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Abstract We prove that many, but not all, injective factors arise as crossed products by nonsingular
Bernoulli actions of the group Z. We obtain this result by proving a completely general result on the
ergodicity, type and Krieger’s associated flow for Bernoulli shifts with arbitrary base spaces. We prove
that the associated flow must satisfy a structural property of infinite divisibility. Conversely, we prove
that all almost periodic flows, as well as many other ergodic flows, do arise as associated flow of a weakly
mixing Bernoulli action of any infinite amenable group. As a byproduct, we prove that all injective factors
with almost periodic flow of weights are infinite tensor products of 2×2 matrices. Finally, we construct
Poisson suspension actions with prescribed associated flow for any locally compact second countable
group that does not have property (T).
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1. Introduction

To a countable infinite group G and a standard measure space (X0,μ0), called the
base space, one associates the Bernoulli action G � (X,μG

0 ) =
∏

g∈G(X0,μ0) given by

translating the coordinates by left multiplication. Bernoulli actions are at the heart

of many classical, as well as recent, theorems in ergodic theory and operator algebras.

Especially the role of Bernoulli actions in the theory of von Neumann algebras has been
very prominent; see [42, 43, 12, 33, 44].

By construction, μG
0 is a probability measure, and it is preserved by the Bernoulli action

of G. We rather equip X =XG
0 with a product of possibly distinct probability measures

μg on X0 and thus consider the Bernoulli action

G� (X,μ) =
∏
g∈G

(X0,μg) : (g
−1 ·x)h = xgh . (1.1)

We require that the action (1.1) is nonsingular, i.e., preserves sets of measure zero. By

Kakutani’s criterion for the equivalence of product measures, this is equivalent to all the
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measures (μg)g∈G being equivalent and∑
h∈G

H2(μgh,μh)<+∞ for every g ∈G, (1.2)

where H(μ,ν) denotes the Hellinger distance; see equation (2.1).
The key question that we address is the following: Given a countable infinite group G,

what are the possible Krieger types of nonsingular Bernoulli actions G � (X,μ)? This

question is particularly interesting in the classical case G= Z.
Recall that an essentially free ergodic nonsingular action G� (X,μ) is said to be of type

II1 if it admits an equivalent G-invariant probability measure, of type II∞ if it admits

an equivalent G-invariant infinite measure and of type III otherwise. Moreover, type III
actions are further classified by Krieger’s associated flow [38], an ergodic nonsingular

action of R that is also equal to the Connes–Takesaki flow of weights [14] of the crossed

product von Neumann algebra L∞(X)�G. If the associated flow is trivial, the action is

of type III1. If it is periodic with period | logλ| and λ ∈ (0,1), the action is of type IIIλ. If
the associated flow is properly ergodic, the action is of type III0, and we are particularly

interested in understanding which associated flows may arise from nonsingular Bernoulli

actions.
The first example of an ergodic Bernoulli action of type III was given by Hamachi for the

group of integers [30]. Much later in [35], Kosloff could give an example of a nonsingular

Bernoulli action of Z that is of type III1.
In the past few years, the study of nonsingular Bernoulli actions has gained momentum.

The first systematic results for nonsingular Bernoulli actions of nonamenable groups

G were obtained in [49]. In [7], very complete results on the ergodicity and type of

nonsingular Bernoulli actions with base space X0 = {0,1} were obtained, building on
important earlier work in [36, 22, 37, 18]. In particular, it was shown in [49] that the free

groups Fn, n≥ 2, admit Bernoulli actions of type IIIλ for all λ∈ (0,1]. In [7], it was proven

that locally finite groups admit Bernoulli actions of all possible types: II1, II∞ and IIIλ
for λ ∈ [0,1]. In [8], we proved that the same holds for all infinite amenable groups if we

allow the base space X0 to be infinite. The latter is a necessary assumption since it was

proven in [7] that Bernoulli actions of Z with finite base space are never of type II∞. In
[39], it was proven independently that infinite amenable groups admit Bernoulli actions

of type IIIλ for all λ ∈ (0,1].

