SCHLICHT DIRICHLET SERIES

M. S. ROBERTSON

1. Introduction. For power series

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\ldots+a_{n} z^{n}+\ldots \tag{1.1}
\end{equation*}
$$

for which

$$
\begin{equation*}
\sum_{2}^{\infty} n\left|a_{n}\right| \leqslant 1 \tag{1.2}
\end{equation*}
$$

it has been known for four decades (1) that $f(z)$ is regular and univalent or schlicht in $|z|<1$. This theorem, due to J. W. Alexander, has more recently been studied by Remak (5) who has shown that $w=f(z)$, under the hypothesis (1.2), maps $|z|<1$ onto a star-like region, and if (1.2) is not satisfied $f(z)$ need not be univalent in $|z|<1$ for a proper choice of the amplitudes of the coefficients a_{n}.

We may recast the theorem of Alexander in the following form. Let the power series

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\ldots+a_{n} z^{n}+\ldots \tag{1.3}
\end{equation*}
$$

have a radius of convergence $R>0$, and let ρ be the largest positive number, $0<\rho \leqslant R$, for which

$$
\begin{equation*}
\sum_{2}^{\infty} n\left|a_{n}\right| \rho^{n-1} \leqslant 1 . \tag{1.4}
\end{equation*}
$$

Then $f(z)$ is univalent and star-like with respect to the origin in $|z|<\rho$.
For Dirichlet series

$$
\begin{equation*}
f(s)=-e^{-\lambda_{1} s}+\sum_{n=2}^{\infty} a_{n} e^{-\lambda_{n} s}, \quad s=\sigma+i t \tag{1.5}
\end{equation*}
$$

whose abscissa of absolute convergence is $\bar{\sigma},-\infty \leqslant \bar{\sigma}<\infty$, there is a smallest real number $\tau, \bar{\sigma} \leqslant \tau<\infty$, for which

$$
\begin{equation*}
\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\lambda_{n} \tau} \leqslant 1 \tag{1.6}
\end{equation*}
$$

Working by analogy with power series one might guess that under the hypothesis (1.6), $f(s)$ would be univalent in the half-plane $\Re s>\tau$. However, this is not the case, as the simple example

$$
f(s)=-e^{-\lambda_{1} s}
$$

[^0]shows, and because of the almost periodic character of the functions $f(s)$ in general.

Functions $f(z)$ given by power series (1.1) which satisfy (1.2) are said to be of Hurwitz class (5). Similarly, those functions $f(s)$ given by Dirichlet series (1.5) which satisfy (1.6) will be said to be of class τ.

Recalling certain concepts of univalency introduced by Montel (3), we say that $f(z)$ is locally univalent in a region D if $f(z)$ is regular in D and if, for every closed domain $D^{*} \subset D$ and for every point z_{0} of D^{*}, there exists a positive number ρ independent of z_{0} such that $f(z)$ is univalent in every circle $\left|z-z_{0}\right|$ $<\rho$ lying within D. Moreover, if there is a class of functions $\{f(z)\}$ regular in the region D we shall say that the functions $f(z)$ of the class are uniformly locally univalent in D whenever $f(z)$ is locally univalent in D and ρ has the same value for each member $f(z)$ of the class.

We shall show that the functions $f(s)$ given by a Dirichlet series (1.5) of class τ are uniformly locally univalent in a half-plane. If $\tau<\left(\log \lambda_{1}\right) / \lambda_{1}$, the half-plane is the one for which $\Re s>\tau$. If $\tau \geqslant\left(\log \lambda_{1}\right) / \lambda_{1}$ the half-plane is the one for which

$$
\Re s>\frac{\lambda_{q} \tau-\log \lambda_{1}}{\lambda_{q}-\lambda_{1}} \geqslant \tau
$$

where q is the suffix of the first non-vanishing coefficient a_{q} of the numbers $a_{n}, n \geqslant 2$. The theorem is a best possible one. More explicitly we prove

Theorem 1. Let

$$
\begin{equation*}
f(s)=-e^{-\lambda_{1} s}+\sum_{n=q}^{\infty} a_{n} e^{-\lambda_{n} s}, a_{q} \neq 0, \quad s=\sigma+i t \tag{1.7}
\end{equation*}
$$

have $\bar{\sigma}$ as its abscissa of absolute convergence, $-\infty \leqslant \bar{\sigma}<\infty$. Let $f(s)$ be of class τ. Let ϵ be an arbitrary real number in the range $0<\epsilon<1$. Then $f(s)$ is univalent in every circle $\left|s-s_{0}\right| \leqslant(1-\epsilon) \pi / \lambda_{1}$ for $\Re s_{0}>\alpha$ where

$$
\begin{equation*}
\alpha=\max \left\{\tau+\frac{(1-\epsilon) \pi}{\lambda_{1}}, \quad \frac{3 \log (2-\epsilon)-\log \left(\lambda_{1} \epsilon\right)+\lambda_{q} \tau+(1-\epsilon) \pi \lambda_{q} / \lambda_{1}}{\lambda_{q}-\lambda_{1}}\right\} . \tag{1.8}
\end{equation*}
$$

The factor π / λ_{1} in the radius $(1-\epsilon) \pi / \lambda_{1}$ cannot be replaced by a larger one.
An application is made to the Riemann Zeta-function $\zeta(s)$ which is shown to be locally schlicht in the half-plane $\Re s>6.32$.
The radius of univalency of the function $e^{-\lambda_{1} s}$ about any point s_{0} is exactly π / λ_{1} and the function has a period $2 \pi i / \lambda_{1}$. Since this function is also univalent in every strip of width $2 \pi / \lambda_{1}$ parallel to the real axis, this suggests that perhaps semi-infinite strips would form more natural domains in which to investigate properties of univalency for functions represented in half-planes by Dirichlet series. Accordingly, in §4 we obtain several results applicable to strip domains. The following theorem is proved.

Theorem 3. Let

$$
\begin{equation*}
f(s)=-e^{-\lambda_{1} s}+\sum_{n=2}^{\infty} a_{n} e^{-\lambda_{n} s}, \quad s=\sigma+i t \tag{1.9}
\end{equation*}
$$

be absolutely convergent for $\sigma>\bar{\sigma},-\infty \leqslant \bar{\sigma}<\infty$, and let $f(s)$ be of class $\tau \leqslant \tau_{0}$ where

$$
\begin{equation*}
\tau_{0}=\frac{\log \lambda_{1}}{\lambda_{1}}-\frac{\log 2}{2 \lambda_{1}}=\frac{\log \lambda_{1}-\frac{1}{2} \log 2}{\lambda_{1}} \tag{1.10}
\end{equation*}
$$

Let k be an arbitrary integer and let

$$
\begin{equation*}
t_{0}=\frac{1}{\lambda_{1}} \arccos \left(\frac{e^{\lambda_{1} \tau}}{\lambda_{1}}\right), \quad 0<t_{0}<\frac{\pi}{2 \lambda_{1}} \tag{1.11}
\end{equation*}
$$

Let D_{k} denote the strip of the s-plane defined by

$$
\sigma \geqslant \tau,\left|t-\frac{2 k \pi}{\lambda_{1}}\right| \leqslant t_{0}
$$

