
J. Fluid Mech. (2024), vol. 988, A10, doi:10.1017/jfm.2024.223

Flow of an Oldroyd-B fluid in a slowly varying
contraction: theoretical results for arbitrary
values of Deborah number in the ultra-dilute
limit

Evgeniy Boyko1,†, John Hinch2 and Howard A. Stone3

1Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
2DAMTP-CMS, Cambridge University, Wilberforce Road, Cambridge CB3 0WA, UK
3Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA

(Received 10 October 2023; revised 27 December 2023; accepted 24 February 2024)

Pressure-driven flows of viscoelastic fluids in narrow non-uniform geometries are common
in physiological flows and various industrial applications. For such flows, one of the main
interests is understanding the relationship between the flow rate q and the pressure drop
�p, which, to date, is studied primarily using numerical simulations. We analyse the
flow of the Oldroyd-B fluid in slowly varying arbitrarily shaped, contracting channels and
present a theoretical framework for calculating the q − �p relation. We apply lubrication
theory and consider the ultra-dilute limit, in which the velocity profile remains parabolic
and Newtonian, resulting in a one-way coupling between the velocity and polymer
conformation tensor. This one-way coupling enables us to derive closed-form expressions
for the conformation tensor and the flow rate–pressure drop relation for arbitrary
values of the Deborah number (De). Furthermore, we provide analytical expressions
for the conformation tensor and the q − �p relation in the high-Deborah-number limit,
complementing our previous low-Deborah-number lubrication analysis. We reveal that the
pressure drop in the contraction monotonically decreases with De, having linear scaling
at high Deborah numbers, and identify the physical mechanisms governing the pressure
drop reduction. We further elucidate the spatial relaxation of elastic stresses and pressure
gradient in the exit channel following the contraction and show that the downstream
distance required for such relaxation scales linearly with De.
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1. Introduction

Viscoelastic fluid flows in non-uniform geometries consisting of contractions or
expansions occur in physiological flows, e.g. arterial flows that may have such shape
changes due to thrombus formation (Westein et al. 2013), and in various industrial
applications (Pearson 1985). For such flows, one of the key interests is to understand
the dependence of the pressure drop �p on the flow rate q. It is well known that adding
even small amounts of polymer molecules in a Newtonian solvent may drastically change
the hydrodynamic features of the flow of the solution due to polymer stretching, which
generates elastic stresses in addition to viscous stresses (Bird, Armstrong & Hassager
1987; Alves, Oliveira & Pinho 2021; Steinberg 2021; Datta et al. 2022).

Pressure-driven flows of viscoelastic fluids and the corresponding flow rate–pressure
drop relation have been studied extensively in various geometries, mainly through
numerical simulations (Szabo, Rallison & Hinch 1997; Alves, Oliveira & Pinho 2003;
Binding, Phillips & Phillips 2006; Alves & Poole 2007; Zografos et al. 2020; Varchanis
et al. 2022) and experimental measurements (Rothstein & McKinley 1999, 2001; Sousa
et al. 2009; Ober et al. 2013; James & Roos 2021). We refer the reader to overviews given
recently by Boyko & Stone (2022) and Hinch, Boyko & Stone (2024).

In particular, the abrupt contraction and contraction–expansion channels have received
much attention (Rothstein & McKinley 1999; Alves et al. 2003; Binding et al. 2006;
Ferrás et al. 2020), and 4 : 1 two-dimensional (2-D) and axisymmetric contraction flows
have become benchmark flow problems in computational non-Newtonian fluid mechanics
(Alves et al. 2021). Numerical simulations of viscoelastic fluid flow in these and other
non-uniform geometries include a long downstream (exit) section to allow the stresses to
reach their fully relaxed values (see, e.g. Debbaut, Marchal & Crochet 1988; Alves et al.
2003). This is because, once perturbed from their fully relaxed values, the elastic stresses
require a long distance for spatial relaxation to enable stable and converged numerical
solutions. For higher Deborah (De) or Weissenberg (Wi) numbers (see definitions in § 2.1),
a longer downstream section is required (Keiller 1993).

Therefore, understanding the spatial relaxation of elastic stresses, velocity and pressure
is of both fundamental and practical importance, as that determines the size of the
computational domain (Alves et al. 2003). However, despite extensive study of viscoelastic
channel flows, the spatial relaxation of stresses and pressure in these geometries is not
well understood. As a result, the length of the exit channel is currently set somewhat
arbitrarily, thus motivating the development of theory. Furthermore, in many applications,
it is necessary to determine the total pressure drop over the configuration for a given flow
rate, thus requiring us to account for the pressure drop in the entry and exit channels.
However, most studies to date focused on the non-uniform region or close vicinity of
the abrupt contraction and reported a suitably non-dimensionalized so-called Couette
correction (or excess pressure drop), rather than the total non-dimensional pressure drop in
the entire configuration (see, e.g. Rothstein & McKinley 1999; Alves et al. 2003; Binding
et al. 2006), presumably due to the arbitrariness of the exit channel length in simulations.

One widely used approach to obtaining theoretical results in different viscoelastic
fluid flow problems relies on considering the weakly viscoelastic limit by applying a
perturbation expansion in powers of the Deborah or Weissenberg number, which are
assumed to be small (see, e.g. Datt et al. 2017; Datt, Nasouri & Elfring 2018; Datt & Elfring
2019; Gkormpatsis et al. 2020; Dandekar & Ardekani 2021; Housiadas, Binagia & Shaqfeh
2021; Su et al. 2022). In particular, there have been many applications of such an expansion
in conjunction with lubrication theory in studying thin films and tribology problems
(Ro & Homsy 1995; Tichy 1996; Sawyer & Tichy 1998; Zhang, Matar & Craster 2002;
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Flow of an Oldroyd-B fluid in a slowly varying contraction

Saprykin, Koopmans & Kalliadasis 2007; Ahmed & Biancofiore 2021; Gamaniel, Dini
& Biancofiore 2021; Ahmed & Biancofiore 2023). Recently, we have applied lubrication
theory and such an expansion in powers of De, developing a reduced-order model for
the steady flow of an Oldroyd-B fluid in a slowly varying, arbitrarily shaped 2-D channel
(Boyko & Stone 2022). We provided analytical expressions for the velocity and stress
fields and the flow rate–pressure drop relation in the non-uniform region up to O(De2). We
further exploited the reciprocal theorem (Boyko & Stone 2021, 2022) to obtain the flow
rate–pressure drop relation at the next order, O(De3). Housiadas & Beris (2023) extended
the low-Deborah-number lubrication analysis of Boyko & Stone (2022) to much higher
asymptotic orders and provided analytical expressions for the pressure drop up to O(De8).

However, the low-Deborah-number analysis cannot accurately capture the behaviour
at high De numbers where there are significant elastic stresses. Another approach to
simplifying the governing equations while capturing the underlying physics at non-small
Deborah numbers is to consider the ultra-dilute limit (Remmelgas, Singh & Leal 1999;
Moore & Shelley 2012; Li, Thomases & Guy 2019; Mokhtari et al. 2022), β̃ = μp/μ0 �
1, where μp is the polymer contribution to the total zero-shear-rate viscosity μ0 of the
polymer solution. Physically, the ultra-dilute limit corresponds to a low concentration of
polymer molecules in a Newtonian solvent, such that the viscosity of the polymer solution,
μ0, is only slightly larger than the solvent viscosity, μs (Remmelgas et al. 1999; Mokhtari
et al. 2022). Furthermore, the limit β̃ = μp/μ0 � 1 is closely related to the diluteness
criterion of a constant shear-viscosity viscoelastic Boger fluid (Moore & Shelley 2012).
In the ultra-dilute limit, the flow field approximated as Newtonian creates elastic stresses
that are not coupled back to change the flow. These elastic stresses can then be used to
find the correction to the velocity and pressure fields due to fluid viscoelasticity, even at
high Deborah numbers. Previous studies used this approach to determine the structure
of the stress distribution in the flow around a cylinder (Renardy 2000), a sphere (Moore
& Shelley 2012) and arrays of cylinders (Mokhtari et al. 2022), as well as in stagnation
(Becherer, Van Saarloos & Morozov 2009; Van Gorder, Vajravelu & Akyildiz 2009) and
cross-slot (Remmelgas et al. 1999) flows.

In this work, we continue our theoretical studies (Boyko & Stone 2022; Hinch et al.
2024) of the pressure-driven flow of the Oldroyd-B fluid in slowly varying, arbitrarily
shaped, narrow channels. In contrast to Boyko & Stone (2022), who focused only on
the flow through a non-uniform channel in the low-Deborah-number limit, and Hinch
et al. (2024), who studied numerically the flow through a contraction, expansion and
constriction for order-one Deborah numbers, and also provided an asymptotic description
at high Deborah numbers, the current work examines the ultra-dilute limit and arbitrary
values of the Deborah number. Specifically, we analyse the flow of the Oldroyd-B fluid in
a contracting geometry and the relaxation of the elastic stresses and pressure in the exit
channel. We apply the lubrication approximation and use a one-way coupling between the
velocity and polymer stresses to derive semi-analytical expressions for the conformation
tensor in the contraction and the exit channel for arbitrary values of the Deborah number in
the ultra-dilute limit. These semi-analytical expressions allow us to calculate the pressure
drop and elucidate the relaxation of the elastic stresses and pressure in the exit channel
for all De. We provide analytical expressions for the conformation tensor and the pressure
drop in the high-Deborah-number limit, which are consistent with recent results of Hinch
et al. (2024), thus complementing our previous low-Deborah-number lubrication analysis
(Boyko & Stone 2022). Furthermore, we analyse the viscoelastic boundary layer near
the walls at high Deborah numbers and derive the boundary-layer asymptotic solutions.
Given the well-known lack of accuracy and convergence difficulties associated with the
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Pressure drop �p over non-uniform region of length � 
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Figure 1. Schematic illustration of the 2-D configuration consisting of a slowly varying and symmetric
contraction of height 2h(z) and length � (h � �). The contraction is connected to two long straight channels of
height 2h0 and 2h�, respectively, up- and downstream and contains a viscoelastic fluid steadily driven by the
imposed flow rate q.

high-Weissenberg-number problem in numerical simulations (Owens & Phillips 2002;
Alves et al. 2021), our analytical and semi-analytical results for the ultra-dilute limit, valid
at high Deborah numbers, are of fundamental importance as they may serve to validate
simulation predictions or be compared with experimental measurements to understand
more about the applicability of model constitutive equations.

2. Problem formulation and governing equations

We analyse the incompressible steady flow of a viscoelastic fluid in a slowly varying and
symmetric 2-D contraction of height 2h(z) and length �, where h(z) � �, as illustrated
in figure 1. Upstream of the contraction inlet (z = 0) there is an entry channel of height
2h0 and length �0, and downstream of the contraction outlet (z = �) there is an exit channel
of height 2h� and length ��. The fluid flow has velocity u and pressure distribution p,
which are induced by an imposed flow rate q (per unit depth). Our primary interest is to
determine the pressure drop �p over the contraction region and the spatial relaxation of
pressure and elastic stresses in the exit channel. For our analysis, we shall employ two
different systems of coordinates. The first is Cartesian coordinates (z, y) and (z�, y), where
the z and z� = z − � axes lie along the symmetry midplane of the channel (dashed-dotted
line) and y is in the direction of the shortest dimension. The second one is orthogonal
curvilinear coordinates (ξ, η) defined in § 2.3.

We consider low-Reynolds-number flows so that the fluid motion is governed by the
continuity equation and Cauchy momentum equations in the absence of inertia

∇ · u = 0, ∇ · σ = 0. (2.1a,b)

To describe the viscoelastic behaviour of the fluid, we use the Oldroyd-B constitutive
model (Oldroyd 1950), which represents the most simple combination of viscous and
elastic stresses and is used widely to describe the flow of viscoelastic Boger fluids,
characterized by a constant shear viscosity. The Oldroyd-B equation can be derived
from microscopic principles by modelling polymer molecules as elastic dumbbells, which
follow a linear Hooke’s law for the restoring force as they are advected and stretched by
the flow. The corresponding stress tensor σ is

σ = −pI + 2μsE + τp, (2.2)

where the first term on the right-hand side of (2.2) is the pressure contribution, the second
term is the viscous stress contribution of a Newtonian solvent with a constant viscosity
μs, where E = (∇u + (∇u)T)/2 is the rate-of-strain tensor, and the last term, τ p, is the
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Flow of an Oldroyd-B fluid in a slowly varying contraction

polymer contribution. We note that I in (2.2) is the identity tensor and T is the transpose
operator on a tensor.