Ergodic, essentially free, nonsingular actions G � (X,μ) of amenable groups are

completely classified, both up to orbit equivalence and up to isomorphism of their crossed
product von Neumann algebras, by their type and associated flow; see [38, 13, 14, 11,

29]. It is thus a very natural question to ask which ergodic flows arise as the associated

flow of a nonsingular Bernoulli action, in particular of the group Z. Put in an equivalent
form, the question is which factors arise as crossed products L∞(X)�Z by nonsingular

Bernoulli shifts.

We prove in this paper the surprising result that not all injective factors can arise in this
way. We also prove that many injective type III0 factors do arise. In particular, we prove

that all infinite tensor products of factors of type I2 (i.e., 2× 2 matrices), the so-called

ITPFI2 factors, arise as crossed products of nonsingular Bernoulli shifts.
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In this paper, we call a flow any nonsingular action of R. We introduce below (see

Definition 3.12) the concept of an infinitely divisible flow. By the classification of injective

factors, the flow of weights of an injective factor M is infinitely divisible if and only if
for every integer n ≥ 1, there exists an injective factor N such that M ∼= N⊗n. By [28,

Theorem 2.1], not every injective factor, and not even every ITPFI factor, is a tensor

square. So not all ergodic flows are infinitely divisible.
Our first main result says that the associated flow of a nonsingular Bernoulli shift

Z� (X,μ) must be infinitely divisible. We prove this result in complete generality, without

making any other assumptions on the nature of the base space X0 or the probability
measures μn, apart from the shift being nonsingular.

We thus also need a completely general result on the ergodicity of nonsingular Bernoulli

shifts. Ruling out the trivial cases where μ admits an atom or where the action Z� (X,μ)

admits a fundamental domain (i.e., is dissipative), we prove the following result. We
actually provide in Theorem 4.1 below a more precise description, also saying exactly

what happens in the trivial cases with an atom or a fundamental domain.

Theorem A. Let Z� (X,μ) =
∏

n∈Z
(X0,μn) be a nonsingular Bernoulli shift such that

(X,μ) is nonatomic and Z� (X,μ) is not dissipative.

There exists an essentially unique Borel set C0 ⊂ X0 such that CZ
0 ⊂ X has positive

measure and the following holds.

• The nonsingular Bernoulli shift Z� CZ
0 is weakly mixing, and its associated flow

is infinitely divisible.
• The action Z�X \CZ

0 is dissipative.

Note that it was proven in [7, Theorem A] that a Bernoulli shift of Z with base space
{0,1} is either weakly mixing, dissipative or atomic. This is compatible with Theorem A

because a two-point base space is the only case in which a subset C0 ⊂X0 is either empty,

a single point or everything. Theorem A says in particular that, for every conservative

nonsingular Bernoulli shift Z � (X,μ), the associated flow is infinitely divisible. The
crossed product L∞(X)�Z associated with a Bernoulli shift can only be a factor if

Z� (X,μ) is conservative and ergodic. As mentioned above, by [28, Theorem 2.1], it thus

follows that not every injective factor, and not even every ITPFI factor, is of the form
L∞(X)�Z where Z� (X,μ) is a nonsingular Bernoulli shift.

Complementing Theorem A, we determine in Theorem 4.3 in equally complete

generality the type of an arbitrary nonsingular Bernoulli shift Z� (X,μ).
In the converse direction, we prove that many ergodic flows do arise as associated flows

of nonsingular Bernoulli actions. By [17], the possible flows of weights of ITPFI factors are

precisely the tail boundary flows, i.e., the actions of R on the Poisson boundary of a time-

dependent random walk on R given by a (nonconstant) sequence of transition probability
measures μn on R. If the transition probabilities μn can be chosen to be compound

Poisson distributions, we call the tail boundary flow a Poisson flow1, see Definition 3.7.