Then $W=f(s)$ is univalent in D_{k} and maps the interior of D_{k} onto a bounded region Δ_{k} which is star-shaped with respect to the point $\sigma=+\infty$ at an end of the real axis, this region being convex in the direction of the real axis. The theorem is not true in general if the strip is enlarged, or if τ exceeds τ_{0}. If τ_{0} is replaced by $\tau^{*}{ }_{0}=\left(\log \lambda_{1}\right) / \lambda_{1} f(s)$ is still univalent in D_{k}, but Δ_{k} is in general no longer convex in the direction of the real axis. Again, the theorem is not true if τ exceeds $\tau^{*}{ }_{0}$.
2. Preliminary lemmas. Let $f(s)$ be defined by a Dirichlet series, and normalized as in (1.5), with $\bar{\sigma}$ as abscissa of absolute convergence, $-\infty$ $\leqslant \bar{\sigma}<\infty$, and where λ_{n} is a given sequence

$$
0<\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}<\ldots, \lambda_{n} \rightarrow \infty .
$$

We shall suppose that not all the coefficients a_{n} are zero.
It is well-known that the derived series

$$
\begin{equation*}
f^{\prime}(s)=\lambda_{1} e^{-\lambda_{1} s}-\sum_{n=2}^{\infty} \lambda_{n} a_{n} e^{-\lambda_{n} s} \tag{2.1}
\end{equation*}
$$

also converges absolutely for $\sigma>\bar{\sigma}$. If

$$
\begin{equation*}
\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\lambda_{n} \bar{\sigma}} \tag{2.2}
\end{equation*}
$$

diverges to $+\infty$ and $\bar{\sigma}$ is finite there exists a unique real number $\tau, \bar{\sigma}<\tau<\infty$, for which

$$
\begin{equation*}
\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\lambda_{n} \tau}=1 \tag{2.3}
\end{equation*}
$$

This follows since

$$
\begin{equation*}
g(\sigma)=\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\lambda_{n} \sigma} \tag{2.4}
\end{equation*}
$$

is a strictly decreasing continuous function of σ for $\sigma>\bar{\sigma}$ which assumes arbitrarily large positive values for σ near $\bar{\sigma}, \sigma>\bar{\sigma}$, and which assumes arbitrarily small positive values for sufficiently large positive values of σ. Since $\bar{\sigma}$ was assumed finite, there are an infinite number of coefficients a_{n} different from zero.

The same conclusion about τ in (2.3) may be drawn if the series (2.2) converges to a positive number not less than 1 . In this case $\bar{\sigma} \leqslant \tau<\infty$. If the series (2.2) converges to a positive number less than 1 we define $\tau=\bar{\sigma}$ so that in this case (2.3) is replaced by

$$
\begin{equation*}
\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\lambda_{n} \tau}<1 \tag{2.5}
\end{equation*}
$$

If $\bar{\sigma}=-\infty, g(\sigma)$ assumes arbitrarily large positive values for τ sufficiently small (algebraically) and negative so that again there exists a unique τ for which (2.3) holds. In all cases $\bar{\sigma} \leqslant \tau<\infty$. We shall call τ the "class" of the Dirichlet series (1.5). Thus we have the lemma:

Lemma 1. Let $f(s)$ be defined by the Dirichlet series (1.5) with $\bar{\sigma}$ as its abscissa of absolute convergence, $-\infty \leqslant \bar{\sigma}<\infty$. Then there exists a smallest real number, $\tau, \bar{\sigma} \leqslant \tau<\infty$, for which

$$
\begin{equation*}
\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\lambda_{n} \tau} \leqslant 1 \tag{2.6}
\end{equation*}
$$

Lemma 2. Let s_{1} and s_{2} be any two distinct points in the circle $|s| \leqslant r$. Let λ be a positive number. Then

$$
\begin{equation*}
\left|\frac{e^{-\lambda s_{2}}-e^{-\lambda s_{1}}}{s_{2}-s_{1}}\right| \leqslant \lambda e^{\tau \lambda} \tag{2.7}
\end{equation*}
$$

Lemma 2 follows immediately from the expansion

$$
\begin{gather*}
\left|\frac{e^{-\lambda s_{2}}-e^{-\lambda s_{1}}}{s_{2}-s_{1}}\right|=\lambda\left|1-\frac{\left(s_{2}+s_{1}\right)}{2!} \lambda+\frac{\left(s_{2}{ }^{2}+s_{2} s_{1}+s_{1}{ }^{2}\right)}{3!} \lambda^{2}-\ldots\right| \tag{2.8}\\
\leqslant \lambda\left(1+\frac{r \lambda}{1!}+\frac{r^{2} \lambda^{2}}{2!}+\ldots+\frac{r^{k} \lambda^{k}}{k!}+\ldots\right)=\lambda e^{r \lambda} .
\end{gather*}
$$

Lemma 3. Let s_{1} and s_{2} be any two distinct points on the circle $|z|=r$. Let λ be a positive number. Let ϵ be an arbitrary positive number less than one. Then for $r=(1-\epsilon) \pi / \lambda$

$$
\begin{equation*}
\left|\frac{e^{-\lambda s_{2}}-e^{-\lambda s_{1}}}{\lambda s_{2}-\lambda s_{1}}\right| \geqslant \frac{\epsilon}{(2-\epsilon)^{3}}>\frac{\epsilon}{8}>0 \tag{2.9}
\end{equation*}
$$

To prove Lemma 3 we observe that if

$$
\begin{equation*}
F(\zeta)=\zeta+b_{0}+\frac{b_{1}}{\zeta}+\ldots+\frac{b_{n}}{\zeta^{n}}+\ldots \tag{2.10}
\end{equation*}
$$

is regular and schlicht for $|\zeta|>1$, and if ζ_{1} and ζ_{2} are two distinct points for which $\left|\zeta_{1}\right|=\left|\zeta_{2}\right|=R>1$ then it is known (2) that

$$
\begin{equation*}
\left|\frac{F\left(\zeta_{2}\right)-F\left(\zeta_{1}\right)}{\zeta_{2}-\zeta_{1}}\right| \geqslant 1-R^{-2} \tag{2.11}
\end{equation*}
$$

From (2.11) it follows that if

$$
\begin{equation*}
f(z)=z+b_{2} z^{2}+\ldots+b_{n} z^{n}+\ldots \tag{2.12}
\end{equation*}
$$

is regular and univalent in $|z|<1$, and if z_{1} and z_{2} are any two distinct points on $|z|=\rho<1$, then

$$
\begin{equation*}
\left|\frac{f\left(z_{2}\right)-f\left(z_{1}\right)}{z_{2}-z_{1}}\right| \geqslant \frac{1-\rho}{(1+\rho)^{3}} \tag{2.13}
\end{equation*}
$$

(2.13) follows from (2.11) if we define $F(\zeta)=\left\{f\left(\zeta^{-1}\right)\right\}^{-1}$ and use the wellknown inequality for univalent functions (2.12):

$$
\begin{equation*}
\left|\frac{f(z)}{z}\right| \geqslant(1+\rho)^{-2},|z|=\rho<1 \tag{2.14}
\end{equation*}
$$

Since e^{z} is univalent in $|z|<\pi$, it follows from (2.13) that

$$
\begin{align*}
& \left|\frac{e^{z_{2}}-e^{z_{1}}}{z_{2}-z_{1}}\right| \geqslant \frac{\pi^{2}(\pi-\rho)}{(\pi+\rho)^{3}},\left|z_{1}\right|=\left|z_{2}\right|=\rho<\pi \tag{2.15}\\
& \left|\frac{e^{-\lambda s_{2}}-e^{-\lambda s_{1}}}{\lambda s_{2}-\lambda s_{1}}\right| \geqslant \frac{\pi^{2}(\pi-\lambda r)}{(\pi+\lambda r)^{3}},\left|s_{1}\right|=\left|s_{2}\right|=r . \tag{2.16}
\end{align*}
$$