For the Oldroyd-B model, the polymer contribution to the stress tensor τ p can be
expressed in terms of the (symmetric) conformation tensor (or the deformation of the
microstructure) A as (Bird et al. 1987; Larson 1988; Morozov & Spagnolie 2015)

τp = G(A − I) = μp

λ
(A − I), (2.3)

where G is the elastic modulus, λ is the relaxation time and μp = Gλ is the polymer
contribution to the shear viscosity at zero shear rate. It is also convenient to introduce the
total zero-shear-rate viscosity μ0 = μs + μp.

The evolution equation for the deformation of the microstructure A of the Oldroyd-B
model fluid is given at steady state as (Bird et al. 1987; Larson 1988; Morozov & Spagnolie
2015)

u · ∇A − (∇u)T · A − A · (∇u) = −1
λ
(A − I). (2.4)

2.1. Scaling analysis and non-dimensionalization
We consider narrow configurations, in which h(z) � �, h0 is the half-height at z = 0,
and uc = q/2h0 is the characteristic velocity scale set by the cross-sectionally averaged
velocity. We introduce non-dimensional variables based on lubrication theory (Tichy 1996;
Zhang et al. 2002; Saprykin et al. 2007; Ahmed & Biancofiore 2021; Boyko & Stone 2022)

Z = z
�
, Y = y

h0
, Uz = uz

uc
, Uy = uy

εuc
, (2.5a)

P = p

μ0uc�/h2
0
, �P = �p

μ0uc�/h2
0
, H = h

h0
, (2.5b)

Ãzz = ε2Azz, Ãzy = εAzy, Ãyy = Ayy, (2.5c)

where we have introduced the aspect ratio of the configuration, which is assumed to be
small

ε = h0

�
� 1, (2.6)

the contraction ratio

H� = h�

h0
, (2.7)

the viscosity ratios

β̃ = μp

μs + μp
= μp

μ0
and β = 1 − β̃ = μs

μ0
, (2.8a,b)

and the Deborah and Weissenberg numbers

De = λuc

�
and Wi = λuc

h0
. (2.9a,b)

For lubrication flows through the narrow geometries that we consider, there is a difference
between the Deborah and Weissenberg numbers because of the two distinct length scales.
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The Weissenberg number Wi is the product of the relaxation time scale of the fluid, λ, and
the characteristic shear rate of the flow, uc/h0. On the other hand, the Deborah number De
is the ratio of the relaxation time, λ, to the residence time in the contraction region, �/uc,
or alternatively, the product of the relaxation time and the characteristic extensional rate
of the flow (Tichy 1996; Zhang et al. 2002; Saprykin et al. 2007; Ahmed & Biancofiore
2021). The Deborah and Weissenberg numbers are related through De = εWi, and for
narrow geometries with ε � 1, De can be small while keeping Wi = O(1).

Similar to our previous study (Boyko & Stone 2022), we non-dimensionalize
the pressure using the total zero-shear-rate viscosity μ0 = μs + μp. However, for
convenience, we non-dimensionalize the height based on the entry height rather than the
exit height. In addition, unlike our previous study, we do not scale the deformation of
the microstructure with De−1. Our current scaling is consistent with a fully developed
unidirectional flow of an Oldroyd-B fluid in a straight channel, which yields Ãzz = O(De2),
Ãzy = O(De) and Ãyy = O(1); see (2.10d)–(2.10f ) and (2.16). This scaling is convenient
when considering arbitrary and large values of the Deborah number.

Note that, in both Hinch et al. (2024) and here, the channel height is 2h, but the
total flow rate per unit depth in the former is 2q, whereas in this work it is q as in
Boyko & Stone (2022). All results are compatible because the variables used for the
non-dimensionalization are the same, i.e. the expressions for the characteristic velocity,
characteristic pressure and the Deborah number are the same.

2.2. Dimensionless lubrication equations in Cartesian coordinates
Using the non-dimensionalization (2.5)–(2.9a,b), to the leading order in ε, the governing
equations (2.1)–(2.4) take the form

∂Uz

∂Z
+ ∂Uy

∂Y
= 0, (2.10a)

∂P
∂Z

= (1 − β̃)
∂2Uz

∂Y2 + β̃

De

(
∂Ãzz

∂Z
+ ∂Ãzy

∂Y

)
, (2.10b)

∂P
∂Y

= 0, (2.10c)

Uz
∂Ãzz

∂Z
+ Uy

∂Ãzz

∂Y
− 2

∂Uz

∂Z
Ãzz − 2

∂Uz

∂Y
Ãzy = − 1

De
Ãzz, (2.10d)

Uz
∂Ãzy

∂Z
+ Uy

∂Ãzy

∂Y
− ∂Uy

∂Z
Ãzz − ∂Uz

∂Y
Ãyy = − 1

De
Ãzy, (2.10e)

Uz
∂Ãyy

∂Z
+ Uy

∂Ãyy

∂Y
− 2

∂Uy

∂Z
Ãzy − 2

∂Uy

∂Y
Ãyy = − 1

De
(Ãyy − 1). (2.10f )

From (2.10c), it follows that P = P(Z), i.e. the pressure is independent of Y up to O(ε2),
consistent with the classical lubrication approximation. We note that the scaled Ãzz on the
right-hand side of (2.10d) relaxes to ε2, which is neglected at the leading order in ε.

2.3. Orthogonal curvilinear coordinates for a slowly varying geometry
For our theoretical analysis, it is convenient to transform the geometry of the contraction
from the Cartesian coordinates (Z, Y) to curvilinear coordinates (ξ, η), as illustrated in
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ξ

η

                                                 

y

z

Orthogonal curvilinear coordinates

Figure 2. Schematic illustration of the orthogonal curvilinear coordinates (ξ, η) for a slowly varying geometry.
The coordinate ξ is constant along vertical grid lines, and η, defined in (2.11a,b), is constant along the curves
going from left to right.

figure 2, with the mapping (Hinch et al. 2024)

ξ = Z − 1
2
ε2 H′(Z)

H(Z)
(H(Z)2 − Y2) + O(ε4), η = Y

H(Z)
. (2.11a,b)

As shown in Appendix A, the curvilinear coordinates (ξ, η) are orthogonal with a relative
error of O(ε4), i.e. ∇ξ · ∇η = O(ε4).

Hereafter, we use u = ueξ + veη and A = A11eξ eξ + A12(eξ eη + eηeξ ) + A22eηeη to
denote, respectively, the components of velocity and deformation of the microstructure in
curvilinear coordinates (ξ, η). The corresponding non-dimensional velocity components
in different coordinates are related through (see Appendix A)

Uz = U − ε2ηH′(ξ)V, Uy = ηH′(ξ)U + V. (2.12a,b)

Similarly, the scaled conformation tensor components in different coordinates are related
through (see Appendix A)

Ãzz = Ã11 + O(ε2), (2.13a)

Ãzy = Ã12 + ηH′(ξ)Ã11 + O(ε2), (2.13b)

Ãyy = Ã22 + 2ηH′(ξ)Ã12 + η2(H′(ξ))2Ã11 + O(ε2). (2.13c)

Finally, we note that, since there is only a O(ε2) difference between the ξ - and z-directions,
for convenience, we continue to use Z rather than ξ in curvilinear coordinates.

2.4. Dimensionless lubrication equations in orthogonal curvilinear coordinates
Using the mapping (2.11a,b), the governing equations (2.10) take the form in curvilinear
coordinates (Hinch et al. 2024)

∂(HU)

∂Z
+ ∂V

∂η
= 0, (2.14a)

dP
dZ

= (1 − β̃)
1

H2
∂2U
∂η2 + β̃

De

(
1
H

∂(HÃ11)

∂Z
+ 1

H
∂Ã12

∂η

)
, (2.14b)

U
∂Ã11

∂Z
+ V

H
∂Ã11

∂η
− 2

∂U
∂Z

Ã11 − 2
H

∂U
∂η

Ã12 = − 1
De

Ã11, (2.14c)
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U
∂Ã12

∂Z
+ V

H
∂Ã12

∂η
− H

∂

∂Z

(
V
H

)
Ã11 − 1

H
∂U
∂η

Ã22 = − 1
De

Ã12, (2.14d)

U
∂Ã22

∂Z
+ V

H
∂Ã22

∂η
− 2H

∂

∂Z

(
V
H

)
Ã12 + 2

∂U
∂Z

Ã22 = − 1
De

(Ã22 − 1). (2.14e)

The corresponding boundary conditions on the velocity are

U(Z, 1) = 0, V(Z, 1) = 0,
∂U
∂η

(Z, 0) = 0, H(Z)

∫ 1

0
U(Z, η) dη = 1, (2.15a–d)

which represent, respectively, the no-slip and no-penetration boundary conditions along
the channel walls, the symmetry boundary condition at the centreline and the integral mass
conservation along the channel. In addition, we assume a fully developed unidirectional
Poiseuille flow in the straight entry channel and the corresponding deformation of the
microstructure

Ã11 = 18De2

H4 η2, Ã12 = −3De
H2 η, Ã22 = 1, (2.16a–c)

with H ≡ 1 at the entrance. We also assume that, far downstream in the exit channel,
the deformation of the microstructure attains a fully relaxed value, given by (2.16) with
H ≡ H�.

2.5. Pressure drop across the non-uniform region in the lubrication limit
In this subsection, we show that one can calculate the pressure drop without solving
directly for the velocity field. To this end, we first integrate by parts the integral constraint
(2.15d), repeatedly, using (2.15a) and (2.15c), e.g. (Hinch et al. 2024)

1
H(Z)

=
∫ 1

0
U dη = ηU|10︸ ︷︷ ︸

0

−
∫ 1

0
η
∂U
∂η

dη = 1
2
(1 − η2)

∂U
∂η

∣∣∣∣1
0︸ ︷︷ ︸

0

− 1
2

∫ 1

0
(1 − η2)

∂2U
∂η2 dη.

(2.17)

Substituting the expression for ∂2U/∂η2 from (2.14b) into (2.17), we obtain

− 1 − β̃

H(Z)3 = 1
2

∫ 1

0
(1 − η2)

[
dP
dZ

− β̃

De

(
1
H

∂(HÃ11)

∂Z
+ 1

H
∂Ã12

∂η

)]
dη, (2.18)

which can be rearranged to yield the pressure gradient

dP
dZ

= −3(1 − β̃)

H(Z)3 + 3β̃

2De

∫ 1

0
(1 − η2)

[
1

H(Z)

∂(H(Z)Ã11)

∂Z
+ 1

H(Z)

∂Ã12

∂η

]
dη. (2.19)
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Flow of an Oldroyd-B fluid in a slowly varying contraction

Integrating (2.19) with respect to Z from 0 to 1 provides the pressure drop �P = P(0) −
P(1) across the non-uniform region

�P = 3(1 − β̃)

∫ 1

0

dZ
H(Z)3

− 3β̃

2De

∫ 1

0

∫ 1

0
(1 − η2)

[
1

H(Z)

∂(H(Z)Ã11)

∂Z
+ 1

H(Z)

∂Ã12

∂η

]
dη dZ. (2.20)

Using integration by parts, (2.20) can be expressed as

�P = 3(1 − β̃)

∫ 1

0

dZ
H(Z)3 + 3β̃

2De

∫ 1

0
(1 − η2)

[
Ã11(0, η) − Ã11(1, η)

]
dη

− 3β̃

2De

∫ 1

0

[
H′(Z)

H(Z)

(∫ 1

0
(1 − η2)Ã11 dη

)]
dZ

− 3β̃

De

∫ 1

0

[
1

H(Z)

∫ 1

0
ηÃ12 dη

]
dZ, (2.21)

where prime indicates a derivative with respect to Z.
Equation (2.21) resembles the result of an application of the reciprocal theorem

previously derived for the pressure drop of the flow of an Oldroyd-B fluid in a slowly
varying channel (Boyko & Stone 2021, 2022). The first term on the right-hand side of
(2.21) represents the viscous contribution of the Newtonian solvent to the pressure drop.
The second term represents the contribution of the elastic normal stress difference at the
inlet and outlet of the non-uniform channel. The third term represents the contribution of
the elastic normal stresses that arise due to the spatial variations in the channel shape,
which is a contribution that is absent in a straight channel. Finally, the last term represents
the elastic contribution due to shear stresses within the fluid domain of the non-uniform
channel. It should be noted that we do not assume a priori the particular shape of the
channel H(Z) but rather consider a flow in a slowly varying channel of arbitrary shape
H(Z).

