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Abstract

We define potential operators on hyperplanes and give sharp mixed norm inequalities for them. One of the
operators coincides with the Radon transform for which mixed norm estimates are known but in reverse
order. Those inequalities will be crucial in our proofs.
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1. Introduction

The Radon transform of a smooth function is defined as its integral on hyperplanes.
Hyperplanes can be described as {x : 〈x, u〉 = t} for fixed u ∈ Sn−1 and t ∈ R; with
this notation,

R f (t, u) =

∫
〈x,u〉=t

f (x) dx, (1)

defines the Radon transform of f (the integral is with respect to the (n − 1)-
dimensional Lebesgue measure on the hyperplane). Note that each hyperplane is taken
twice and R f (t, u) = R f (−t, −u). The Radon transform is an operator with many
mathematical and practical applications (see [4] and [8]).

In this paper we consider a family of operators that contains the Radon transform.
More precisely, we define Riesz potential operators on each hyperplane and define for
0 < α ≤ n the operator

Tα f (x, u) =

∫
u⊥

f (x − y)|y|
α−n+1 dy.
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Although (n − 1)-dimensional Riesz potentials are defined only for 0 < α ≤ n − 1,
we allow all values of α up to n like in the n-dimensional potentials. Here Tn−1 is
essentially the Radon transform with a different parameterization, namely,

R f (〈x, u〉, u) = Tn−1 f (x, u). (2)

Then Tn−1 depends on 〈x, u〉 rather than on x , but this is not the case for the other
values of α.

We are interested in mixed norm inequalities of the form(∫
Rn

(∫
Sn−1

|Tα f (x, u)|r dσ(u)

)q/r

dx

)1/q

≤ C p,q,r‖ f ‖p. (3)

In [7] we studied a similar problem for directional potential operators and in [6]
we considered potential operators over k-planes but acting only on radial functions.
The results in the last paper were sharp, while the results in [7] were sharp only for
α > n/(n + 1).

Apart from those appearing in [6], we could not find any mixed norm inequalities
for Tα except for α = n − 1 (Radon transform) in the literature. However, even in
that case, the inequalities in (1) are defined for the operator R rather than for Tn−1.
These are due to Oberlin and Stein [9], and are reproduced in Theorem 1.2. Two
important differences with our estimates are that the mixed norm is taken in reversed
order and that one of the integrals is on R and not on Rn . For this second difference it
is important to realize that an inequality like (3) with the norms in the left-hand side in
reversed order would not be possible for Tn−1. Indeed, since for fixed u, Tn−1 f (x, u)

depends only on 〈x, u〉, ∫
Rn

|Tn−1 f (x, u)|q dx, (4)

becomes infinity. We consider some mixed norm inequalities in reversed order with
the integral in x on all of Rn in Section 3.2. They will appear by applying Minkowski’s
integral inequality to the left-hand side of (3) and hold only for some values of α.

The main theorem we prove in this paper is the following.

THEOREM 1.1. Let n ≥ 3. The condition 1/p − 1/q = α/n is necessary for (3) to
hold. Assuming that it is satisfied, we have the following results.

(i) Let n − 1 ≤ α ≤ n. Here Tα satisfies inequality (3) if and only if

1
r

>
n

p
− (n − 1),

1
r

≥
(n − 1)α

n
− n + 2.

(ii) Let (n(n − 1))/(n + 1) ≤ α ≤ n − 1. Here Tα satisfies inequality (3) if and
only if

1
r

>
n

p
− (n − 1),

1
r

≥
α

n(n − 1)
.
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FIGURE 1. Case 0 < α < (n(n − 1))/(n + 1).

(iii) Let 0 < α < (n(n − 1))/(n + 1). Here Tα satisfies inequality (3) if

1
r

>
n

p
− (n − 1),

n − 1
r

>
2
p

− 1,
1
r

>
α

n(n − 1)
,

and if r = n(n − 1)/α and (n − 1)/α ≤ p < n/α. It does not for other values of
p and r except maybe when r = n(n − 1)/α and 2n/(n + α) < p < (n − 1)/α.

The theorem is almost sharp; there is only a small undecided segment in part (iii).
Like the usual n-dimensional potential operators there is a weaker result at the end-
point p = n/α (q = ∞) which we consider in Section 4 of the paper.