Choosing $r=(1-\epsilon) \pi / \lambda$ in (2.16) we obtain (2.9). This completes the proof of Lemma 3.
3. Proof of Theorem 1. Let $s_{0}=\sigma_{0}+i t_{0}$ be a complex number for which $\sigma_{0}=\Re s_{0} \geqslant \bar{\sigma}+(1-\epsilon) \pi / \lambda_{1}, 0<\epsilon<1$. Let s_{1}, s_{2} be any two distinct values of s in the circle $\left|s-s_{0}\right| \leqslant r$ where $r<\sigma_{0}-\bar{\sigma}$. Let $s_{1}{ }^{\prime}=s_{1}-s_{0}, s_{2}{ }^{\prime}=s_{2}-s_{0}$ so that $\left|s_{i}{ }^{\prime}\right| \leqslant r$. For an appropriate r we shall show that $f(s)$, given by the Dirichlet series (1.5) which is of class τ, is univalent in $\left|s-s_{0}\right| \leqslant r$, provided σ_{0} is sufficiently large. In proving

$$
\begin{equation*}
\frac{f\left(s_{2}\right)-f\left(s_{1}\right)}{s_{2}-s_{1}} \neq 0 \tag{3.1}
\end{equation*}
$$

it will be sufficient to assume $\left|s_{1}{ }^{\prime}\right|=\left|s_{2}{ }^{\prime}\right|=r$. This follows from the fact that if the image curve of the circle $\left|s-s_{0}\right|=r$ by the mapping function bounds a simply connected region, the mapping function is schlicht in the interior when it is schlicht on the boundary. Choose $r=(1-\epsilon) \pi / \lambda_{1}$. We now have

$$
\begin{align*}
& \frac{f\left(s_{2}\right)-f\left(s_{1}\right)}{s_{2}-s_{1}}=-\left(\frac{e^{-\lambda_{1} s_{2}}-e^{-\lambda_{1} s_{1}}}{s_{2}-s_{1}}\right)+\sum_{n==}^{\infty} a_{n}\left(\frac{e^{-\lambda_{n} s_{2}}-e^{-\lambda_{n} s_{1}}}{s_{2}-s_{1}}\right) \tag{3.2}\\
&=-e^{-\lambda_{1} s s_{0}}\left(\frac{e^{-\lambda_{1} s_{2}^{\prime}}-e^{-\lambda_{1} s_{1}^{\prime}}}{s_{2}^{\prime}-s_{1}^{\prime}}\right) \\
& \quad+\sum_{n=2}^{\infty} a_{n} e^{-\lambda_{n} s s_{0}}\left(\frac{e^{-\lambda_{n} s_{2}^{\prime}}-e^{-\lambda_{n} s_{1}}}{s_{2}^{\prime}-s_{1}^{\prime}}\right)
\end{align*}
$$

$$
\begin{equation*}
\left|\frac{f\left(s_{2}\right)-f\left(s_{1}\right)}{s_{2}-s_{1}}\right| \geqslant e^{-\lambda_{1} \sigma_{0}}\left|\frac{e^{-\lambda_{1} s_{2}^{\prime}}-e^{-\lambda_{1} s_{1}{ }^{\prime}}}{s_{2}^{\prime}-s_{1}^{\prime}}\right|-R_{q} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{q}=\sum_{n=q}^{\infty}\left|a_{n}\right| e^{-\lambda_{n} \sigma_{0}}\left|\frac{e^{-\lambda_{n} s 2^{\prime}}-e^{-\lambda_{n} s 1^{\prime}}}{s_{2}^{\prime}-s_{1}^{\prime}}\right| \tag{3.4}
\end{equation*}
$$

and a_{q} is the first non-vanishing coefficient $a_{n}, n \geqslant 2$. By Lemma 2, we have for $r<\sigma_{0}-\tau \leqslant \sigma_{0}-\bar{\sigma}$

$$
\begin{align*}
R_{q} & \leqslant \sum_{n=q}^{\infty} \lambda_{n}\left|a_{n}\right| e^{\lambda_{n}\left(\tau-\sigma_{0}\right)} \tag{3.5}\\
& \leqslant \sum_{n=q}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\lambda_{n} \tau} \cdot e^{-\lambda_{n}\left(\sigma_{0}-r-\tau\right)} \\
& \leqslant e^{-\lambda_{q}\left(\sigma_{0}-\tau-\tau\right)} \cdot \sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\lambda_{n} \tau} \\
& \leqslant e^{-\lambda_{q}\left(\sigma_{0}-\tau-\tau\right)},
\end{align*}
$$

where we have used the inequality (1.6) for functions $f(s)$ of class τ. From (3.3) and (3.5) we have for $r<\sigma_{0}-\tau$.

$$
\begin{align*}
\left|\frac{f\left(s_{2}\right)-f\left(s_{1}\right)}{s_{2}-s_{1}}\right| & \geqslant \lambda_{1} e^{-\lambda_{1} \sigma_{0}}\left|\frac{e^{-\lambda_{1} s_{2}^{\prime}}-e^{-\lambda_{1} s_{1}}}{\lambda_{1} s_{2}^{\prime}-\lambda_{1} s_{1}^{\prime}}\right|-e^{-\lambda_{q}\left(\sigma_{0}-\tau-\tau\right)} \tag{3.6}\\
& \geqslant \lambda_{1} e^{-\lambda_{1} \sigma_{0}} \cdot m\left(\lambda_{1} r\right)-e^{-\lambda_{q}\left(\sigma_{0}-r-\tau\right)},
\end{align*}
$$

where

$$
\begin{equation*}
m(r)=\min _{\left|z_{1}\right|=\left|z_{2}\right|=r}\left|\frac{e^{z_{2}}-e^{z_{1}}}{z_{2}-z_{1}}\right| . \tag{3.7}
\end{equation*}
$$

If $r<\pi, m(r)>0$ since e^{2} is univalent in $|z|<\pi$. In spite of the fact that e^{2} is a simple elementary function, the problem of finding $m(r)$ as a function of r appears to be far from simple. It can be shown that

$$
\begin{equation*}
m(r)=\min _{0<x \leqslant r<\pi} e^{-\left(r^{2}-x^{2}\right)^{\frac{1}{2}}} \cdot \frac{\sin x}{x} . \tag{3.8}
\end{equation*}
$$

We shall take $r=(1-\epsilon) \pi / \lambda_{1}$, where ϵ is an arbitrary number in the range $0<\epsilon<1$. We require the value of $m\left(\lambda_{1}, r\right)=m((1-\epsilon) \pi)$. For small values of ϵ,

$$
m((1-\epsilon) \pi) \geqslant \frac{\epsilon}{\pi}+o(\epsilon) .
$$

However, we require a lower bound for $m((1-\epsilon) \pi)$ which holds uniformly for all ϵ in $0<\epsilon<1$. A positive lower bound of the correct order in ϵ is furnished in a simple way by the use of Lemma 3, which gives

$$
\begin{equation*}
m((1-\epsilon) \pi) \geqslant \frac{\epsilon}{(2-\epsilon)^{3}}, \quad 0<\epsilon<1 . \tag{3.9}
\end{equation*}
$$