3. Low-β̃ lubrication analysis in a slowly varying region

In the previous section, we obtained the dimensionless equations (2.14), which are
governed by the two non-dimensional parameters, β̃ and De, in the lubrication limit
(ε � 1). In this section, we derive analytical expressions for the velocity, conformation
tensor and the q − �p relation for the pressure-driven flow of a very dilute viscoelastic
Oldroyd-B fluid, β̃ = μp/μ0 � 1 in a slowly varying channel of arbitrary shape H(Z).

In contrast to our previous study that employed a low-Deborah-number lubrication
analysis (Boyko & Stone 2022), in this work, we assume De = O(1) and consider the
ultra-dilute limit, β̃ � 1 (see Remmelgas et al. 1999; Moore & Shelley 2012; Li et al.
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E. Boyko, J. Hinch and H.A. Stone

2019; Mokhtari et al. 2022). To this end, we seek solutions of the form⎛
⎜⎜⎜⎜⎜⎜⎝

U
V
P

Ã11
Ã12
Ã22

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

U0
V0
P0

Ã11,0
Ã12,0
Ã22,0

⎞
⎟⎟⎟⎟⎟⎟⎠+ β̃

⎛
⎜⎜⎜⎜⎜⎜⎝

U1
V1
P1

Ã11,1
Ã12,1
Ã22,1

⎞
⎟⎟⎟⎟⎟⎟⎠+ O(ε2, β̃2). (3.1)

The ultra-dilute limit represents a one-way coupling between the velocity and pressure
fields and the deformation of the microstructure (polymer stresses or conformation tensor).
At leading order, the velocity and pressure are Newtonian, and the deformation of the
microstructure (i.e. polymer stresses) arises from this Newtonian flow. Accordingly, the
velocity and pressure at O(β̃) arise due to leading-order polymer stresses. In the next
subsections, we provide closed-form asymptotic expressions for the velocity field and
conformation tensor components at O(β̃0) and the pressure drop up to O(β̃).

We note that the viscosity ratio β̃ = μp/μ0 is related to the so-called concentration
of the polymers c = μp/μs through β̃ = c/(c + 1). Thus, at the leading order, the limits
β̃ � 1 and c � 1 are identical.

3.1. Velocity, conformation and pressure drop at the leading order in β̃

Substituting (3.1) into (2.14a)–(2.14b) and considering the leading order in β̃, the
continuity and momentum equations take the form

∂(HU0)

∂Z
+ ∂V0

∂η
= 0 and

dP0

dZ
= 1

H2
∂2U0

∂η2 , (3.2a,b)

subject to the boundary conditions

U0(Z, 1) = 0, V0(Z, 1) = 0,
∂U0

∂η
(Z, 0) = 0, H(Z)

∫ 1

0
U0(Z, η) dη = 1.

(3.3a–d)
The solutions for the axial velocity U0 and the pressure drop �P0 at the leading order are
well known (see, e.g. Boyko & Stone 2022)

U0 = 3
2

1
H(Z)

(1 − η2) and �P0 = 3
∫ 1

0

dZ
H(Z)3 . (3.4a,b)

Substituting (3.4a) into the continuity equation (3.2a) and using (3.3b), yields

V0 ≡ 0. (3.5)

From (3.5), it follows that, in orthogonal curvilinear coordinates, the velocity in
the η-direction is identically zero at O(β̃0), in contrast to the Cartesian coordinates
where Uy,0 = (3/2)H′(Z)Y(H(Z)2 − Y2)/H(Z)4. As we shall see, this fact significantly
simplifies the theoretical analysis and allows us to derive closed-form expressions for the
components of the conformation tensor.
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Flow of an Oldroyd-B fluid in a slowly varying contraction

Using (3.5), at leading order in β̃, the equations for the conformation tensor components,
(2.14c)–(2.14e), simplify to

U0
∂Ã22,0

∂Z
+ 2

∂U0

∂Z
Ã22,0 = − 1

De
(Ã22,0 − 1), (3.6a)

U0
∂Ã12,0

∂Z
− 1

H
∂U0

∂η
Ã22,0 = − 1

De
Ã12,0, (3.6b)

U0
∂Ã11,0

∂Z
− 2

∂U0

∂Z
Ã11,0 − 2

H
∂U0

∂η
Ã12,0 = − 1

De
Ã11,0, (3.6c)

subject to the boundary conditions

Ã11,0(0, η) = 18De2η2, Ã12,0(0, η) = −3Deη, Ã22,0(0, η) = 1. (3.7a–c)

Equations (3.6) represent a set of one-way coupled first-order semi-linear partial
differential equations that can be solved first for Ã22,0, followed by Ã12,0 and then for
Ã11,0.

Solving (3.6) together with (3.7), we obtain closed-form expressions for Ã22,0, Ã12,0 and
Ã11,0 for arbitrary values of De and the shape function H(Z)

Ã22,0

H(Z)2 = exp( f (DeU0(Z, η)))

[
1 +

∫ Z

0
exp(−f (DeU0(Z̃, η)))

1

DeU0(Z̃, η)H(Z̃)2
dZ̃
]

,

(3.8)

Ã12,0

(−3Deη)
= exp( f (DeU0(Z, η)))

[
1+

∫ Z

0
exp(−f (DeU0(Z̃, η)))

Ã22,0(Z̃, η)

DeU0(Z̃, η)H(Z̃)2
dZ̃

]
,

(3.9)

Ã11,0

18De2η2/H(Z)2

= exp( f (DeU0(Z, η)))

[
1 +

∫ Z

0
exp(−f (DeU0(Z̃, η)))

Ã12,0(Z̃, η)

(−3ηDe)DeU0(Z̃, η)
dZ̃

]
,

(3.10)

where f (DeU0(Z, η)) is defined as

f (DeU0(Z, η)) = −
∫ Z

0

1

DeU0(Z̃, η)
dZ̃ = −

∫ Z

0

2H(Z̃)

3De(1 − η2)
dZ̃. (3.11)

It is worth noting that the right-hand sides of (3.8)–(3.10) depend on the product
DeU0(Z, η) and are not functions of De and η separately. Furthermore, (3.8)–(3.10) clearly
show that, while the distribution of Ã22,0 is set solely by the value at the beginning of the
non-uniform region, the distribution of elastic shear and normal stresses, Ã12,0 and Ã11,0,
are coupled to the transverse normal stress Ã22,0. In fact, the elastic normal stress Ã11,0
depends both on Ã12,0 and Ã22,0.
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From (3.8)–(3.10), one might think that the conformation tensor components diverge at
the wall (η = ±1). However, using (3.6) and noting that U0 = ∂U0/∂Z = 0 at η = ±1, it
follows that, at the walls of the non-uniform channel,

Ãwall
22,0 = 1, Ãwall

12,0 = ∓ 3De
H(Z)2 , Ãwall

11,0 = 18De2

H(Z)4 for all De. (3.12)

In §§ 3.1.1 and 3.1.2, we provide explicit expressions for the conformation tensor
components in the low- and high-De limits. We also note that the results shown in our
figure 4(a,c) and the work of Hinch et al. (2024) suggest the existence of a viscoelastic
boundary layer near the walls in the high-De limit, which we analyse in § 3.1.3.

3.1.1. Conformation tensor in the low-De limit
For De � 1, we solve the equations iteratively for the conformation tensor components
(3.6) to obtain

Ã22,0 = 1 + 3DeH′

H2 (1 − η2) + 9De2[4H′2 − HH′′]
2H4 (1 − η2)2

+ 27De3[24H′3 − 13HH′H′′ + H2H′′′]
4H6 (1 − η2)3, (3.13a)

Ã12,0 = −3De
H2 η − 18De2H′

H4 η(1 − η2) − 81De3[4H′2 − HH′′]
2H6 η(1 − η2)2, (3.13b)

Ã11,0 = 18De2

H4 η2 + 162De3H′

H6 η2(1 − η2) + 486De4[4H′2 − HH′′]
H8 η2(1 − η2)2.

(3.13c)

We note that the low-De results (3.13) are consistent with our previous work (Boyko &
Stone 2022), in which we provided explicit expressions for Ãzz, Ãzy and Ãyy up to O(De2)

in Cartesian coordinates. For example, using (2.13c) and (3.13), Ãyy can be expressed
as Ãyy = 1 + 3DeH′(Z)(H(Z)2 − 3Y2)/H(Z)4 + O(De2), in agreement with (3.9a) in
Boyko & Stone (2022).

3.1.2. Conformation tensor in the high-De limit
We here provide the closed-form expressions for the conformation tensor components in
the high-De limit. We begin with the expression for Ã22,0 and consider the core flow
region.

For De � 1, except close to the wall, (3.6a) reduces to

U0
∂Ã22,0

∂Z
+ 2

∂U0

∂Z
Ã22,0 = 0, (3.14)

whose solution subject to (3.7c) is

Ã22,0(Z, η) = Ã22,0(0, η)
U0(0, η)2

U0(Z, η)2 = H(Z)2. (3.15)

Next, since Ã12,0 scales as O(De) while Ã22,0 is O(1), within the core flow region in the
high-De limit we obtain that the first term in (3.6b) dominates over all the remaining terms
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Flow of an Oldroyd-B fluid in a slowly varying contraction

U0
∂Ã12,0

∂Z
= 0, (3.16)

so that elastic shear stresses preserve their value from the entry channel through the
non-uniform region

Ã12,0(Z, η) = Ã12,0(0, η) = −3Deη. (3.17)

Finally, to determine Ã11,0, we note that the third and fourth terms in (3.6c) scale as O(De),
while the first and second terms are O(De2). Thus, for De � 1, we expect the first and
second terms to balance each other while the remaining terms are negligible, so that

U0
∂Ã11,0

∂Z
− 2

∂U0

∂Z
Ã11,0 = 0. (3.18)

Solving (3.18) subject to (3.7a) yields

Ã11,0(Z, η) = Ã11,0(0, η)
U0(Z, η)2

U0(0, η)2 = 18De2η2

H(Z)2 . (3.19)

In fact, for De � 1, there is a purely passive response of the microstructure, similar to a
material line element, transported and deformed by the flow without relaxing.

The high-De results (3.15), (3.17) and (3.19) can be also directly obtained from the
closed-form solutions (3.8)–(3.10) by noting that, for De � 1, exp(±f (DeU0(Z, η))) ≈ 1,
and neglecting the O(De−1) terms.