Figures 1 and 2 show the boundedness region in two different situations. Write A,
B, C and O and I for ((n − 1)/n, 1/n), (n/(n + 1), 1/(n + 1)), (1/2, 0), (0, 0) and
(1, 1). The lower left corner lies on the line O A, or on the line AI , and the lower
right corner lies on the line BC or on the line B I ; these two lines are the right-hand
edges of the boundedness region. Since the left vertical side is contained in the line
1/p = α/n, this is enough to complete the picture of the boundedness polygon.

The boundedness region increases as α decreases and the union of those regions for
α > 0 is exactly the boundedness region obtained for the mixed norm inequalities for
the maximal function over hyperplanes. This result appears in [3] and is reproduced
as Theorem 3.1 here because it is useful in the proof of the theorem.

Mixed norm estimates for the Radon transform defined in (1) were obtained by
Oberlin and Stein, as we mentioned above. The theorem proved in [9] is as follows.
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FIGURE 2. Case n − 1 < α ≤ n.

THEOREM 1.2. Let n ≥ 3. The inequality(∫
Sn−1

(∫
∞

−∞

|R f (t, u)|q dt

)r/q

dσ(u)

)1/r

≤ C p,q,r‖ f ‖p, (5)

holds if and only if

1 ≤ p <
n

n − 1
, r ≤ p′ and

1
q

=
n

p
− (n − 1).

The inequality also holds when f is the characteristic functions of a measurable set if
p = n/(n − 1) (equivalently, it holds in the Lorentz space Ln/(n−1),1).

We use the Lorentz space L p,1 several times. For the definition and properties
of Lorentz spaces, including the interpolation theorems, we refer the reader to
[10, Chapter V]. For the interpolation results between vector-valued L p spaces used in
Section 3 we refer the reader to [1, Chapter 5].

2. Necessary conditions

(1) The condition 1/p − 1/q = α/n is obtained by homogeneity: change f (x) into
f (λx) and require the constant of the inequality to be independent of λ. Since
1/q cannot be negative, p must not be greater than n/α. More precisely, the
function

f (x) = (2 + |x |)−n/p(log(2 + |x |))−1,

shows that the inequality is not possible even for p = n/α. Nevertheless, we
shall see later that it holds if Ln/α is replaced with the smaller Lorentz space
Ln/α,1.
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(2) Taking as f the characteristic function of a ball and requiring integrability at the
left-hand side of (3), the following condition is obtained:

1
r

>
n

p
− (n − 1). (6)

(3) Let
E = {x : x2

1 + · · · + x2
n−1 ≤ ε2, xn ∈ [−1/2, 1/2]}

and
A = {x : x2

1 + · · · + x2
n−1 ≤ (ε/2)2, xn ≥ 2}.

We proceed by taking as f the characteristic function of E to obtain
TαχE (x, u) ∼ Cεn−2

|x |
α−n+1 for x ∈ A when the direction u moves into a set

of measure of the order ε/|x |. Then the left-hand side of (3) is finite only if (6)
holds. Moreover, if we compare the exponents of ε on both sides of (3) and let ε

tend to zero, the following condition is obtained:

1
r

≥
(n − 1)α

n
− n + 2.

This condition is meaningful only when α ≥ (n − 2)n/(n − 1), since r must be
positive.

(4) Let
E = {x : x2

1 + x2
2 ≤ ε2, −1/2 ≤ x3, . . . , xn ≤ 1/2}

and
A = {x : x2

1 + x2
2 ≥ 4, −1/2 ≤ x3, . . . , xn ≤ 1/2}

(A is independent of ε). Taking as f the characteristic function of E we have
TαχE (x, u) ∼ Cε|x |

α−n+1 for x ∈ A when the direction u moves into a set of
measure of the order (ε/|x |)n−1. The left-hand side of (3) is finite when (6)
holds. On the other hand, comparing the exponents of ε on both sides of (3) and
letting ε tend to zero, the following condition appears:

n − 1
r

>
2
p

− 1.

(5) Finally, let
E = {x : x2

1 + · · · + x2
n−1 ≤ 1, |xn| ≤ ε}

and
A = {x : x2

1 + · · · + x2
n−1 > 4, |xn| < ε}.