Thus, for $r=(1-\epsilon) \pi / \lambda_{1}, \sigma_{0}>\tau+(1-\epsilon) \pi / \lambda_{1}$, we have

$$
\begin{align*}
\left|\frac{f\left(s_{2}\right)-f\left(s_{1}\right)}{s_{2}-s_{1}}\right| & \geqslant e^{-\lambda_{q} \sigma_{0}}\left\{\lambda_{1} e^{\left(\lambda_{q}-\lambda_{1}\right) \sigma_{0}} \cdot m\left(\lambda_{1} r\right)-e^{\lambda_{q}(r+\tau)}\right\} \\
& \geqslant e^{-\lambda_{q} \sigma_{0}}\left\{\frac{\lambda_{1} \epsilon}{(2-\epsilon)^{3}} \cdot e^{\left(\lambda_{q}-\lambda_{1}\right) \sigma_{0}}-e^{\lambda_{q}\left(\tau+(1-\epsilon) \pi \lambda_{1}\right)}\right\} \tag{3.10}\\
& >0
\end{align*}
$$

provided we choose σ_{0} so that $\sigma_{0} \geqslant \tau+(1-\epsilon) \pi / \lambda_{1}$, and

$$
\begin{equation*}
e^{\left(\lambda_{q}-\lambda_{1}\right) \sigma_{0}}>\frac{(2-\epsilon)^{3}}{\lambda_{1} \epsilon} \cdot e^{\lambda_{q}\left(\tau+(1-\epsilon) \pi \lambda_{1}\right)} \tag{3.11}
\end{equation*}
$$

that is

$$
\begin{equation*}
\sigma_{0}>\frac{3 \log (2-\epsilon)-\log \left(\lambda_{1} \epsilon\right)+\lambda_{q}\left(\tau+(1-\epsilon) \pi / \lambda_{1}\right)}{\lambda_{q}-\lambda_{1}} \tag{3.12}
\end{equation*}
$$

We observe that the number π / λ_{1}, appearing in the radius $(1-\epsilon) \pi / \lambda_{1}$ cannot be replaced by a larger one since the radius of univalency of the function

$$
-e^{-\lambda_{1} s}
$$

which is the first term of the Dirichlet series (1.7), is exactly π / λ_{1}. We remark that for functions of the same class τ the value of α in (1.8) is independent of the function $f(s)$ once the sequence $\left\{\lambda_{n}\right\}$ has been selected. This completes the proof of Theorem 1.

It is by means of Theorem 1 that we are now able to establish the uniformly locally univalent property for all normalized Dirichlet series of the same class τ in a half-plane $\Re s>\beta$ where β has the value given in the following theorem.

Theorem 2. Let the class of functions $\{f(s)\}$ where

$$
f(s)=-e^{-\lambda_{1} s}+\sum_{n=q}^{\infty} a_{n} e^{-\lambda_{n} s}, \quad a_{q} \neq 0, s=\sigma+i t
$$

be of the same class τ. Then the functions $f(s)$ are uniformly locally univalent in the half-plane $\mathfrak{\Re s}>\boldsymbol{\beta}$ where

$$
\beta=\left\{\begin{array}{cc}
\tau, & \text { if } \tau<\frac{\log \lambda_{1}}{\lambda_{1}}, \\
\frac{\lambda_{q} \tau-\log \lambda_{1}}{\lambda_{q}-\lambda_{1}} \geqslant & \tau, \\
\text { if } \tau \geqslant \frac{\log \lambda_{1}}{\lambda_{1}} .
\end{array}\right.
$$

The functions $f(s)$ of class $\left(\log \lambda_{1}\right) / \lambda_{1}$ are not uniformly locally univalent in $\Re s>\tau$ $-\eta$ for arbitrarily small $\eta>0$, and the functions $f(s)$ of class $\tau>\left(\log \lambda_{1}\right) / \lambda_{1}$, are not uniformly locally univalent in $\Re s>\tau$ while for an arbitrary $\eta_{1}>0$, the functions of a sub-class are uniformly locally univalent in $\Re s>\tau+\eta_{1}$.

Before proving Theorem 2 we remark that Theorem 1 shows that the functions $f(s)$ of the same class τ are uniformly locally univalent in the half-plane $\mathfrak{R} s>\alpha-(1-\epsilon) \pi / \lambda_{1}$ at least. As $\epsilon \rightarrow 1$ we have

$$
\begin{align*}
& \lim _{\epsilon \rightarrow 1} \alpha=\max \left(\tau, \frac{\lambda_{q} \tau-\log \lambda_{1}}{\lambda_{q}-\lambda_{1}}\right) . \tag{3.13}\\
& \lim _{\epsilon \rightarrow 1} \alpha=\tau \quad \text { if } \tau \leqslant \frac{\log \lambda_{1}}{\lambda_{1}} . \tag{3.14}\\
& \lim _{\epsilon \rightarrow 1} \alpha=\frac{\lambda_{q} \tau-\log \lambda_{1}}{\lambda_{q}-\lambda_{1}} \quad \text { if } \tau \geqslant \frac{\log \lambda_{1}}{\lambda_{1}} . \tag{3.15}
\end{align*}
$$

In (1.8) we have $\alpha=\tau+(1-\epsilon) \pi / \lambda_{1}$ provided

$$
\begin{equation*}
\tau \leqslant \frac{-1}{\lambda_{1}} \log \frac{(2-\epsilon)^{3}}{\lambda_{1} \epsilon}-\frac{(1-\epsilon) \pi}{\lambda_{1}} . \tag{3.16}
\end{equation*}
$$

Suppose now that $\tau<\left(\log \lambda_{1}\right) / \lambda_{1}$. Then (3.16) is true for a range of ϵ,

$$
0<1-\frac{\delta \lambda_{1}}{\pi} \leqslant \epsilon<1
$$

since

$$
\begin{equation*}
\frac{\log \lambda_{1}}{\lambda_{1}} \leqslant \frac{-1}{\lambda_{1}} \log \frac{(2-\epsilon)^{3}}{\lambda_{1} \epsilon}-\frac{(1-\epsilon) \pi}{\lambda_{1}} \tag{3.17}
\end{equation*}
$$

for $\epsilon=1$, but for no value of ϵ in the range $0<\epsilon<1$. For $\sigma_{0}>\tau+\delta, f(s)$ is univalent in $\left|s-s_{0}\right| \leqslant \delta$ if $\tau<\left(\log \lambda_{1}\right) / \lambda_{1}$ since (3.16) is verified. Thus the functions $f(s)$ are uniformly locally univalent in $\Re s>\tau+\delta$ for arbitrarily small $\delta>0$. It follows that the functions $f(s)$ are uniformly locally univalent in $\Re s>\tau$ whenever $\tau<\left(\log \lambda_{1}\right) / \lambda_{1}$.

Again, if $\tau \geqslant\left(\log \lambda_{1}\right) / \lambda_{1}$ we have

$$
\begin{equation*}
\alpha=\left[3 \log (2-\epsilon)-\log \left(\lambda_{1} \epsilon\right)+\lambda_{q} \tau+(1-\epsilon) \pi \lambda_{q} / \lambda_{1}\right] /\left(\lambda_{q}-\lambda_{1}\right) \tag{3.18}
\end{equation*}
$$

provided

$$
\begin{equation*}
\tau \geqslant-\left[3 \log (2-\epsilon)-\log \left(\lambda_{1} \epsilon\right)+(1-\epsilon) \pi\right] / \lambda_{1} \tag{3.19}
\end{equation*}
$$

It is readily seen that (3.19) is verified for all $\epsilon, 0<\epsilon<1$, when $\tau \geqslant\left(\log \lambda_{1}\right) / \lambda_{1}$. Then for

$$
\begin{equation*}
\sigma_{0}>\frac{\lambda_{q} \tau-\log \lambda_{1}}{\lambda_{q}-\lambda_{1}}+\delta, \quad \delta>0 \tag{3.20}
\end{equation*}
$$