3.1.3. Boundary-layer analysis in the high-De limit
In the previous section, we obtained analytical expressions for the components of the
conformation tensor in the high-De limit within the core flow region. However, these
expressions do not hold near the walls, where a viscoelastic boundary layer of O(De−1)
thickness exists (Hinch et al. 2024). In this section, we analyse this boundary-layer region
and provide boundary-layer equations and their closed-form solutions. To this end, we
focus on the region η ∈ [0, 1], and introduce the rescaled inner-region coordinate

ζ = De(1 − η) = Deη̃ for η̃ � 1, (3.20)

so that De(1 − η2) = ζ(2 − η̃) ≈ 2ζ . Noting that, in the boundary layer, Ã22,0 = O(1),
Ã12,0 = O(De) and Ã11,0 = O(De2) (see (3.12)), to eliminate the dependence on De in
the governing equations and boundary conditions (3.7), we rescale Ã22,0, Ã12,0 and Ã11,0,
which are functions of Z and ζ , as

A22 = Ã22,0

H(Z)2 , A12 = Ã12,0

(−3ηDe)
, A11 = Ã11,0

18η2De2/H(Z)2 . (3.21a–c)

Substituting (3.20) and (3.21a–c) into (3.6) and using (3.4a), we obtain the boundary-layer
equations in the high-De limit

3ζ

H(Z)

∂A22

∂Z
= −

(
A22 − 1

H(Z)2

)
, (3.22a)

3ζ

H(Z)

∂A12

∂Z
= −(A12 − A22), (3.22b)

3ζ

H(Z)

∂A11

∂Z
= −(A11 − A12), (3.22c)
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subject to the inlet conditions

A11(0, ζ ) = 1, A12(0, ζ ) = 1, A22(0, ζ ) = 1. (3.23a–c)

Solving (3.22) together with (3.23), we obtain closed-form expressions for A22, A12 and
A11 in the boundary-layer region

A22 = eF(Z,ζ )

[
1 +

∫ Z

0
e−F(Z̃,ζ ) 1

3ζH(Z̃)
dZ̃
]

, (3.24a)

A12 = eF(Z,ζ )

[
1 +

∫ Z

0
e−F(Z̃,ζ )A22(Z̃, ζ )H(Z̃)

3ζ
dZ̃

]
, (3.24b)

A11 = eF(Z,ζ )

[
1 +

∫ Z

0
e−F(Z̃,ζ )A12(Z̃, ζ )H(Z̃)

3ζ
dZ̃

]
, (3.24c)

where F(Z, ζ ) is defined as

F(Z, ζ ) = − 1
3ζ

∫ Z

0
H(Z̃) dZ̃. (3.25)

We note that solutions (3.24) satisfy the matching conditions between the
inner and outer regions. Specifically, A22|ζ→∞ = [Ãcore

22,0/H(Z)2]η=1 = 1, A12|ζ→∞ =
[Ãcore

12,0/(−3ηDe)]η=1 = 1 and A11|ζ→∞ = [Ãcore
11,0/(18η2De2/H(Z)2)]η=1 = 1.

3.2. Pressure drop at the first order in β̃

Equation (2.20) shows that the pressure drop depends on the elastic normal and shear
stresses Ã11 and Ã12, and thus, generally, requires the solution of the nonlinear viscoelastic
problem. However, in the ultra-dilute limit, corresponding to β̃ = μp/μ0 � 1, we can
determine the pressure drop at O(β̃) for arbitrary values of De only with the knowledge of
the velocity field and conformation tensor components at O(1). Specifically, substituting
(3.1) into (2.20) yields at O(β̃) the pressure drop �P1,

�P1 = −3
∫ 1

0

dZ
H(Z)3

− 3
2De

∫ 1

0

∫ 1

0
(1 − η2)

[
1

H(Z)

∂(H(Z)Ã11,0)

∂Z
+ 1

H(Z)

∂Ã12,0

∂η

]
dη dZ, (3.26)

or alternatively

�P1 = −3
∫ 1

0

dZ
H(Z)3 + 3

2De

∫ 1

0
(1 − η2)

[
Ã11,0(0, η) − Ã11,0(1, η)

]
dη

− 3
2De

∫ 1

0

[
H′(Z)

H(Z)

(∫ 1

0
(1 − η2)Ã11,0 dη

)]
dZ

− 3
De

∫ 1

0

[
1

H(Z)

∫ 1

0
ηÃ12,0 dη

]
dZ. (3.27)

Thus, for a given flow rate q, the dimensionless pressure drop �P = �p/(μ0q�/2h3
0), as

a function of the shape function H(Z), the Deborah number De and the viscosity ratio
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Flow of an Oldroyd-B fluid in a slowly varying contraction

β̃ � 1, up to O(β̃), is given by

�P = �P0(H(Z)) + β̃�P1(De, H(Z)) + O(ε2, β̃2), (3.28)

where the expressions for �P0 and �P1 are given in (3.4b) and (3.27), respectively.
Notably, in contrast to our previous results for the pressure drop obtained in the weakly

viscoelastic and lubrication limits with De � 1 and β̃ ∈ [0, 1] (Boyko & Stone 2022), the
current result (3.28) applies to the limit of β̃ � 1, while allowing De = O(1).

3.2.1. Pressure drop at O(β̃) in the low-De limit
To calculate the pressure drop �P1 at low Deborah numbers in the non-uniform shape
region, we use (3.13b)–(3.13c) and (3.27). The elastic normal stress (NS) contribution to
the pressure drop at O(β̃) is

�PNS
1 = 3

2De

∫ 1

0
(1−η2)

[
Ã11,0

]Z=0

Z=1
dη − 3

2De

∫ 1

0

[
H′(Z)

H(Z)

(∫ 1

0
(1−η2)Ã11,0 dη

)]
dZ

= 27
10

De(1 − H−4
� ) for De � 1, (3.29)

where [Ã11,0]Z=0
Z=1 = Ã11,0(0, η) − Ã11,0(1, η).

The elastic shear stress (SS) contribution to the pressure drop at O(β̃) is

�PSS
1 = − 3

De

∫ 1

0

[
1

H(Z)

∫ 1

0
ηÃ12,0 dη

]
dZ

= 3
∫ 1

0

dZ
H(Z)3 + 18

10
De(1 − H−4

� ) for De � 1. (3.30)

Substituting (3.29) and (3.30) into (3.27) provides the pressure drop at O(β̃) in the low-De
limit up to O(De)

�P1 = 9
2

De(1 − H−4
� ) + O(De2) for De � 1, (3.31)

so that the total pressure drop across the non-uniform channel in the low-De limit,
accounting for the leading-order effect of viscoelasticity, is

�P = 3(1 − β̃)

∫ 1

0

dZ
H(Z)3︸ ︷︷ ︸

Solvent stress

+ 3β̃

∫ 1

0

dZ
H(Z)3 + 18

10
β̃De(1 − H−4

� )︸ ︷︷ ︸
Elastic shear stress

+ 27
10

β̃De(1 − H−4
� )︸ ︷︷ ︸

Elastic normal stress

= 3
∫ 1

0

dZ
H(Z)3 + 9

2
β̃De(1 − H−4

� ) + O(De2) for De � 1, (3.32)

in agreement with the results of our previous work (Boyko & Stone 2022). The three
terms on the right-hand side of (3.32) represent, respectively, the Newtonian solvent stress
contribution, the elastic shear stress contribution and the elastic normal stress contribution
to the pressure drop.
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3.2.2. Pressure drop at O(β̃) in the high-De limit
To calculate the pressure drop �P1 at high Deborah numbers in the non-uniform region,
we use (3.17), (3.19) and (3.27). The elastic normal and shear stress contributions to the
pressure drop at O(β̃) are

�PNS
1 = 9

5
De(1 − H−2

� ) and �PSS
1 = 3

∫ 1

0

dZ
H(Z)

for De � 1. (3.33a,b)

Substituting (3.33) into (3.27) yields the pressure drop at O(β̃) in the high-De limit

�P1 = −3
∫ 1

0

dZ
H(Z)3 + 3

∫ 1

0

dZ
H(Z)

+ 9
5

De(1 − H−2
� ) for De � 1, (3.34)

so that the total pressure drop across the non-uniform channel in the high-De limit is

�P = 3(1 − β̃)

∫ 1

0

dZ
H(Z)3︸ ︷︷ ︸

Solvent stress

+ 3β̃

∫ 1

0

dZ
H(Z)︸ ︷︷ ︸

Elastic shear stress

+ 9
5
β̃De(1 − H−2

� )︸ ︷︷ ︸
Elastic normal stress

for De � 1. (3.35)

Similar to the low-De limit, for the contraction geometry, the last term, corresponding
to the elastic normal stress contribution, leads to a decrease in the pressure drop, which
is linear in the Deborah number. As noted by Hinch et al. (2024), the tension in the
streamlines at the end of the contraction pulls the flow through the contraction, thus
requiring less pressure to push. Furthermore, at high Deborah numbers, the elastic shear
stresses are lower than the fully relaxed value Ã12 = −3Deη/H2

� due to insufficient time
(distance) to approach their fully relaxed value in the contraction. Thus, the elastic shear
stress contribution to the pressure drop, 3β̃

∫ 1
0 H(Z)−1 dZ, is smaller than the steady

Poiseuille value of 3β̃
∫ 1

0 H(Z)−3 dZ, further reducing the pressure drop. Finally, we note
that the result (3.35) also holds for the expansion geometry H� > 1, in which the two
physical mechanisms mentioned above lead to an increase in the pressure drop.

4. Low-β̃ lubrication analysis in the exit channel

In this section, we analyse the spatial relaxation of the elastic stresses and the pressure
drop in the uniform exit channel. From examining the expressions (3.8)–(3.10) for the
conformation tensor, when there are no longer shape changes, we expect the elastic stresses
and the pressure in the exit channel to relax exponentially, with a strong dependence on
De−1. Thus, for higher Deborah numbers, a longer downstream section is required (Keiller
1993) for polymer relaxation, consistent with previous numerical simulations using the
Oldroyd-B model (Debbaut et al. 1988; Alves et al. 2003).

Following similar steps as in the previous section, in Appendix B, we derive closed-form
expressions for the conformation tensor and the pressure drop in the uniform exit
channel for arbitrary values of the Deborah number. Furthermore, we provide analytical
expressions for the conformation tensor and the pressure drop in the low- and high-De
limits. We summarize in table 1 the semi-analytical solutions and low- and high-De
asymptotic expressions for the deformation of the microstructure and the pressure drop
of the Oldroyd-B fluid in a contraction and exit channel in the ultra-dilute limit derived in
this work.
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Flow of an Oldroyd-B fluid in a slowly varying contraction

Contracting channel Exit channel

Deformation of the microstructure:
Semi-analytical solution (3.8)–(3.10) (B3)–(B5)
Low-De asymptotic solution (3.13) (B7)
High-De asymptotic solution (3.15), (3.17), (3.19) (B9)

Pressure drop:
Semi-analytical solution (3.28) (4.1)
Low-De asymptotic solution (3.32) (4.3)
High-De asymptotic solution (3.35) (4.4)

Table 1. A summary of the semi-analytical solutions and low- and high-De asymptotic expressions for the
deformation of the microstructure and the pressure drop of the Oldroyd-B fluid in a contraction and exit channel
in the ultra-dilute limit.

In particular, we show that the total pressure drop in the exit channel can be expressed
as

�P� = (1−β̃)
3L

H3
�︸ ︷︷ ︸

Solvent stress

+ 3β̃

2De

∫ 1

0
(1−η2)

[
Ã11,0

]Z�=0

Z�=L
dη︸ ︷︷ ︸

Elastic normal stress

+ 3β̃

DeH�

∫ 1

0
η

[∫ 0

L
Ã12,0 dZ�

]
dη

︸ ︷︷ ︸
Elastic shear stress

,

(4.1)

where L = ��/� is the dimensionless length, H� = H(Z = 1) = h�/h0 is the dimensionless
height of the exit channel, Z� = Z − 1, Ã11,0 and Ã12,0 are given in (B4) and (B5) and
[Ã11,0]Z�=0

Z�=L = Ã11,0(Z� = 0, η) − Ã11,0(Z� = L, η).
It should be noted that we can express the first-order contribution �P�,1 in terms of the

difference between the conformation tensor components at the beginning and end of the
exit channel (see Appendix B and Hinch et al. 2024)

�P�,1 = 3
2De

∫ 1

0
(1 − η2)

[
Ã11,0

]Z�=0

Z�=L
dη − 9

2H2
�

∫ 1

0
η(1 − η2)

[
Ã12,0

]Z�=0

Z�=L
dη

+ 27De

2H4
�

∫ 1

0
η2(1 − η2)

[
Ã22,0

]Z�=0

Z�=L
dη. (4.2)

Hereafter, we assume that the length of the exit channel, L, is such that the elastic stresses
reach their fully relaxed values by the end of the exit channel, given by (2.16) with H ≡
H�. Under this assumption, (4.2) clearly shows that the first-order contribution �P�,1 is
independent of L since the steady-state values of Ã11,0, Ã12,0 and Ã22,0 depend solely on
the η coordinate. Note, however, that the total pressure in the exit channel depends on L
via �P� = 3L/H3

� + β̃�P�,1.
In addition, we show in Appendix B that the total pressure drop in the exit channel in

the low- and high-De limits is

�P� = 3L

H3
�

− 1728β̃De3H′′(1)

35H7
�

for De � 1, (4.3)

�P� = 3L

H3
�

+ 36
5

β̃De(H−2
� − H−4

� ) for De � 1. (4.4)
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From (4.3) and (4.4), it follows that, similar to the contraction, the pressure drop in the
exit channel decreases with De. Furthermore, the physical mechanisms responsible for the
pressure drop reduction are the same in both the contraction and the exit channels.