Taking as f the characteristic function of E we have TαχE (x, u) ∼ C |x |
α−n+1

for x ∈ A when the direction u moves into a set of measure of the order
(ε/|x |)n−1. Again the left-hand side of (3) is finite if (6) holds, and comparing
the exponents of ε the following condition is deduced:

1
r

≥
α

n(n − 1)
.
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3. Proof of Theorem 1.1 (Sufficiency)

Define the Hardy–Littlewood maximal operator on hyperplanes as

M f (x, u) = sup
R>0

1

Rn−1

∫
{y∈u⊥:|y|<R}

| f (x − y)| dy.

For fixed u this is a bounded operator on L p(Rn) with bounds independent of u as
a consequence of the boundedness of the usual Hardy–Littlewood maximal operator
and Fubini’s theorem. The mixed norm inequalities of the type (3) for M are given by
the following theorem.

THEOREM 3.1 (Christ et al. [3]). For n ≥ 3, the operator M f (x, u) is bounded from
L p to L p(Lr ) if and only if

1 ≤ r < ∞,
1
r

>
n

p
− (n − 1) and

n − 1
r

>
2
p

− 1.

We need this theorem and the following lemma in the proof of Theorem 1.1.

LEMMA 3.2. The following pointwise inequalities hold for nonnegative f .

(i) Let 0 < β < α < γ ≤ n. Then

Tα f (x, u) ≤ Tβ f (x, u)1−s Tγ f (x, u)s, α = (1 − s)β + sγ.

(ii) Let 0 < α < γ ≤ n. Then there exists a constant C depending only on α, γ and
n such that

Tα f (x, u) ≤ C M f (x, u)1−α/γ Tγ f (x, u)α/γ .

The first part of the lemma is a consequence of Hölder’s inequality. The second part
is an inequality of Hedberg type and can be proved decomposing the integral into two
parts and choosing them conveniently (see a proof in [6]).

Comparing both parts of the lemma we can say that the maximal operator M takes
the place of the operator Tα corresponding to α = 0.

It is interesting to compare the present situation with that of [7] for directional
operators. There we did not know the optimal result for the associated
maximal operator; if it were known, then mixed norm inequalities for directional
potential operators would be a direct consequence of the analogue of Lemma 3.2
[7, Lemma 3.3]. Here the boundedness regions for different values of α are not
homothetic to each other and Theorem 1.1 is not a corollary of Theorem 3.1.
Two critical values of α appear, namely, α = n(n − 1)/(n + 1) and α = n − 1,
corresponding to the values of α for which the points A and B of Figures 1 and 2 are
vertices of the boundedness polygon. The strategy of the proof is to obtain the results
for those critical values and use Lemma 3.2 and interpolation to complete the theorem.
Since the operators are nonnegative, we assume from now on that f is nonnegative.
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3.1. Case r = 1 The equality∫
Sn−1

∫
u⊥

g(y)|y| dy dσ(u) = |Sn−2
|

∫
Rn

g(y) dy, (7)

(see [8, p. 190]) applied to g(y) = f (x − y)|y|
α−n gives∫

Sn−1
Tα f (x, u) dσ(u) = Cn Iα f (x),

where Iα is (a multiple of) the Riesz potential of order α in Rn . It is well known that
Iα is bounded from L p to Lq with 1/q = 1/p − α/n and 1 < p < n/α. This gives the
upper side of the boundedness polygon in Theorem 1.1 for all α.

3.2. Case α = n(n − 1)/(n + 1) and r = n + 1 Let 0 < α < n − 1. Here Tα is an
(n − 1)-dimensional fractional integral (Riesz potential) on the hyperplane u⊥. This
operator is bounded from L p0(Rn−1) to Lq0(Rn−1) with 1/q0 = 1/p0 − α/(n − 1).