$f(s)$ is univalent in every circle $\left|s-s_{0}\right| \leqslant(1-\epsilon) \pi / \lambda_{1}$ provided

$$
\begin{equation*}
\frac{\lambda_{q} \tau-\log \lambda_{1}}{\lambda_{q}-\lambda_{1}}+\delta>\alpha \tag{3.21}
\end{equation*}
$$

where α is given by (3.18). But since when $\epsilon=1, \alpha$ has the value given by $\lim \alpha$ in (3.15) we see that for each given $\delta>0$ there exists a range of values of $\epsilon, 0<1-\delta_{1} \leqslant \epsilon<1$ for which (3.21) is verified. Since δ may be taken arbitrarily small it follows that the functions $f(s)$ are uniformly locally univalent for

$$
\begin{equation*}
\Re s>\frac{\lambda_{q} \tau-\log \lambda_{1}}{\lambda_{q}-\lambda_{1}} \text { if } \tau \geqslant \frac{\log \lambda_{1}}{\lambda_{1}} \tag{3.22}
\end{equation*}
$$

If $\tau \geqslant\left(\log \lambda_{1}\right) / \lambda_{1}$, there exist functions $f(s)$ which are not locally univalent in $\Re s>\tau$ although they are locally univalent in $\Re s>\tau+\eta_{1}$ for a given $\eta_{1}>0$. For example, let $f(s)$, defined as

$$
\begin{equation*}
f(s)=-e^{-\lambda_{1} s}+\sum_{n=q}^{\infty} a_{n} e^{-\lambda_{n} s}, \quad a_{n}>0 \text { for } n \geqslant q \tag{3.23}
\end{equation*}
$$

be of class $\tau \geqslant\left(\log \lambda_{1}\right) \lambda_{1}$ and choose q sufficiently large so that

$$
\begin{equation*}
\frac{\lambda_{q} \tau-\log \lambda_{1}}{\lambda_{q}-\lambda_{1}}<\tau+\eta_{1}, \quad \eta_{1}>0 \tag{3.24}
\end{equation*}
$$

The size of the coefficients a_{n} determine the value of τ,

$$
\begin{equation*}
f^{\prime}(\tau)=\lambda_{1} e^{-\lambda_{1} \tau}-\sum_{n=q}^{\infty} \lambda_{n} a_{n} e^{-\lambda_{n} \tau}=\lambda_{1} e^{-\lambda_{1} \tau}-1 \tag{3.25}
\end{equation*}
$$

If $\tau=\left(\log \lambda_{1}\right) / \lambda_{1}, f^{\prime}(\tau)=0$. If $\tau>\left(\log \lambda_{1}\right) / \lambda_{1}, f^{\prime}(\tau)<0$, whereas $f^{\prime}(\sigma)>0$ for large values of σ, since

$$
\lim _{\sigma \rightarrow+\infty} e^{\lambda_{1} \sigma} f^{\prime}(\sigma)=\lambda_{1}>0
$$

Thus $f^{\prime}(\sigma)$, being continuous, must vanish for at least one value $\sigma=\sigma_{1}>\tau$. But $\sigma_{1}<\tau+\eta_{1}$ since $f(s)$ is locally univalent at least for $\Re s>\tau+\eta_{1}$, and $f^{\prime}(\sigma)$ can not vanish for $\sigma>\tau+\eta_{1}$. It follows that $f(s)$ is not schlicht in the neighbourhood of σ_{1}. Thus, if τ exceeds $\left(\log \lambda_{1}\right) / \lambda_{1}, f(s)$ need not be locally univalent in $\Re s>\tau$ even though it is for $\Re s>\tau+\eta_{1}$. It is also seen that if $\tau=\left(\log \lambda_{1}\right) / \lambda_{1}, f(s)$ need not be locally univalent in $\mathfrak{R} s>\tau-\eta, \eta>0$. This completes the proof of Theorem 2.

We shall now make an application of Theorem 2 to the Riemann zetafunction $\zeta(s)$.

$$
\begin{equation*}
1-\zeta(s)=-\sum_{n=1}^{\infty} e^{-s \log (n+2)}=-\sum_{n=1}^{\infty}(n+1)^{-s} \tag{3.26}
\end{equation*}
$$

Now $1-\zeta(s)$ is of class τ where

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{\log (n+1)}{(n+1)^{\tau}}=1, \quad \zeta^{\prime}(\tau)+2^{-\tau} \log 2+1=0 \tag{3.27}
\end{equation*}
$$

Since

$$
\frac{\log \lambda_{1}}{\lambda_{1}}=\frac{\log \log 2}{\log 2}<0
$$

and $\tau>1$, we see that $\zeta(s)$ is locally univalent for
(3.28) $\Re s>\frac{\tau \lambda_{2}-\log \lambda_{1}}{\lambda_{2}-\lambda_{1}}=\frac{\tau \log 3-\log \log 2}{\log 3-\log 2}=2.70749 \tau+0.90428$,
where τ is the solution of the equation (3.27). Since

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{\log (n+1)}{(n+1)^{\tau}}<\int_{2}^{\infty} \frac{\log x}{x^{\tau}} d x=\frac{(\tau-1) \log 2+1}{(\tau-1)^{2} 2^{\tau-1}}=1 \tag{3.29}
\end{equation*}
$$

for a value $\tau=\tau_{0}$ in the range $1.9<\tau_{0}<2.0$ it follows that $1-\zeta(s)$ is of class $\tau<2$. Also, since

$$
\begin{align*}
\sum_{n=2}^{\infty} \frac{\log (n+1)}{(n+1)^{\tau}} & >\frac{\log 3}{3^{\tau}}+\int_{3}^{\infty} \frac{\log x}{x^{\tau}} d x \\
& =\frac{\log 3}{3^{\tau}}+\frac{(\tau-1) \log 4+1}{(\tau-1)^{2} 4^{\tau-1}}=1 \tag{3.30}
\end{align*}
$$

for a value of $\tau=\tau_{1}$ in the range $1.9<\tau_{1}<2.0$ it follows that $1-\zeta(s)$ is of class $\tau>1.9$. Hence, the class of $1-\zeta(s)$ lies in the range $1.9<\tau<2.0$. We conclude that $\zeta(s)$ is locally schlicht in a half-plane $\Re s>c$ where $c<6.32$.
4. Proof of Theorem 3. Univalency in strips. Instead of examining $f(s)$, given by (1.5) and of class τ, for univalency in circles $\left|s-s_{0}\right| \leqslant r$, we shall turn now to a similar task for strips. Let D_{k} denote the strip of the $s=\sigma+i t$ plane defined by $\sigma \geqslant \tau$, where $\tau<\tau_{0}$ in the notation of (1.10), and $-t_{0} \leqslant t-2 k \pi / \lambda_{1} \leqslant t_{0}$, where k is an arbitrary integer and

$$
\begin{equation*}
t_{0}=\frac{1}{\lambda_{1}} \arccos \left(\frac{e^{\lambda_{1} \tau}}{\lambda_{1}}\right), \quad 0<t_{0} \leqslant \pi / 2 \lambda_{1} \tag{4.1}
\end{equation*}
$$

Let C_{k} denote the boundary of D_{k} and consist of the three line segments α_{k}, β_{k}, γ_{k} defined as follows.

$$
\begin{aligned}
& \alpha_{k}: \text { that part of } C_{k} \text { which lies on } t=t_{0}+2 k \pi / \lambda_{1}, \\
& \beta_{k} \text { : that part of } C_{k} \text { which lies on } \sigma=\tau, \\
& \gamma_{k} \text { : that part of } C_{k} \text { which lies on } t=-t_{0}+2 k \pi / \lambda_{1} .
\end{aligned}
$$

Let $D^{*}{ }_{k}$ denote the rectangular sub-domain of D_{k} whose boundary $C^{*}{ }_{k}$ consists of the parts of the two line segments α_{k} and γ_{k} for which $\tau \leqslant \sigma \leqslant \tau^{*}$, together with β_{k} and δ_{k}, where δ_{k} denotes the line segment $\sigma=\tau^{*}>\tau,-t_{0}+2 k \pi / \lambda_{1}$ $\leqslant t \leqslant t_{0}+2 k \pi / \lambda_{1}$.