The asymptotic result (4.4) is obtained using expressions (B9a)–(B9c), which hold in
the high-De limit within the core flow region. As discussed above, near the walls, there
exists a viscoelastic boundary layer of thickness O(De−1). Nevertheless, this boundary
layer will contribute only a small O(β̃De−1) correction to the pressure drop in the exit
channel for De � 1, as noted by Hinch et al. (2024).

5. Results

In this section, we present the theoretical results for the pressure drop and conformation
tensor distribution of the Oldroyd-B fluid in the ultra-dilute limit developed in §§ 3 and 4.
As an illustrative example, we specifically consider the case of a smooth contraction of the
form

H(Z) = 1 − (1 − H�)Z2(2 − Z)2 0 ≤ Z ≤ 1, (5.1)

where H� = H(1)/H(0) = h�/h0 is the ratio of the exit to entry heights; for the contracting
geometry we have H� < 1. This contraction shape function is illustrated in figure 2 and
satisfies H′(0) = 0 and H′(1) = H′′′(1) = 0.

In this work, we present the results for H� = 0.5 and β̃ = 0.05. While the current study
focuses only on one contraction ratio, in our previous work, we considered four contraction
ratios, in which the elastic normal stresses vary by almost two decades (Hinch et al. 2024).
In addition, figure 8 of our previous paper shows a 0.1 % difference between c = 0.1 and
c = 0.05 for the pressure drop in the contraction at De = 0.8. Nevertheless, our current
analysis allows us to analyse slowly varying arbitrarily shaped channels provided ε � 1
and β̃ � 1. To obtain the semi-analytical solutions for given values of De and H�, we
first used MATLAB’s routine cumtrapz to find the conformation tensor components,
given in (3.8)–(3.10) and (B3)–(B5), for a contraction and exit channel. Typical values
of the grid size were �Z = 10−4 and �η = 0.005. We then used MATLAB’s routine
trapz to calculate the pressure drop, (3.28) and (4.1), for a contraction and exit channel,
respectively.

5.1. Streamwise variation of elastic stresses in the contraction and exit channel
We present in figure 3 the streamwise variation of the leading-order elastic stresses, scaled
by their entry values, on η = 0.5 in contraction and exit channels for De = 0.01 (a,d),
De = 0.1 (b,e) and De = 1 (c, f ). As expected, for a small Deborah number of De = 0.01,
the elastic stresses achieve their downstream fully relaxed values by the end of contraction
(figure 3a), and thus we observe very little variation in the relaxation along the exit channel
(figure 3d). Consistent with the low-De asymptotic solutions (3.13), represented by cyan
dotted lines, for H� = 0.5, the elastic shear and axial normal stresses increase by a factor
of 4 and 16, respectively, while the transverse normal stress preserves its entry value.

For the case of De = 0.1, shown in figure 3(b,e), the elastic stresses do not have enough
residence time to attain their downstream steady-state values in the contraction. Therefore,
there is a significant spatial relaxation in the exit channel. Interestingly, although the
relaxation in the exit channel is governed mainly by exp(−2H�Z�/[3De(1 − η2)]) (see
(B3)–(B5)), the elastic stresses relax over slightly different length scales, with the shortest
relaxation distance required for Ã22,0 and the longest for Ã11,0. The latter behaviour is
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Figure 3. The streamwise variation of leading-order elastic stresses on η = 0.5 in a smooth contraction and
exit channel in the ultra-dilute limit. (a–c) Scaled elastic stresses Ã11,0/(18De2η2), Ã12,0/(−3Deη) and Ã22,0
in the contraction as a function of Z for (a) De = 0.01, (b) De = 0.1 and (c) De = 1. (d–e) Scaled elastic
stresses in the exit channel Ã11,0/(18De2η2), Ã12,0/(−3Deη) and Ã22,0 as a function of Z� for (d) De = 0.01,
(e) De = 0.1 and ( f ) De = 1. Solid lines represent the semi-analytical solutions (3.8)–(3.10) (contraction) and
(B3)–(B5) (exit channel). Cyan dotted lines represent the low-De asymptotic solutions (3.13) (contraction)
and (B7) (exit channel). Red dashed lines represent the high-De asymptotic solutions (3.15), (3.17) and (3.19)
(contraction) and (B9) (exit channel). All calculations were performed using H� = 0.5.

associated with the nature of the coupling between the elastic stresses so that Ã11,0 depends
both on Ã12,0 on Ã22,0, while Ã12,0 depends only on Ã22,0 (see (B3)–(B5)).

When De = 1, it is evident from figure 3(c) that, at the end of the contraction, the
axial normal stress increases by a factor of 1/H2

� = 4, the transverse normal stress is
squashed by a factor of H2

� = 1/4, and the elastic shear stress preserves its entry value.
Figure 3( f ) presents the spatial relaxation of the elastic stresses in the exit channel for
De = 1, clearly showing that a very long exit channel is required to attain the downstream
fully relaxed values of all stresses (L > 16 for η = 0.5). Furthermore, we observe excellent
agreement between the semi-analytical results (solid lines) and the high-De asymptotic
solutions (3.15), (3.17), (3.19) and (B9) (dashed red lines). Such an agreement for De = 1
is consistent with recent results of Hinch et al. (2024), who found that the high-De analysis
works well for De > 0.4.

The closed-form solutions for the conformation tensor components, (B3)–(B5), clearly
show that the spatial relaxation of the elastic stresses in the exit channel strongly depends
on the stresses at the end of the contraction (Z = 1). Therefore, it is of particular interest
to elucidate the behaviour of the elastic stresses at the end of the contraction and the extent
to which they are perturbed relative to their downstream fully relaxed values.
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Figure 4. The cross-stream variation of leading-order elastic shear and normal stresses at the end of the
contraction in the ultra-dilute limit. (a,c) Scaled elastic shear and normal stresses at the end of the contraction,
(a) Ã12,0(Z = 1, η)/(−3Deη/H2

� ) and (c) Ã11,0(Z = 1, η)/(18De2η2/H4
� ), as a function of η for De =

0.01, 0.1, 1 and 10, respectively; (b) Ã12,0(Z = 1, η)/(−3Deη/H2
� ) and (d) Ã11,0(Z = 1, η)/(18De2η2/H4

� )

as a function of the rescaled coordinate ζ = De(1 − η) for De = 0.1, 1 and 10. Solid lines represent
the semi-analytical solutions (3.9)–(3.10). Cyan dotted lines represent the low-De asymptotic solutions
(3.13b)–(3.13c). Red dashed lines represent the high-De asymptotic solutions (3.17) and (3.19). Green dashed
lines represent the boundary-layer solutions (3.24b)–(3.24c). All calculations were performed using H� = 0.5.

The solid lines in figure 4(a,c) present the elastic shear (a) and axial normal stresses
(c) at the end of the contraction as a function of η = y/H� for De = 0.01, 0.1, 1 and
10, scaled by their downstream fully relaxed values. For a small Deborah number
of De = 0.01, Ã12,0(Z = 1, η)/(−3Deη/H2

� ) and Ã11,0(Z = 1, η)/(18De2η2/H4
� ) only

slightly differ from their downstream values, and this behaviour is well captured by the
low-De asymptotic solutions (3.13b)–(3.13c), represented by cyan dotted lines. As De
increases, the elastic stresses become considerably suppressed within the core flow region
relative to their eventual relaxed values far downstream, and for De = 1 and De = 10,
the elastic shear and axial normal stresses approach the high-De asymptote of H2

� = 1/4,
represented by red dashed lines. Furthermore, in the high-De limit, we observe the
presence of a viscoelastic boundary layer close to the walls, where the elastic stresses
reach their downstream fully relaxed values.

To provide insight into this viscoelastic boundary layer, we replot in figure 4(b,d) the
elastic shear (b) and axial normal stresses (d) at the end of the contraction as a function of
the rescaled coordinate ζ = De(1 − η) for De = 0.1, 1 and 10 (see § 3.1.3). It is evident
from figures 4(b) and 4(d) that this rescaling collapses the results for the different Deborah
numbers onto the same curves, which are the boundary-layer asymptotic solutions (3.24b)
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Figure 5. (a,b) Scaled elastic shear and normal stresses at the end of the contraction, (a) Ã12,0(Z =
1, η)/(−3Deη/H2

� ) and (b) Ã11,0(Z = 1, η)/(18De2η2/H4
� ) minus H2

� , divided by the factor 1 − H2
� , as

a function of DeU0(Z = 1, η) for De = 0.5, 1 and H� = 0.125, 0.25 and 0.5. This rescaling leads to an
approximate collapse of the results on the single uniform curve for different Deborah numbers and contraction
ratios.

and (3.24c) (green dashed lines). Clearly, for De = 1 and De = 10, which are graphically
almost indistinguishable, there is excellent agreement between the semi-analytical results
and the boundary-layer asymptotic solutions, thus confirming the thickness of a boundary
layer as O(De−1).

Furthermore, examining (3.8)–(3.10), we infer that their right-hand sides are not a
function of De and η separately but depend on the product DeU0(Z, η). To test this
prediction, we show in figure 5(a,b) the scaled elastic shear (a) and axial normal stresses
(b) at the end of the contraction, (a) Ã12,0(Z = 1, η)/(−3Deη/H2

� ) and (b) Ã11,0(Z =
1, η)/(18De2η2/H4

� ) minus H2
� , divided by the factor 1 − H2

� , as a function of DeU0(Z =
1, η) for De = 0.5, 1 and H� = 0.125, 0.25, 0.5. We observe that the results for two
different values of De approximately collapse onto the same curve across three contraction
ratios.

5.2. Pressure gradient relaxation in the exit channel
It follows from figure 3(d–f ) in the previous subsection that, as De increases, there is
a significant relaxation of the elastic stresses in the exit channel, which occurs over a
long distance. Specifically, the elastic stresses relax exponentially over a distance which is
proportional to the centreline velocity (3/2H�) multiplied by the Deborah number De (see
(B3)–(B5)). For this reason, a longer downstream section is required at higher De.

In this subsection, we study the relaxation of the pressure gradient in the downstream
section. Substituting H(Z) = H� into (2.19) yields the pressure gradient in the exit channel

dP
dZ

= −3(1 − β̃)

H3
�

+ 3β̃

2De

∫ 1

0
(1 − η2)

∂Ã11,0

∂Z
dη + 3β̃

H�De

∫ 1

0
ηÃ12,0 dη + O(β̃2). (5.2)

Noting that in the exit channel U0 = (3/2H�)(1 − η2) and dU0/dη = −(3/H�)η, and
using the expression for U0∂Ã11,0/∂Z from (B2c), (5.2) can be written as(

dP
dZ

+ 3
H3

�

)
1

β̃
= 3

H3
�

− H�

De2

∫ 1

0
Ã11,0 dη − 3

H�De

∫ 1

0
ηÃ12,0 dη, (5.3)

where the right-hand side is independent of β̃.
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Figure 6. The spatial relaxation of the pressure gradient for the Oldroyd-B fluid in the uniform exit channel
of a contraction in the ultra-dilute limit. (a) Scaled pressure gradient (dP/dZ + 3/H3

� )/β̃ as a function of
the downstream distance Z� for De = 0.02, 0.2, 1 and 2. (b) Scaled pressure gradient (dP/dZ + 3/H3

� )/β̃

as a function of the rescaled downstream distance 2H�Z�/3De in a log−linear plot. Solid lines represent
the semi-analytical solutions obtained from (5.3) using (B3)–(B5). Cyan dotted lines represent the low-De
asymptotic solutions obtained from (5.3) using (B7). Red dashed lines represent the high-De asymptotic
solutions obtained from (5.3) using (B9). The green dashed line is 100 exp(−2H�Z�/3De). All calculations
were performed using H� = 0.5.