If q ≥ r we can apply Minkowski’s integral inequality to write(∫
Rn

(∫
Sn−1

Tα f (x, u)r dσ(u)

)q/r

dx

)r/q

≤

∫
Sn−1

(∫
Rn

Tα f (x, u)q dx

)r/q

dσ(u). (8)

The inner integral on Rn splits into an integral on the direction u and an (n − 1)-
dimensional integral on u⊥. Let p0 be defined by 1/p0 = 1/q + α/(n − 1). Using the
boundedness of the (n − 1)-dimensional fractional integral on u⊥ the right-hand side
of (8) is bounded by

C
∫

Sn−1

(∫
+∞

−∞

(R f p0(t, u))q/p0 dt

)r/q

dσ(u),

where R is the Radon transform defined in (1). Now using the estimate (5) under the
conditions of Theorem 1.2, this is bounded by C‖ f p0‖

r/p0
p1 whenever

q1 =
q

p0
, r1 =

r

p0
, p1 =

p

p0
, 1 ≤ p1 <

n

n − 1
, r1 ≤ p′

1.

(The relation between p1 and q1 required in the theorem is a consequence of the
relation between p and q, and the definition of p0.) Then we have proved (3) for

0 < α < n − 1,
α

n
<

1
p

≤
1
r

+
α

n
,

1
p

+
α

n(n − 1)
< 1.

The last conditions are due to q ≥ r and p0 > 1.
In the particular case α = n(n − 1)/(n + 1), r = n + 1, the range we obtain fits

exactly with the (open) lower side of the boundedness polygon.
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3.3. Case α = n − 1 and r = n We now prove the estimate corresponding to
α = n − 1, r = n, and n2/(n2

− n + 1) < p < n/(n − 1) (that is, n2 < q < ∞).
The adjoint operator to the Radon transform R defined in (1) is

R∗g(x) =

∫
Sn−1

g(〈x, u〉, u) dσ(u).

The mixed norm estimates satisfied by R∗ are obtained dualizing those in Theorem 1.2.
Using (2) we have ∫

Sn−1
Tn−1 f (x, u)n dσ(u) = R∗((R f )n)(x).

Then

‖Tn−1 f ‖
n
Lq (Ln) = ‖R∗((R f )n)‖q/n ≤ C‖(R f )n

‖
Lq/n2

(Lq/(q−n))

= C‖R f ‖
n
Lq/n(Lnq/(q−n))

≤ C‖ f ‖
n
p,

which is the desired estimate.

3.4. How to complete the boundedness regions

(a) Let α = n − 1. Interpolating the result for r = n obtained above with the result
for r = 1, we obtain the result for 1 < r < n.
For n − 1 < α < n, it is enough to prove the theorem for the largest possible
value of r , that is, rc = n/[(n − 1)α − n2

+ 2n] and interpolate with r = 1.
We use the first part of Lemma 3.2 with β = n − 1, γ = n, s = α − n + 1 and
Hölder’s inequality to obtain∫

Sn−1
Tα f (x, u)rc dσ(u) ≤

(∫
Sn−1

Tn−1 f (x, u)((1−s)rc)/(1−src) dσ(u)

)1−src

×

(∫
Sn−1

Tn f (x, u) dσ(u)

)src

,

and the last integral is a multiple of ‖ f ‖1 according to (7). Since the exponent
(1 − s)rc/(1 − src) is equal to n, we use the boundedness of Tn−1 from L p0

to L(1−s)q(Ln) (for the appropriate value of p0) obtained in the preceding
subsection and eventually obtain(∫

Rn

(∫
Sn−1

Tα f (x, u)rc dσ(u)

)q/rc

dx

)1/q

≤ C‖ f ‖
1−s
p0

‖ f ‖
s
1.

When f is the characteristic function of a set E , the right-hand side is |E |
1/p,

which is the desired result but only for such characteristic functions, or for the
Lorentz space L p,1. Moreover, we can check that all of the values of p allowed
in Theorem 1.1 for rc are obtained. Fixing two such values of p, interpolation
between Lorentz spaces gives the result in the intermediate Lorentz spaces; since
the range of values of p is open we obtain the desired result.
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(b) Let α = n(n − 1)/(n + 1). Interpolate the result of Section 3.2 above with the
result for r = 1.
For n(n − 1)/(n + 1) < α < n − 1 we proceed as in the previous case (a) and
obtain the line corresponding to the largest value of r : we now use the first
part of Lemma 3.2 with β = n(n − 1)/(n + 1) and γ = n − 1, and the results
for Tn(n−1)/(n+1) and Tn−1, then specialize to characteristic functions of sets and
finally interpolate.

