ ∞

0
yfX(y)dy

)
〈X〉1/2

=
(
−a
〈X2〉
〈X〉2 + b

)
〈X〉1/2 (A 3)

(by (3.17)) =
(

b− 2κa
3

)
〈X〉1/2. (A 4)

To maximize (b− 2aκ/3) subject to the constaint (A 1), note first that (A 1) holds
if and only if ay3− by+ 1> 0, for all y> 0. Elementary calculus can be used to show
that this inequality holds if and only if

b 6

(
4a
27

)1/3

. (A 5)

Since the objective b− 2aκ/3 is increasing in b, the optimal value is obtained when
b= (4a/27)1/3. Hence, the solution is given by the maximization problem

max
a>0

{(
4a
27

)1/3

− 2aκ
3

}
=
√

3
2κ
. (A 6)
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