We present in figure 6(a) the relaxation of the scaled pressure gradient (dP/dZ +
3/H3

� )/β̃ as a function of the downstream distance Z� for De = 0.02, 0.2, 1 and 2.
Similar to elastic stresses, the scaled pressure gradient relaxes exponentially over the
downstream distance, which significantly increases with De. Furthermore, we observe a
good agreement between the low- and high-De asymptotic solutions (cyan dotted and red
dashed lines) and the semi-analytical results (solid lines).

Recalling that the elastic stresses relax exponentially over a distance proportional to
(3De/2H�), we replot in figure 6(b) the scaled pressure gradient, (5.3), as a function of
the rescaled downstream distance 2H�Z�/3De in a log−linear plot. As a result, all curves
become parallel to the green dashed line 100 exp(−2H�Z�/3De), thus confirming that the
pressure gradient relaxes over a length scale ∼(3De/2H�), similar to the elastic stresses.
More specifically, it follows from figure 6(b) that the downstream distance over which the
scaled pressure gradient (PG) decays to 1 % of its maximum value, LPG

1 %, is approximately

LPG
1 % ≈ (5.3 ± 0.5) × 3De

2H�

, (5.4)

where we obtain that the prefactor 5.3 ± 0.5 is weakly dependent on De throughout the
investigated range of Deborah numbers. Equation (5.4) and the scaling 3De/2H� indicate
that, in the exit channel, the appropriate Deborah number is based on the exit height,
i.e. Deexit = λq/2h�� = De/H�.

We note that our estimate of the length of the downstream section, (5.4), is consistent
with previous numerical studies on the viscoelastic flows in 2-D abrupt contractions
(Debbaut et al. 1988; Alves et al. 2003). Specifically, (5.4) predicts LPG

1 % ≈ 239 ± 23 for
Deexit = De/H� = 30, which should be contrasted with 250 of Debbaut et al. (1988), who
studied numerically the flow through the planar 4 : 1 contraction.
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Figure 7. Non-dimensional pressure drop for the Oldroyd-B fluid in a contracting channel in the ultra-dilute
limit. (a) Dimensionless pressure drop �P = �p/(μ0q�/2h3

0) as a function of De = λq/(2�h0) for β̃ = 0.05.
(b) First-order contribution �P1 = �p1/(μ0q�/2h3

0) to the dimensionless pressure drop as a function of De =
λq/(2�h0). Grey triangles in (a) represent the results of the finite-element simulation. Black dots represent the
semi-analytical solution (3.28). Cyan dotted lines represent the low-De asymptotic solution (3.32). Red dashed
lines represent the high-De asymptotic solution (3.35). All calculations were performed using H� = 0.5.

5.3. Pressure drop in the contraction and exit channel
In this subsection, we study the pressure drop across the contraction and the exit channel.
First, in figure 7(a) we present the non-dimensional pressure drop �P = �p/(μ0q�/2h3

0)

in the contraction as a function of De = λq/(2�h0) for H� = 0.5 and β̃ = 0.05. For further
clarification, figure 7(b) shows the first-order contribution �P1 = �p1/(μ0q�/2h3

0) as
a function of De = λq/(2�h0), which is independent of β̃. Black dots represent the
semi-analytical solution (3.28), cyan dotted lines represent the low-De asymptotic solution
(3.32) and red dashed lines represent the high-De asymptotic solution (3.35). Clearly,
there is excellent agreement between our low- and high-De asymptotic solutions and
the semi-analytical results. We also validate the predictions of our semi-analytical and
asymptotic results against the 2-D finite-element simulations with H� = 0.5, β̃ = 0.05
and ε = 0.02 (grey triangles), showing very good agreement. The details of the numerical
implementation in the finite-element software COMSOL Multiphysics are provided in
Boyko & Stone (2022).

It is evident that the semi-analytical solution for the pressure drop in the contraction
approaches the high-De asymptotic solution for De � 0.4 and linearly decreases with the
Deborah number. First, such an agreement for De �/ 1 is consistent with our results for
the elastic stresses, shown in figure 3, and recent results of Hinch et al. (2024). Second,
and more importantly, from the excellent agreement between the semi-analytical results
and the high-De asymptotic solution, based on the components of the conformation tensor
within the core flow region, we conclude that the viscoelastic boundary layer near the walls
makes a negligible contribution to the pressure drop in the contracting channel.

Next, in figure 8(a) we present the non-dimensional pressure drop �P� in the exit
channel as a function of De for H� = 0.5, β̃ = 0.05, and L = 50. For De = 2, a long exit
channel of L � 30 is required to reach the full relaxation of the elastic stresses and pressure
gradient, consistent with (5.4). Figure 8(b) shows the first-order contribution �P�,1 as a
function of De, which is independent of β̃. In contrast to the total pressure drop �P�, the
first-order contribution �P�,1 does not depend on L, as shown in (4.2), provided that L is
sufficiently long so that by the end of the exit channel the elastic stresses have achieved
their fully relaxed values (2.16) with H ≡ H�.

988 A10-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

22
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.223


E. Boyko, J. Hinch and H.A. Stone

1185

1190

1195

1200

0.5 2.00 1.0 1.5

De = λq/2�h0 De = λq/2�h0

0.5 2.00 1.0 1.5

–2.0

–1.5

–1.0

–0.5

0

0 0.1 0.2 0.3 0.4 0.5

�
P �

 =
 2

�
p �

h 03
/
μ

0
q�

�
P �

,1
 =

 2
�

p �
,1

h 03
/
μ

0
q�

De

Finite-element simulation
Semi-analytical solution
β
~
 = 0.05, L = 50

Semi-analytical solution
High-De asymptote 

Low-De asymptote

High-De asymptote

–300

–200

–100

0

–40

–30

–20

–10

0

1 2 3 4 5 6 7 8 9 10
De

(a) (b)

�
P �

 –
 �

P �
,0

 =
 β

~
�

P �
,1

�
P �

 –
 �

P �
,0

 =
 β

~
�

P �
,1

Figure 8. Non-dimensional pressure drop for the Oldroyd-B fluid in the exit channel of a contraction in the
ultra-dilute limit. (a) Dimensionless pressure drop �P� = �p�/(μ0q�/2h3

0) as a function of De = λq/(2�h0)

for β̃ = 0.05 and L = 50. (b) First-order contribution �P�,1 = �p�,1/(μ0q�/2h3
0) to the dimensionless

pressure drop as a function of De = λq/(2�h0). Black dots represent the semi-analytical solutions (4.1) (�P� in
(a)) and (4.2) (�P�,1 in (b)). The cyan dotted curve represents the low-De asymptotic solution (4.3). Red dashed
lines represent the high-De asymptotic solution (4.4). The inset in (a) shows a comparison of semi-analytical
predictions (black dots) and finite-element simulation results (grey triangles) for �P� − �P�,0 = β̃�P�,1 as a
function of De for β̃ = 0.05 and L = 5. The inset in (b) shows �P� − �P�,0 = β̃�P�,1 as a function of De for
β̃ = 0.05 in range of 1 ≤ De ≤ 10. All calculations were performed using H� = 0.5.

The inset in figure 8(a) shows a comparison of our semi-analytical predictions (black
dots) and finite-element simulation results (grey triangles) for �P� − �P�,0 = β̃�P�,1

as a function of De for H� = 0.5, β̃ = 0.05 and L = 5. We observe excellent agreement
between the semi-analytical and numerical results. In addition, the low-De asymptotic
solution (cyan dotted curve) accurately captures the numerical results for De < 0.05 and
indicates that the pressure drop in the exit channel scales as De3 for De � 1.

Similar to the contraction, the pressure drop in the exit channel linearly decreases
with De for De � 0.3, as shown in figure 8. While our semi-analytical solution linearly
diminishes with the slope of −36/5, as predicted by the high-De asymptotic solution (red
dashed lines), there is an offset between the two results for β̃�P�,1. In particular, for
De = 0.4, we have a non-negligible relative error of approximately 30 %. However, the
inset in figure 8(b) shows that as De increases, the agreement between our semi-analytical
solution and the high-De asymptotic prediction significantly improves, resulting in relative
errors of only approximately 5 % and 1 % for De = 2 and De = 10, respectively.

We note that our theoretical approach, based on the ultra-dilute limit, allows us to
study the behaviour of the elastic stresses and pressure drop at arbitrary values of De. In
particular, we can predict the behaviour in the high-Deborah-number regime, for example,
De = 2 and even De = 10, which we are currently unable to access via finite-element
simulations. Note, however, that we have assumed steady flows, so further investigation
would be required to assess whether there might be flow instabilities at higher De.

5.4. Different contributions to the pressure drop in the contraction and exit channel
In the previous subsection, we observed a monotonic reduction in the dimensionless
pressure drop with increasing De for an Oldroyd-B fluid flowing through the contraction
and exit channel (figures 7 and 8). To understand the source of such pressure drop
reduction, we elucidate the relative importance of elastic contributions to the pressure
drop.
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Figure 9. Elastic contributions to the non-dimensional pressure drop of the Oldroyd-B fluid, scaled by β̃,
in (a) the contraction and (b) the exit channel in the ultra-dilute limit. Black circles and grey dots represent
the semi-analytical solutions (3.28) (contraction) and (4.1) (exit channel) for elastic shear and normal stress
contributions. Cyan dotted and purple curves represent the low-De asymptotic solutions (3.32) (contraction)
and (4.3) (exit channel) for elastic shear and normal stress contributions. Red and black dashed lines represent
the high-De asymptotic solutions (3.35) (contraction) and (4.4) (exit channel) for elastic shear and normal stress
contributions. All calculations were performed using H� = 0.5 and L = 50.

The elastic contributions to the non-dimensional pressure drop across the contraction
and exit channel, scaled by β̃, as a function of De are shown in figures 9(a) and 9(b),
respectively. Black circles and grey dots represent the elastic shear and normal stress
contributions obtained from the semi-analytical solutions (3.28) and (4.1). Cyan dotted
and purple curves represent the elastic shear and normal stress contributions obtained from
the low-De asymptotic solutions (3.32) and (4.3). Red and black dashed lines represent
the elastic shear and normal stress contributions obtained from the high-De asymptotic
solutions (3.35) and (4.4). As expected based on our previous results, we observe excellent
agreement between our low- and high-De asymptotic solutions and the semi-analytical
predictions.

The first main source for the pressure drop reduction is the elastic normal stress
contribution, which linearly decreases with De in the contraction and exit channel at low
and high Deborah numbers. As noted by Hinch et al. (2024), this is because the elastic
normal stresses, which correspond to the tension in the streamlines, are higher at the end
of the contraction (exit channel) compared with the beginning of the contraction (exit
channel). These higher elastic normal stresses pull the fluid along and thus require less
pressure to push.