(c) Let α < n(n − 1)/(n + 1) and n + 1 < r < n(n − 1)/α. Use the second part of
Lemma 3.2 with γ = n(n − 1)/(n + 1) and Hölder’s inequality to obtain

‖Tα f ‖Lq (Lr ) ≤ C‖(M f )1−α/γ
‖Lq1 (Lr1 )‖(Tγ f )α/γ

‖Lq2 (Lr2 ),

with 1/q1 + 1/q2 = 1/q and 1/r1 + 1/r2 = 1/r . Choose r2 = n(n − 1)/α and
apply the result of Section 3.2 to Tγ and Theorem 3.1 to M . Two different norms
of f appear again and we go through characteristic functions and interpolation
in Lorentz spaces to obtain strong estimates. For r < n(n − 1)/α it suffices to
interpolate with the result for r = 1.
Note that we have proved the result only for the open range r < n(n − 1)/α.
When r = n(n − 1)/α we know the boundedness for (n − 1)/α ≤ p < n/α from
Section 3.2, and it seems reasonable to expect that the boundedness holds also
for 2n/(n + α) < p < (n − 1)/α.

4. The estimate for p = n/α

The estimate (3) corresponding to p = n/α and q = ∞ is false but it holds for
the range of values of r allowed in Theorem 1.1 if Ln/α is replaced with the smaller
Lorentz space Ln/α,1. It suffices to prove this for α = n − 1 and use Lemma 3.2 for
other values of α.

Let α = n − 1, r = n, p = n/(n − 1) and q = ∞. Using the translation invariance
of the integral defining Tn−1 we need to see that(∫

Sn−1

(∫
u⊥

f (y) dy

)n

dσ(u)

)1/n

≤ C‖ f ‖n/(n−1),1. (9)

When f is the characteristic function of a measurable set E this has the following
geometrical interpretation: consider the (n − 1)-dimensional measures of the sections
of E with all of the hyperplanes through a fixed point; the average on Sn−1 of the nth
powers of those measures is not larger than the (n − 1)th power of the measure of E .
Note that when E is a ball of radius R and the fixed point is the center of the ball, the
measure of the sections is cn Rn−1 and the measure of E is Cn Rn , and the exponents
match exactly.

Inequality (9) is weaker than the endpoint result of Theorem 1.2 corresponding to
p = n/(n − 1). Indeed, in that case we had(∫

Sn−1

(
sup

t

∫
〈y,u〉=t

f (y) dy

)n

dσ(u)

)1/n

≤ C‖ f ‖n/(n−1),1. (10)
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(This says that in the above geometrical interpretation we can replace the section
produced by a hyperplane with the largest of the sections produced by its translates.)

For a direct proof of (9) without using Theorem 1.2 we can proceed as follows. The
left-hand side of (9) coincides with

sup
{∫

Sn−1

∫
u⊥

f (y) dy g(u) dσ(u) : g ∈ Ln/(n−1)(Sn−1) with norm 1
}
.

Using Fubini’s theorem the double integral coincides with∫
Rn

f (y)G(y) dy,

where

G(y) dy =

∫
Sn−1

g(u) dµu(y) dσ(u),

and dµu is the tensor product of the (n − 1)-dimensional Lebesgue measure on the
hyperplane u⊥ and the one-dimensional Dirac delta on the line {tu : t ∈ R}. Using the
duality between Ln/(n−1),1 and Ln,∞ we need to prove that G is in Ln,∞ with norm
bounded by the Ln/(n−1)-norm of g over Sn−1. Since G is homogeneous of degree
−1, its norm in Ln,∞(Rn) is (a multiple) of the Ln-norm of its restriction to the unit
sphere. Then the problem is reduced to the boundedness of the operator

g 7→ G(v) =

∫
〈u,v〉=0

g(u) dσv⊥(u),

from Ln/(n−1)(Sn−1) to Ln(Sn−1). This result is [2, Theorem 2.1(B)] (see also
[5, Theorem 1]).

Acknowledgements

The authors are grateful to Adela Moyua and Edurne Seijo for interesting
discussions about the subject of the paper.

References
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