1Sometimes, the term Poisson flow is used as a synonym for Poisson process. In this paper, a
flow is always a nonsingular action of R so that no confusion should arise.
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We prove in Theorems 3.8 and 3.9 that the class of Poisson flows is large: It includes
all almost periodic flows (i.e., flows with pure point spectrum), and it includes the flow

of weights of any ITPFI2 factor. By definition, Poisson flows are infinitely divisible, and

therefore, not every ergodic flow is a Poisson flow. In Section 3, we obtain several results
on the class of Poisson flows. They can be equivalently characterized as the tail boundary

flows with transition probabilities μn supported on two points and having uniformly

bounded variance (see Proposition 3.11). Also, the flows of weights of ITPFI2 factors can

be precisely characterized as the Poisson flows of positive type (see Definition 3.7 and
Theorem 3.9).

We then prove that all these Poisson flows arise as the associated flow of a weakly mixing

nonsingular Bernoulli action of any amenable group. As a corollary, it thus follows that
every ITPFI2 factor is of the form L∞(X)�Z for a nonsingular, weakly mixing Bernoulli

shift Z� (X,μ).

Theorem B. Let G be any countable infinite amenable group, and let R � (Z,η) be

any Poisson flow. There exists a family of equivalent probability measures (μg)g∈G on a

countable infinite base space X0 such that the Bernoulli action G� (X,μ) =
∏

g∈G(X0,μg)
is nonsingular, weakly mixing and has associated flow R� Z.

As a byproduct of our results on Poisson flows, it follows that every almost periodic

flow is the flow of weights of an ITPFI2 factor, answering a question that remained open
since [32, 27].

Theorem C. Every injective factor with almost periodic flow of weights is an ITPFI2
factor.

To put Theorem C in a proper context, recall that an ergodic almost periodic flow is
precisely given by the translation action R � Λ̂ where Λ ⊂ R is a countable subgroup.

So, for every countable subgroup Λ⊂ R, there is a unique injective factor MΛ with flow

of weights the translation action R � Λ̂. Connes’ T -invariant of MΛ equals Λ. In [32,
Theorem 2], it was proven that, for every α ∈ R \ {0} and every subgroup Λ ⊂ αQ, the

factor MΛ is ITPFI2. In [27, Proposition 1.1], it was proven that for every countable

subgroup Λ ⊂ R, there exists an ITPFI2 factor M with T (M) = Λ, but it remained
unclear if M ∼=MΛ. We now prove in Theorem C that all MΛ are ITPFI2 factors.

Every ITPFI2 factor is infinitely divisible. It is natural to speculate that also the

converse holds. One may also speculate that the infinitely divisible ergodic flows are

exactly the Poisson flows. If both of these speculations are true, it follows from Theorem
A and Theorem B that the class of injective factors that can be realized as the crossed

product L∞(X)�Z by a conservative nonsingular Bernoulli action Z� (X,μ) equals the

class of ITPFI2. We refer to Remark 3.16 for a further discussion.
Poisson flows also appear naturally in the context of nonsingular Poisson suspensions

(see Section 5 for terminology). Given an infinite, σ-finite, standard measure space

(X0,μ0) with Poisson suspension (X,μ), under the appropriate assumptions, a nonsingular
action G � (X0,μ0) has a canonical nonsingular suspension G � (X,μ). To a certain

extent, Poisson suspensions can be viewed as generalizations of Bernoulli actions, and

many results were obtained recently (see [46, 20, 21, 19]). In particular in [19], it was
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proven that any locally compact second countable group G that does not have property
(T) admits nonsingular Poisson suspension actions of any possible type. We prove that

in type III0, any Poisson flow may arise as associated flow.

Proposition D. Let G be any locally compact second countable group that does not have

property (T). Let R� (Z,η) be any Poisson flow. Then G admits a nonsingular action

G� (X0,μ0) of which the Poisson suspension G� (X,μ) is well-defined, weakly mixing,
essentially free and has associated flow R� Z.

By [21, Theorem G], Proposition D is sharp: If G has property (T), then every

nonsingular Poisson suspension action of G admits an equivalent G-invariant probability

measure. We actually prove first Proposition D and then deduce Theorem B as a special

case by taking G � G×N : g · (h,n) = (gh,n) and choosing the measure μ0 on G×N

appropriately.