The second main source for the pressure drop reduction is the decrease of elastic shear
stress contribution with De due to the long time (or long distance) required for the elastic
shear stresses to approach their eventual relaxed values far downstream. As a result,
the elastic shear stresses are lower than the fully relaxed value Ã12 = −3Deη/H2

� (see
figure 3), and their contribution to the pressure drop is smaller than the steady Poiseuille
value of 3β̃

∫ 1
0 H(Z)−3 dZ (contraction) and 3β̃L/H3

� (exit channel), thus reducing the
pressure drop. At low Deborah numbers, such a decrease scales as De and De3 for a
smooth contraction and exit channel, respectively. However, at high Deborah numbers,
it approaches a constant asymptotic value of 3β̃

∫ 1
0 H(Z)−1 dZ for the contraction. For the

exit channel, �PSS
�,1 linearly depends on the Deborah number since the relaxation of the

elastic shear stresses occurs over the distance L, which scales linearly with De, as shown
in (5.4).
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6. Concluding remarks

In this work, we applied the lubrication approximation and considered the ultra-dilute
limit to study the flow of an Oldroyd-B fluid in arbitrarily shaped contracting channels.
Specifically, we exploited the one-way coupling between the parabolic velocity and
polymer conformation tensor in the ultra-dilute limit to derive closed-form expressions for
the microstructure deformation and the flow rate–pressure drop relation for arbitrary values
of the Deborah number. We provided analytical expressions for the conformation tensor
and the q − �p relation in the low- and high-Deborah-number limits for the contraction
and exit channels, complementing the asymptotic results of Boyko & Stone (2022) and the
analysis of Hinch et al. (2024) at any concentration. We further analysed the viscoelastic
boundary layer of thickness O(De−1), existing near the walls at high Deborah numbers,
and derived the boundary-layer asymptotic solutions. We validated our semi-analytical and
asymptotic results for the pressure drop in the smooth contraction and exit channels with
2-D finite-element numerical simulations and found excellent agreement.

For both contraction and exit channels, the pressure drop of an Oldroyd-B fluid
monotonically decreases with increasing De and scales linearly with De at high Deborah
numbers, as shown in figures 7 and 8. We identified two mechanisms for such pressure
drop reduction (see figure 9). The first is higher elastic normal stresses at the end of the
contraction and exit channels, relative to the corresponding entry values, that pull the fluid
along and thus require less pressure to push. The second source for the pressure drop
reduction is because, once perturbed from their upstream values, the elastic shear stresses
require a long distance to approach their new downstream fully relaxed values, as shown
in figure 3, so again reducing the pressure drop.

Our theoretical approach, which relies on lubrication theory and the ultra-dilute
limit, allows us to study the behaviour of the elastic stresses and pressure drop of an
Oldroyd-B fluid at arbitrary values of De. Our theory is not restricted to the case of
2-D contracting channels and can be utilized to study different slowly varying geometries,
such as expansions and constrictions. The approach can also be extended to axisymmetric
geometries. Furthermore, the theoretical framework we presented enables us to access
sufficiently high Deborah numbers, which are difficult and sometimes impossible to
study via numerical simulations due to the high-Weissenberg-number problem (Owens
& Phillips 2002; Alves et al. 2021). We, therefore, believe that our analytical and
semi-analytical results for the ultra-dilute limit are of fundamental importance as they
may serve for simulation validation.

Finally, we note that our theoretical predictions for the pressure drop reduction of
an Oldroyd-B fluid in a contraction are consistent with the previous numerical reports
on 2-D abruptly contracting geometries (Aboubacar, Matallah & Webster 2002; Alves
et al. 2003; Binding et al. 2006; Aguayo, Tamaddon-Jahromi & Webster 2008). However,
these predictions are opposite to the experiments showing a nonlinear increase in the
pressure drop with De for the flow of a Boger fluid through abrupt axisymmetric
contraction–expansion and contraction geometries (Rothstein & McKinley 1999, 2001;
Nigen & Walters 2002; Sousa et al. 2009). As noted by Alves et al. (2003) and Hinch
et al. (2024), this discrepancy might be attributed to the lack of dissipative effects in the
Oldroyd-B model. Thus, as a future research direction, it is interesting to study more
complex constitutive equations, such as a finitely extensible nonlinear elastic (FENE)
model introduced by Chilcott & Rallison (1988) (FENE-CR) and a finitely extensible
nonlinear elastic model with the Peterlin approximation (FENE-P), that incorporate
dissipation and additional microscopic features of polymer solutions and understand how
these features affect the pressure drop. We anticipate that even for a more complex
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constitutive model, the theoretical framework presented here will enable the development
of a simplified, reduced-order theory, allowing us to study the behaviour at non-small
Deborah numbers.
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Appendix A. Orthogonal curvilinear coordinates for a slowly varying geometry

In this appendix, we provide additional details for orthogonal curvilinear coordinates for
a slowly varying geometry used in our theoretical analysis. We consider a slowly spatially
varying channel with a given shape h that varies on the length scale �, so that h = h(z/�) =
h0H(Z). We transform the Cartesian coordinates (Z, Y) to curvilinear coordinates (ξ, η)
with the mapping

ξ = Z + ε2Q(Z, Y), η = Y
H(Z)

, (A1a,b)

where Z = z/�, Y = y/h0 and Q is an unknown function yet to be determined. Note that, in
the lubrication limit, the orthogonal coordinate ξ (scaled by �) is nearly in the z-direction.

We find Q(Z, Y) by requiring that the curvilinear coordinates (ξ, η) are orthogonal,
i.e. ∇ξ · ∇η = 0. Using the relations

∇ξ =
[
ε
∂ξ

∂Z
,
∂ξ

∂Y

]
=
[
ε

(
1 + ε2 ∂Q

∂Z

)
, ε2 ∂Q

∂Y

]
, (A2a)

∇η =
[
ε
∂η

∂Z
,
∂η

∂Y

]
=
[
−ε

YH′(Z)

H(Z)2 ,
1

H(Z)

]
, (A2b)

we obtain

∇ξ · ∇η = ε2

H(Z)

[
−
(

1 + ε2 ∂Q
∂Z

)
YH′(Z)

H(Z)
+ ∂Q

∂Y

]
. (A3)

Therefore, ∇ξ · ∇η = O(ε4) provided we set

∂Q
∂Y

= YH′(Z)

H(Z)
⇒ Q(Z, Y) = −1

2
H′(Z)

H(Z)
(H(Z)2 − Y2), (A4)

where without loss of generality, we choose Q ≡ 0 on Y = H(Z). Hence, the orthogonal
curvilinear coordinates (ξ, η) are

ξ = Z − 1
2
ε2 H′(Z)

H(Z)
(H(Z)2 − Y2) + O(ε4), η = Y

H(Z)
. (A5a,b)

Using (A5a,b), the inverse transformation is (see also Hinch et al. 2024)

Z = ξ + 1
2ε2H′(ξ)H(ξ)(1 − η2) + O(ε4) = ξ + 1

4(H(ξ)2)′(1 − η2) + O(ε4), (A6a)

Y(ξ, η) = ηH(ξ), (A6b)

where evaluating H(ξ) rather than H(Z) introduces a relative error of O(ε2).
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In what follows, it is also convenient to use the dimensional form of the transformation
(A6), given as

z = ξ̄ + 1
2
εh0

dH(ξ)

dξ
H(ξ)(1 − η2) + O(ε4), y = ηh0H(ξ), (A7a,b)

where we have defined the dimensional coordinate ξ̄ = ξ�.

A.1. Curvilinear orthonormal basis vectors
The expressions for the curvilinear orthonormal basis vectors eξ and eη in terms of ez and
ey are obtained from

eξ = ∂x
∂ξ̄

1∣∣∂x/∂ξ̄
∣∣ , eη = ∂x

∂η

1
|∂x/∂η| , (A8a,b)

where using (A7a,b), we have

∂x
∂ξ̄

=
(

∂z
∂ξ̄

,
∂y
∂ξ̄

)
=
(

1 + O(ε2), h0
dH(ξ)

dξ̄
η

)
=

ξ̄=�ξ

(
1 + O(ε2), ε

dH(ξ)

dξ
η

)
, (A9a)

∂x
∂η

=
(

∂z
∂η

,
∂y
∂η

)
=
(

−εh0
dH(ξ)

dξ
H(ξ)η, h0H(ξ)

)
, (A9b)

and hξ = |∂x/∂ξ̄ | ≈ 1 and hη = |∂x/∂η| ≈ h0H(ξ) = h(ξ̄/�) are the metric coefficients
(or scale factors) in the ξ - and η-directions, respectively, with small corrections of O(ε2).

Substituting (A9) into (A8a,b), we obtain

eξ ≈ ez + εH′(ξ)ηey, eη ≈ −εH′(ξ)ηez + ey. (A10a,b)

A.2. Velocity and conformation tensor in Cartesian and curvilinear coordinates
The velocity field and the conformation tensor can be expressed either in Cartesian or
curvilinear coordinates. Specifically, the velocity u = uzez + uyey in Cartesian coordinates
is related to the velocity u = ueξ + veη in curvilinear coordinates through (Brand 1947)(

uz
uy

)
= M ·

(
u
v

)
, (A11)

where M is the coordinate transformation matrix obtained from (A10a,b) and given as

M =
(

1 −εH′(ξ)η

εH′(ξ)η 1

)
. (A12)

We introduce non-dimensional velocity components in curvilinear coordinates, similar to
the non-dimensionalization (2.5a),

U = u
uc

, V = v

εuc
. (A13a,b)

Using (A11)–(A13a,b) provides the relations between non-dimensional velocity
components in different coordinates

Uz = U − ε2ηH′(ξ)V, Uy = ηH′(ξ)U + V. (A14a,b)

While velocity in the z- and ξ -directions are the same, albeit to a O(ε2) correction, the
velocity in the y-direction is greater by ηH′(ξ)U than the velocity in the η-direction.
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Similarly, the conformation tensor A = Azzezez + Azy(ezey + eyez) + Ayyeyey in
Cartesian coordinates is related to the conformation tensor A = A11eξ eξ + A12(eξ eη +
eηeξ ) + A22eηeη in curvilinear coordinates through (Brand 1947)(

Azz Azy
Ayz Ayy

)
= M ·

(
A11 A12
A21 A22

)
· MT. (A15)

Next, we define scaled Ã11, Ã12 and Ã22 in curvilinear coordinates, similar to the
non-dimensionalization (2.5c)

Ã11 = ε2A11, Ã12 = εA12, Ã22 = A22. (A16a–c)

Finally, using (A12) and (A15)–(A16), we obtain the relations between conformation
tensor components in different coordinates

Ãzz = Ã11 + O(ε2), (A17a)

Ãzy = Ã12 + ηH′(ξ)Ã11 + O(ε2), (A17b)

Ãyy = Ã22 + 2ηH′(ξ)Ã12 + η2(H′(ξ))2Ã11 + O(ε2). (A17c)

Appendix B. Low-β̃ lubrication analysis in the exit channel: detailed derivation

We here provide details of the derivation of closed-form expressions for the conformation
tensor and the pressure drop in the uniform exit channel for β̃ � 1.

B.1. Velocity, conformation and pressure drop in the exit channel at the leading order
in β̃

The velocity field and pressure drop in the exit channel at the leading order in β̃ are

U0 = 3
2

1
H�

(1 − η2), V0 ≡ 0, �P�,0 = 3L

H3
�

. (B1a–c)

As expected, (B1) simply represents the solution for the velocity and pressure drop
of a Newtonian fluid with a constant viscosity μ0 flowing in a straight channel of
(non-dimensional) height H� and length L.