We shall show that $f(s)$ is univalent in the domains D_{k} and that $w=f(s)$ maps C_{k} onto a simple, closed Jordan curve Γ_{k} which is convex in the direction of the real axis, which is to say that the region bounded by Γ_{k} is star-shaped with respect to the point at infinity at an end of the real axis. Since $\lim _{\sigma \rightarrow+\infty} f(\sigma)=0$, it follows that the only zero $f(s)$ has in D_{k} corresponds to the point of D_{k} at infinity. Thus Γ_{k} passes through the origin in the w-plane. If w_{1} and w_{2} are any two distinct points of the image of D_{k} by $w=f(s)$ for which $\Im w_{1}=\Im w_{2}$, it will follow that the line segment joining w_{2} and w_{1} lies entirely within the region encompassed by Γ_{k}. If w_{1} and w_{2} are any two points interior to Γ_{k}, they must also lie interior to $\Gamma^{*}{ }_{k}$, the image of $C^{*}{ }_{k}$, if τ^{*} is taken sufficiently large. Thus it is sufficient to prove that the region bounded by $\Gamma^{*}{ }_{k}$ is convex in the direction of the real axis for every $\tau^{*}>\tau$.

On β_{k} we have $\sigma=\tau$ and

$$
\begin{equation*}
f(\tau+i t)=-e^{-\lambda_{1}(\tau+i t)}+\sum_{n=2}^{\infty} a_{n} e^{-\lambda_{n}(\tau+i t)} \tag{4.2}
\end{equation*}
$$

Because $f(s)$ is of class $\tau, f(s)$ and $f^{\prime}(s)$ are continuous on $\sigma=\tau \geqslant \bar{\sigma}$, and we have

$$
\begin{equation*}
\Im f(\tau+i t)=e^{-\lambda_{1} \tau} \sin \left(\lambda_{1} t\right)-\sum_{n=2}^{\infty}\left\{\alpha_{n} \sin \left(\lambda_{n} t\right)-\beta_{n} \cos \left(\lambda_{n} t\right)\right\} e^{-\lambda_{n} \tau} \tag{4.3}
\end{equation*}
$$

where $a_{n}=\alpha_{n}+i \beta_{n}, \alpha_{n}$ and β_{n} real, and

$$
\begin{align*}
\frac{\partial}{\partial t} \Im f(\tau+i t)=\lambda_{1} e^{-\lambda_{1} \tau} & \cos \left(\lambda_{1} t\right) \tag{4.4}\\
& -\sum_{n=2}^{\infty} \lambda_{n}\left\{\alpha_{n} \cos \left(\lambda_{n} t\right)+\beta_{n} \sin \left(\lambda_{n} t\right)\right\} e^{-\lambda_{n} \tau}
\end{align*}
$$

Since

$$
\begin{equation*}
\left|\alpha_{n} \cos \theta+\beta_{n} \sin \theta\right| \leqslant\left(\alpha_{n}^{2}+\beta_{n}^{2}\right)^{\frac{1}{2}}=\left|a_{n}\right| \tag{4.5}
\end{equation*}
$$

for all θ we have

$$
\begin{align*}
\frac{\partial}{\partial t} \Im f(\tau+i t) & \geqslant \lambda_{1} e^{-\lambda_{1} t} \cos \left(\lambda_{1} t\right)-\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\lambda_{n} \tau} \\
& \geqslant \lambda_{1} e^{-\lambda_{1} t} \cos \left(\lambda_{1} t\right)-1 \geqslant 0 \tag{4.6}
\end{align*}
$$

for

$$
-t_{0} \leqslant t-\frac{2 k \pi}{\lambda_{1}} \leqslant t_{0}, 0<t_{0}=\frac{1}{\lambda_{1}} \arccos \left(\frac{e^{\lambda_{1} \tau}}{\lambda_{1}}\right) \leqslant \frac{\pi}{2 \lambda_{1}}
$$

Thus, $\Im f(s)$ is a monotonically increasing function of t on β_{k}.
A similar proof holds on δ_{k} where $\sigma=\tau^{*}>\tau$ with a slight modification. Here we have

$$
\begin{align*}
\frac{\partial}{\partial t} \Im f\left(\tau^{*}+i t\right) & \geqslant \lambda_{1} e^{-\lambda_{1} r^{*}} \cos \left(\lambda_{1} t\right)-\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\lambda_{n} \tau^{*}} \\
= & e^{-\lambda_{1} \tau^{*}}\left\{\lambda_{1} \cos \left(\lambda_{1} t\right)-\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\left(\lambda_{n}-\lambda_{1}\right) r^{*}}\right\} \tag{4.7}\\
\geqslant & e^{-\lambda_{1} \tau^{*}}\left\{\lambda_{1} \cos \left(\lambda_{1} t\right)-\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\left(\lambda_{n}-\lambda_{1}\right) \tau}\right\} \\
\geqslant & e^{-\lambda_{1} \tau^{*}}\left\{\lambda_{1} \cos \left(\lambda_{1} t\right)-e^{\lambda_{1} \tau}\right\} \geqslant 0
\end{align*}
$$

for $\left|t-2 k \pi / \lambda_{1}\right| \leqslant t_{0}$. Thus $\Im f(s)$ is a monotonically increasing function of t on δ_{k}.

On α_{k} we have $t=t_{k}=t_{0}+2 k \pi / \lambda_{1}, \tau \leqslant \sigma \leqslant \tau^{*}$, and

$$
\begin{align*}
\Im f\left(\sigma+i t_{k}\right)= & e^{-\lambda_{1} \sigma} \sin \left(\lambda_{1} t_{0}\right)-\sum_{n=2}^{\infty}\left\{\alpha_{n} \sin \left(\lambda_{n} t_{k}\right)-\beta_{n} \cos \left(\lambda_{n} t_{k}\right)\right\} e^{-\lambda_{n} \sigma} \tag{4.8}\\
\frac{\partial \mathfrak{\Im}}{\partial \sigma} f\left(\sigma+i t_{k}\right)= & -\lambda_{1} e^{-\lambda_{1} \sigma} \sin \left(\lambda_{1} t_{0}\right) \\
& +\sum_{n=2}^{\infty} \lambda_{n}\left\{\alpha_{n} \sin \left(\lambda_{n} t_{k}\right)-\beta_{n} \cos \left(\lambda_{n} t_{k}\right)\right\} e^{-\lambda_{n} \sigma} \\
\leqslant & -\lambda_{1} e^{-\lambda_{1} \sigma} \sin \left(\lambda_{1} t_{0}\right)+\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\lambda_{n} \sigma} \\
\leqslant & e^{-\lambda_{1} \sigma}\left\{-\lambda_{1} \sin \left(\lambda_{1} t_{0}\right)+\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\left(\lambda_{n}-\lambda_{1}\right) \sigma}\right\} \tag{4.9}\\
\leqslant & e^{-\lambda_{1} \sigma}\left\{-\lambda_{1} \sin \left(\lambda_{1} t_{0}\right)+\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\left(\lambda_{n}-\lambda_{1}\right) \tau}\right\} \\
\leqslant & e^{-\lambda_{1} \sigma}\left\{-\lambda_{1} \sin \left(\lambda_{1} t_{0}\right)+e^{\lambda_{1} \tau}\right\} \\
= & e^{-\lambda_{1} \sigma}\left\{-\left(\lambda_{1}^{2}-e^{2 \lambda_{1} \tau}\right)^{\frac{1}{2}}+e^{\lambda_{1} \tau}\right\} \leqslant 0
\end{align*}
$$

provided, in the notation of (1.10),

$$
\begin{equation*}
\tau \leqslant \tau_{0}, \quad \sigma \geqslant \tau \tag{4.10}
\end{equation*}
$$

Thus, $\mathfrak{F} f(s)$ is a monotonically decreasing function of σ on α_{k}.
A similar argument shows that $\Im f(s)$ is a monotonically increasing function of σ on $\gamma_{k}\left(t_{0}\right.$ is replaced by $\left.-t_{0}\right)$.