Substituting (B1a) into (3.6), we obtain the governing equations for the conformation
tensor components in the exit channel at the leading order in β̃

U0
∂Ã22,0

∂Z
= − 1

De
(Ã22,0 − 1), (B2a)

U0
∂Ã12,0

∂Z
− 1

H�

dU0

dη
Ã22,0 = − 1

De
Ã12,0, (B2b)

U0
∂Ã11,0

∂Z
− 2

H�

dU0

dη
Ã12,0 = − 1

De
Ã11,0. (B2c)

Equations (B2), similar to (3.6), represent a set of one-way coupled first-order semi-linear
partial differential equations that can be solved first for Ã22,0, followed by Ã12,0 and then
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for Ã11,0. The solution of these equations is

Ã22,0 = 1 + (Ãref
22,0(η) − 1) exp(−2H�Z�/[3De(1 − η2)]), (B3)

Ã12,0 = −3De

H2
�

η + exp(−2H�Z�/[3De(1 − η2)])

[
Ãref

12,0(η)

+ 3De

H2
�

η − 2η(Ãref
22,0(η) − 1)Z�

H�(1 − η2)

]
, (B4)

Ã11,0 = 18De2

H4
�

η2 + exp(−2H�Z�/[3De(1 − η2)])

[
Ãref

11,0(η) − 18De2

H4
�

η2

+4η2(Ãref
22,0(η) − 1)Z2

�

H2
� (1 − η2)2

− 4ηZ�[3Deη + H2
� Ãref

12,0(η)]

H3
� (1 − η2)

]
, (B5)

where Z� = Z − 1 and Ãref
22,0(η) = Ã22,0(Z = 1, η), Ãref

12,0(η) = Ã12,0(Z = 1, η) and

Ãref
11,0(η) = Ã11,0(Z = 1, η) are the reference distributions of the conformation tensor

components at the outlet (Z = 1) of the non-uniform channel that can be obtained from
(3.8), (3.9) and (3.10).

We note that, under the assumption of a fully developed flow in the entire exit channel
so that U(η) = (3/2H�)(1 − η2), the governing equations for the conformation tensor
components (B2) and their solution (B3)–(B5) are valid not only at O(β̃0) but for arbitrary
values of β̃.

Finally, we note that the components of the conformation tensor at the walls of the exit
channel (η = ±1) are given in (3.12), with H(Z) ≡ H�. Thus, the conformation tensor
components at the walls of the exit channel attain their fully relaxed values without spatial
development.

B.1.1. Conformation tensor in the exit channel at low De numbers
At low Deborah numbers, we use (3.13) to obtain the reference distributions of the
conformation tensor components at the beginning of the exit channel

Ãref
22,0(η) = 1 − 9De2H′′(1)

2H3
�

(1 − η2)2, (B6a)

Ãref
12,0(η) = −3De

H2
�

η + 81De3H′′(1)

2H5
�

η(1 − η2)2, (B6b)

Ãref
11,0(η) = 18De2

H4
�

η2 − 486De4H′′(1)

H7
�

η2(1 − η2)2, (B6c)

where, for a smooth geometry, we have assumed that H′(1) = H′′′(1) = 0.
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Substituting (B6) into (B3), we obtain explicit expressions for the spatial relaxation of
the conformation tensor components in the exit channel for De � 1

Ã22,0 = 1 − 9De2H′′(1)

2H3
�

(1 − η2)2 exp(−2H�Z�/[3De(1 − η2)]), (B7a)

Ã12,0 = −3De

H2
�

η

+ 9De2H′′(1)

H4
�

η(1 − η2) exp(−2H�Z�/[3De(1 − η2)])
[

9De
2H�

(1 − η2) + Z�

]
,

(B7b)

Ã11,0 = 18De2

H4
�

η2 − 18De2H′′(1)

H5
�

η2 exp(−2H�Z�/[3De(1 − η2)])

[
27De2

H2
�

(1 − η2)2

+ Z2
� + 9De

H�

Z�(1 − η2)

]
. (B7c)

B.1.2. Conformation tensor in the exit channel at high De numbers
From (3.15), (3.17) and (3.19) it follows that the reference distributions of the conformation
tensor components at the beginning of the exit channel within the core flow region in the
high-De limit are

Ãref
22,0(η) = H2

� , Ãref
12,0(η) = −3Deη, Ãref

11,0(η) = 18De2

H2
�

η2. (B8a–c)

Substituting (B8) into (B3) provides expressions for the spatial relaxation of the
conformation tensor components in the exit channel for De � 1

Ã22,0 = 1 + (H2
� − 1) exp(−2H�Z�/[3De(1 − η2)]), (B9a)

Ã12,0 = −3Deη

H2
�

+ exp(−2H�Z�/[3De(1 − η2)])

[
−3Deη + 3Deη

H2
�

+ 2η(1 − H2
� )Z�

H�(1 − η2)

]
,

(B9b)

Ã11,0 = 18De2η2

H4
�

+ exp(−2H�Z�/[3De(1 − η2)])

[
18De2η2

H2
�

− 18De2η2

H4
�

+4η2(H2
� − 1)Z2

�

H2
� (1 − η2)2

− 12Deη2Z�(1 − H2
� )

H3
� (1 − η2)

]
. (B9c)
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B.2. Pressure drop in the exit channel at the first order in β̃

Using (2.21) and (3.27), the expressions for the pressure drop at O(β̃), �P�,1 and the total
pressure drop in the exit channel up to O(β̃), �P�, are

�P�,1 = − 3L

H3
�

+ 3
2De

∫ 1

0
(1 − η2)

[
Ã11,0

]Z�=0

Z�=L
dη + 3

DeH�

∫ 1

0
η

[∫ 0

L
Ã12,0 dZ�

]
dη,

(B10)
and

�P� = (1 − β̃)
3L

H3
�︸ ︷︷ ︸

Solvent stress

+ 3β̃

2De

∫ 1

0
(1−η2)

[
Ã11,0

]Z�=0

Z�=L
dη︸ ︷︷ ︸

Elastic normal stress

+ 3β̃

DeH�

∫ 1

0
η

[∫ 0

L
Ã12,0 dZ�

]
dη

︸ ︷︷ ︸
Elastic shear stress

,

(B11)
where Ã11,0 and Ã12,0 are given in (B4) and (B5) and [Ã11,0]Z�=0

Z�=L = Ã11,0(Z� = 0, η) −
Ã11,0(Z� = L, η). The three terms on the right-hand side of (B11) represent, respectively,
the Newtonian solvent stress contribution, the elastic normal stress contribution and the
elastic shear stress contribution to the pressure drop.

It is possible to express the first-order contribution �P�,1 in terms of the difference
between the conformation tensor components at the beginning and end of the exit channel.
First, integrating (B2a) and (B2b) with respect to Z� from L to 0, we obtain

U0

[
Ã22,0

]Z�=0

Z�=L
= − 1

De

∫ 0

L
(Ã22,0 − 1) dZ�, (B12)

U0

[
Ã12,0

]Z�=0

Z�=L
− 1

H�

dU0

dη

∫ 0

L
Ã22,0 dZ� = − 1

De

∫ 0

L
Ã12,0 dZ�. (B13)

Substituting (B12) into (B13) yields

U0

[
Ã12,0

]Z�=0

Z�=L
+ De

H�

dU0

dη
U0

[
Ã22,0

]Z�=0

Z�=L
+ L

H�

dU0

dη
= − 1

De

∫ 0

L
Ã12,0 dZ�. (B14)

Thus, using (B14), the last term on the right-hand side of (B11) can be expressed as

3
DeH�

∫ 1

0
η

[∫ 0

L
Ã12,0dZ�

]
dη = − 9

2H2
�

∫ 1

0
η(1 − η2)

[
Ã12,0

]Z�=0

Z�=L
dη

+ 27De

2H4
�

∫ 1

0
η2(1 − η2)

[
Ã22,0

]Z�=0

Z�=L
dη + 3L

H3
�

.

(B15)

Substituting (B15) into (B11) provides the alternative expression for �P�,1

�P�,1 = 3
2De

∫ 1

0
(1 − η2)

[
Ã11,0

]Z�=0

Z�=L
dη − 9

2H2
�

∫ 1

0
η(1 − η2)

[
Ã12,0

]Z�=0

Z�=L
dη

+ 27De

2H4
�

∫ 1

0
η2(1 − η2)

[
Ã22,0

]Z�=0

Z�=L
dη. (B16)

Under the assumption that L is such that the elastic stresses reach their fully relaxed values
by the end of the exit channel, (B16) shows that the first-order contribution �P�,1 is
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Flow of an Oldroyd-B fluid in a slowly varying contraction

independent of L since the steady-state values of Ã11,0, Ã12,0 and Ã22,0 depend solely on
the η coordinate.

B.2.1. Pressure drop in the exit channel at O(β̃) in the low-De limit
To calculate the pressure drop �P� in the exit channel at low Deborah numbers, we use
(B7b)–(B7c) and (B10). The elastic normal stress contribution to �P�,1 is

�PNS
�,1 = 3

2De

∫ 1

0
(1 − η2)

[
Ã11,0

]Z�=0

Z�=L
dη = −1296De3H′′(1)

35H7
�

for De � 1. (B17)

The elastic shear stress contribution to the pressure drop at O(β̃) is

�PSS
�,1 = 3

DeH�

∫ 1

0
η

[∫ 0

L
Ã12,0 dZ�

]
dη, (B18)

with the integral
∫ 0

L Ã12,0 dZ� given as

∫ 0

L
Ã12,0 dZ� ≈ 3DeL

H2
�

η − 81De4H′′(1)

H6
�

η(1 − η2)3 for De � 1, (B19)

where we have neglected terms multiplying exp(−2H�L/[3De(1 − η2)]) ≈ 0.
Substituting (B19) into (B18), we obtain

�PSS
�,1 = 3L

H3
�

− 432De3H′′(1)

35H7
�

for De � 1. (B20)

Combining the normal stress and shear stress contributions, (B17) and (B20), provides the
expression for the pressure drop at O(β̃) in the low-De limit

�P�,1 = − 3L

H3
�

+ �PNS
�,1 + �PSS

�,1 = −1728De3H′′(1)

35H7
�

for De � 1. (B21)

Therefore, the total pressure drop in the exit channel in the low-De limit is

�P� = (1 − β̃)
3L

H3
�︸ ︷︷ ︸

Solvent stress

+ −1296β̃De3H′′(1)

35H7
�︸ ︷︷ ︸

Elastic normal stress

+ 3L

H3
�

β̃ − 432β̃De3H′′(1)

35H7
�︸ ︷︷ ︸

Elastic shear stress

= 3L

H3
�

− 1728β̃De3H′′(1)

35H7
�

for De � 1. (B22)

Equation (B22) shows that for a smooth contraction with H′(1) = H′′′(1) = 0, the first
non-vanishing viscoelastic contribution to the pressure drop in the exit channel at low
Deborah numbers is only at O(De3) as the O(De) and O(De2) contributions are identically
zero.
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B.2.2. Pressure drop in the exit channel at O(β̃) in the high-De limit
To calculate the pressure drop �P� in the exit channel at high Deborah numbers, we use
(B9b)–(B9c) and (B10). The elastic normal stress contribution to �P�,1 is

�PNS
�,1 = 3

2De

∫ 1

0
(1 − η2)

[
Ã11,0

]Z�=0

Z�=L
dη = 18

5
De(H−2

� − H−4
� ) for De � 1. (B23)

The elastic shear stress contribution to the pressure drop at O(β̃) is

�PSS
�,1 = 3

DeH�

∫ 1

0
η

[∫ 0

L
Ã12,0 dZ�

]
dη = 3L

H3
�

+ 18
5

De(H−2
� − H−4

� ) for De � 1,

(B24)
where the integral

∫ 0
L Ã12,0 dZ�, after neglecting terms multiplying exp(−2H�L/

[3De(1 − η2)]) ≈ 0, is given as∫ 0

L
Ã12,0 dZ� ≈ 3DeL

H2
�

η + 9De2(H2
� − 1)

H3
�

η(1 − η2) for De � 1. (B25)

Combining the normal stress and shear stress contributions, (B23) and (B24), provides the
expression for the pressure drop at O(β̃) in the high-De limit

�P�,1 = − 3L

H3
�

+ �PNS
�,1 + �PSS

�,1 = 36
5

De(H−2
� − H−4

� ) for De � 1. (B26)

Therefore, the total pressure drop in the exit channel in the high-De limit is

�P� = (1 − β̃)
3L

H3
�︸ ︷︷ ︸

Solvent stress

+ 18
5

β̃De(H−2
� − H−4

� )︸ ︷︷ ︸
Elastic normal stress

+ 3L

H3
�

β̃ + 18
5

β̃De(H−2
� − H−4

� )︸ ︷︷ ︸
Elastic shear stress

= 3L

H3
�

+ 36
5

β̃De(H−2
� − H−4

� ) for De � 1. (B27)
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