Combining the above results we have shown that, as three sides of the rectangle $C^{*}{ }_{k}$ are traversed in the counter-clockwise direction beginning at the point of intersection of β_{k} and γ_{k} and ending at the point of intersection of α_{k} and β_{k}, the corresponding arc of the curve $\Gamma^{*}{ }_{k}$ has the property that every horizontal straight line (parallel to the real axis) cuts it in at most one point since $\Im f(s)$ is non-decreasing. Similarly, the image of β_{k} also has the property that every horizontal line cuts it in at most one point. Thus, the region bounded by $\Gamma^{*}{ }_{k}$ is convex in the direction of the real axis for every $\tau^{*}>\tau$. Since $\Gamma^{*}{ }_{k}$ has therefore no double points $f(s)$ must be univalent in $D^{*}{ }_{k}$, and consequently univalent in D_{k} as well.

We next see that there exist functions $f(s)$ and certain sequences $\left\{\lambda_{n}\right\}$ for which the theorem is not true if the strip D_{k} is enlarged by keeping the sides parallel to the axes of reference. Let $\epsilon>0$ be chosen arbitrarily. Choose λ_{2} so that

$$
e^{\left(\lambda_{2}-\lambda_{1}\right) \epsilon}>2^{\frac{1}{2}}, \quad \lambda_{2}>\lambda_{1} .
$$

Choose the coefficients a_{n} of (1.9) positive and so that $f(s)$ is of class $\tau=\tau_{0}$. Then for $\sigma=\tau-\epsilon, t=0$ we have

$$
\begin{align*}
\frac{\partial}{\partial t} \Im f(\tau-\epsilon+i t) & =\lambda_{1} e^{-\lambda_{1}(\tau-\epsilon)}-\sum_{n=2}^{\infty} \lambda_{n} a_{n} e^{-\lambda_{n}(\tau-\epsilon)} \tag{4.11}\\
& <\lambda_{1} e^{-\lambda_{1} \tau} \cdot e^{\lambda_{1} \epsilon}-e^{\lambda_{2} \epsilon} \\
& =2^{\frac{1}{2}} e^{\lambda_{1} \epsilon}-e^{\lambda_{2} \epsilon}<0 .
\end{align*}
$$

Thus $\mathfrak{\Im} f(s)$ in this case is not steadily increasing as t increases on $\tau=\tau_{0}-\epsilon$. This shows that we cannot enlarge the strip D_{0} horizontally and have Theorem 3 valid for all functions $f(s)$ of the class considered.

Next we shall show that the strip may not be enlarged vertically. Choose $\lambda_{1}>0$ and $\epsilon>0$ arbitrarily, and, for $n \geqslant 2$, choose $\lambda_{n}=(4 n+1) \pi /\left(2 t_{0}+2 \epsilon\right)$ where t_{0} is defined as in (1.11) and where

$$
\tau<\tau_{0}
$$

We choose the coefficients a_{n} of (1.9) so that for $n \geqslant 2, \alpha_{n}=\Re a_{n}=0, \beta_{n}$ $=\Im a_{n}>0$, with a proper choice of magnitude of β_{n} so that $f(s)$ is of the given class τ. Then for $t=t_{0}+\epsilon, \epsilon>0, \epsilon$ small, and $\sigma=\tau$,

$$
\begin{align*}
\left.\frac{\partial}{\partial t} \Im f(\tau+i t)\right]_{t=t_{0}+\epsilon} & =\lambda_{1} e^{-\lambda_{1} \tau} \cos \lambda_{1}\left(t_{0}+\epsilon\right)-\sum_{n=2}^{\infty} \lambda_{n} \beta_{n} e^{-\lambda_{n} \tau} \tag{4.12}\\
& \leqslant \lambda_{1} e^{-\lambda_{1} \tau} \cos \lambda_{1}\left(t_{0}+\epsilon\right)-1 \\
& <\lambda_{1} e^{-\lambda_{1} \tau} \cos \left(\lambda_{1} t_{0}\right)-1 \\
& =0
\end{align*}
$$

It follows that $\Im f(\tau+i t)$ is not monotonically increasing for $|t|<t_{0}+\epsilon$, $\epsilon>0$, for this function of class τ. Therefore the strip D_{0} cannot be enlarged vertically for all functions considered in Theorem 3.

It is also seen that no larger value of τ than the one given by (1.10) is permissible. Theorem 3 is, therefore, a "best possible" one. This completes the proof of the first part of Theorem 3 where τ is restricted as in (1.10).

On the other hand, we may increase the range of τ slightly if mere univalency is demanded in the strips D_{k}. We assume that the inequality $\tau \leqslant \tau_{0}$ where τ_{0} is defined in (1.10) is replaced by $\tau \leqslant \tau^{*}{ }_{0}=\left(\log \lambda_{1}\right) / \lambda_{1}$ and shall show that $f(s)$ is still univalent in D_{k}. We make use of Noshiro's Theorem (4) and show first that $\Re f^{\prime}(s)>0$ in D_{k}. Since

$$
\begin{align*}
\Re f^{\prime}(s) & =\lambda_{1} e^{-\lambda_{1} \sigma} \cos \left(\lambda_{1} t\right)-\sum_{n=2}^{\infty} \lambda_{n}\left\{\alpha_{n} \cos \left(\lambda_{n} t\right)-\beta_{n} \sin \left(\lambda_{n} t\right)\right\} e^{-\lambda_{n} \sigma} \tag{4.13}\\
\Re f^{\prime}(s) & \geqslant \lambda_{1} e^{-\lambda_{1} \sigma} \cos \left(\lambda_{1} t\right)-\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\lambda_{n} \sigma} \\
& \geqslant e^{-\lambda_{1} \sigma}\left\{\lambda_{1} \cos \left(\lambda_{1} t\right)-\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\left(\lambda_{n}-\lambda_{1}\right) \sigma}\right\} \tag{4.14}\\
& \geqslant e^{-\lambda_{1} \sigma}\left\{\lambda_{1} \cos \left(\lambda_{1} t\right)-e^{\lambda_{1} \tau}\right\}>0
\end{align*}
$$

if s is in D_{k} and $\tau<\tau^{*}{ }_{0}$.

Since we have shown that $\Re f^{\prime}(s)>0$ in D_{k} and since D_{k} is convex it follows at once by Noshiro's Theorem that $f(s)$ is univalent in D_{k}.

No larger value than $\tau^{*} 0$ for τ is permissible in general. Indeed if $a_{n}>0$ for $n \geqslant 2$, and $\tau>\tau^{*}{ }_{0}$ we have

$$
\begin{equation*}
f^{\prime}(\tau)=e^{-\lambda_{1} \tau}\left(\lambda_{1}-e^{\lambda_{1} \tau}\right)<0 \tag{4.15}
\end{equation*}
$$

if

$$
\begin{equation*}
\sum_{n=2}^{\infty} \lambda_{n} a_{n} e^{-\lambda_{n} \tau}=1 \tag{4.16}
\end{equation*}
$$

But

$$
\begin{align*}
f^{\prime}(\sigma) & =\lambda_{1} e^{-\lambda_{1} \sigma}-\sum_{n=2}^{\infty} \lambda_{n} a_{n} e^{-\lambda_{n} \sigma} \tag{4.17}\\
& >0
\end{align*}
$$

for σ sufficiently large. Thus $f^{\prime}(s)$ vanishes in the strip D_{0} in this case. In this case $f(s)$ is not univalent.

It should be noticed also that if $\tau<\tau^{*}{ }_{0}$ then

$$
\frac{\partial}{\partial \sigma} \Re f(\sigma+i t) \geqslant 0
$$

on $t=$ constant, $|t| \leqslant t_{0}, \sigma \geqslant \tau$. For

$$
\begin{align*}
\frac{\partial}{\partial \sigma} \Re f(\sigma+i t) & =\lambda_{1} e^{-\lambda_{1} \sigma} \cos \left(\lambda_{1} t\right)-\sum_{n=2}^{\infty} \lambda_{n}\left\{\alpha_{n} \cos \left(\lambda_{n} t\right)-\beta_{n} \sin \left(\lambda_{n} t\right)\right\} e^{-\lambda_{n} \sigma} \\
& \geqslant \lambda_{1} e^{-\lambda_{1} \sigma} \cos \left(\lambda_{1} t\right)-\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\lambda_{n} \sigma} \\
& =e^{-\lambda_{1} \sigma}\left\{\lambda_{1} \cos \left(\lambda_{1} t\right)-\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\left(\lambda_{n}-\lambda_{1}\right) \sigma}\right\} \tag{4.18}\\
& \geqslant e^{-\lambda_{1 \sigma} \sigma}\left\{\lambda_{1} \cos \left(\lambda_{1} t\right)-\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right| e^{-\left(\lambda_{n}-\lambda_{1}\right) \tau}\right\} \\
& \geqslant e^{-\lambda_{1} \sigma}\left\{\lambda_{1} \cos \left(\lambda_{1} t\right)-e^{\lambda_{1} \tau}\right\} \\
& \geqslant 0
\end{align*}
$$

for $|t| \leqslant t_{0}, \tau<\tau^{*}{ }_{0}$. Thus, if $\tau<\tau^{*}{ }_{0}, D_{k}$ is mapped into Δ_{k} by $w=f(s)$, and part of the boundary of Δ_{k} is convex in the direction of the imaginary axis while the remaining part of the boundary is convex in the direction of the real axis. These parts correspond to sides of D_{k} regardless of which function $f(s)$ of class τ is used.

We have completed the proof of Theorem 3, and the following corollary is a consequence of the preceding remarks.

Corollary 1. If $\left\{f_{n}(s)\right\}$ is a sequence of functions defined by Dirichlet series

$$
\begin{equation*}
f_{n}(s)=-e^{-\lambda_{1} s}+\sum_{m=2}^{\infty} a_{m}^{(n)} e^{-\lambda_{m}^{(n)} s} \tag{4.19}
\end{equation*}
$$

relative to the sequence $\left\{\lambda_{m}^{(n)}\right\}$,

$$
\begin{equation*}
0<\lambda_{1}<\lambda_{2}^{(n)}<\lambda_{3}^{(n)}<\ldots<\lambda_{m}^{(n)}<\ldots, \quad \lambda_{m}^{(n)} \rightarrow \infty \tag{4.20}
\end{equation*}
$$

and if each $f_{n}(s)$ is of the same class τ, so that

$$
\begin{equation*}
\sum_{m=2}^{\infty} \lambda_{m}^{(n)}\left|a_{m}^{(n)}\right| e^{-\lambda(n) s} \leqslant 1, \quad \tau<\frac{\log \lambda_{1}}{\lambda_{1}}, \tag{4.21}
\end{equation*}
$$

then, for each sequence $\left\{A_{n}\right\}$ of positive real numbers for which

$$
\begin{equation*}
\phi(s)=\sum_{n=1}^{\infty} A_{n} f_{n}(s) \tag{4.22}
\end{equation*}
$$

converges uniformly to $\phi(s)$ in $\Re s>\alpha, \alpha<\tau$, we have $\phi(s)$ analytic in $\Re s>\alpha$, and $\phi(s)$ is univalent in each strip D_{k} of Theorem 3.

Corollary 2. Let

$$
\begin{equation*}
f(s)=-e^{-\lambda_{1} s}+\sum_{n=2}^{\infty} a_{n} e^{-\lambda_{n} s}, \quad s=\sigma+i t \tag{4.23}
\end{equation*}
$$

be absolutely convergent for $\sigma>\bar{\sigma},-\infty \leqslant \bar{\sigma}<\infty$, and let $f(s)$ be of class $\tau<$ $\left(\log \lambda_{1}\right) / \lambda_{1}$. Let

$$
\begin{equation*}
t_{0}=\frac{1}{\lambda_{1}} \arccos \left(\frac{e^{\lambda_{1} \tau}}{\lambda_{1}}\right), \quad 0<t_{0}<\frac{\pi}{2 \lambda_{1}} . \tag{4.24}
\end{equation*}
$$

Then $f(s)$ is univalent in every semi-infinite strip D of width $2 t_{0}$ which is parallel to the real axis and lies in the half-plane $\mathfrak{R s} \geqslant \tau$.

In order to see that Corollary 2 follows from Theorem 3 we observe that if t^{\prime} is an arbitrary real number the function

$$
\begin{equation*}
F(s)=e^{i \lambda_{1} t^{\prime}} \cdot f\left(s+i t^{\prime}\right)=-e^{-\lambda_{1} s}+\sum_{n=2}^{\infty} a_{n} e^{-i\left(\lambda_{n}-\lambda_{1}\right) t^{\prime}} \cdot e^{-\lambda_{n} s} \tag{4.25}
\end{equation*}
$$

is a Dirichlet series of the same class τ as the class of $f(s)$. Applying Theorem 3 to $F(s)$ we find that $F(s)$ is univalent in each strip D_{k} of width $2 t_{0}$. Hence $f(s)$ is univalent in a strip obtained by a translation vertically of the strip D_{k} by the arbitrary value t^{\prime}.

If $\tau \leqslant \tau_{0}$ as in (1.10), we can conclude further that $f(s)$ is convex in some one direction in each strip of width $2 t_{0}, \sigma \geqslant \tau$, parallel to the real axis. The direction of convexity varies with the position of each strip in general. As in Theorem 3 Corollary 2 is sharp.

References

1. J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math., 17 (1915), 12-22.
2. G. M. Goluzin, On distortion theorems and coefficients of univalent functions, Rec. Math. (Mat. Sbornik), N.S. (61), 19 (1946), 183-202.
3. P. Montel, Sur les fonctions localement univalentes ou multivalentes, Ann. Sci. École Norm. Sup. (3), 54 (1937), 39-54.
4. J. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. (1), 2 (1934), 129-155.
5. R. Remak, Ueber eine specielle Klasse schlichter konformer Abbildungen des Einheitskreises, Mathematica, Zutphen, 11 (1943), 175-192; 12 (1943), 43-49.

Rutgers, the State University of New Jersey.

[^0]: Received August 12, 1957. This paper was prepared at the Summer Research Institute of the Canadian Mathematical Congress.