2. Preliminaries

2.1. Nonsingular group actions

Suppose that (X,μ) is a standard measure space. The push forward of μ along a Borel map

ϕ : X →X, that we denote by ϕμ or ϕ∗μ, is the measure given by (ϕ∗μ)(U) = μ(ϕ−1(U)).
We say that ϕ is nonsingular if the measures ϕ∗μ and μ are equivalent. If in addition

ϕ is invertible, we say it is a nonsingular automorphism. In that case, we will also use

the notation μ ◦ϕ for the push forward measure ϕ−1μ. The set Aut(X,μ) is the group

of all nonsingular automorphisms of (X,μ), where we identify two elements if they agree
almost everywhere. It caries a canonical topology, making it into a Polish group. Both

the set Aut(X,μ) and its topology only depend on the measure class of μ.

For a nonsingular automorphism ϕ : X →X the Radon–Nikodym derivative

d(μ◦ϕ)
dμ

∈ L1(X,μ)

is uniquely determined by the equality∫
X

F (ϕ(x))
d(μ◦ϕ)

dμ
(x)dμ(x) =

∫
X

F (x)dμ(x), for every F ∈ L∞(X,μ).

A nonsingular action of a locally compact second countable group H on a standard

measure space (X,μ) is a continuous homomorphism α : H → Aut(X,μ), which we will

also write as H
α
� (X,μ). Such an action induces an action H �L∞(X,μ) by (h ·F )(x) =

F (h−1 ·x). Conversely, if A is a separably represented abelian von Neumann algebra, and

H � A acts by automorphisms, then there is a standard measure space (Y ,ν), together
with a nonsingular action H � (Y ,ν), such that the action H �A is the action induced

by H � (Y ,ν). We will frequently identify the actions H � A and H � (Y ,ν). Recall

that a nonsingular group action H � (X,μ) is called ergodic if there are no nontrivial
H -invariant Borel sets (up to measure zero).

We call a flow any nonsingular action of H = R. We say that a flow R � (X,μ) is

periodic if there exists a t ∈ R\{0} such that t ·F = F for every F ∈ L∞(X,μ).
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A nonsingular action G� (X,μ) of a countable group G on a standard measure space

(X,μ) is called essentially free if the set {x ∈ X : g ·x = x} has measure zero for every

g 	= e. If G � (X,μ) is essentially free and if there exists a fundamental domain, i.e.,
a Borel set W ⊂ X such that (g ·W)g∈G is a partition of X up to measure zero, then

G� (X,μ) is called dissipative. On the other hand, if for every nonnegligible Borel set

U ⊂X there are infinitely many g ∈ G such that μ(gU ∩U) > 0, then we say the action
G� (X,μ) is conservative.

If G� (X,μ) is an essentially free nonsingular action, there is a unique partition (up

to measure zero) X = U �W of X into G-invariant Borel sets U and W such that the
action G� (U,μ) is conservative and G� (W,μ) is dissipative. The actions G� U and

G�W are called the conservative, resp., dissipative parts of the action G�X. Finally,

note that an essentially free ergodic action must be conservative, except when the action

is transitive, i.e., when μ is atomic and supported on a single G-orbit, which means that
the action is isomorphic with the translation action G�G.

2.2. Nonsingular Bernoulli actions

Suppose that X0 is a standard measurable space and that G is a countable infinite group.
For a family of equivalent probability measures (μg)g∈G on X0, consider the product

probability space

(X,μ) =
∏
g∈G

(X0,μg).

The action G � (X,μ) given by (g · x)h = xg−1h, is called a Bernoulli action of G or
Bernoulli shift if G= Z.

By Kakutani’s criterion for the equivalence of product measures [34], the Bernoulli

action G� (X,μ) is nonsingular if and only if equation (1.2) holds, where H(μ,ν) denotes

the Hellinger distance defined by

H2(μ,ν) =
1

2

∫
X0

(√
dμ/dζ−

√
dν/dζ

)2
dζ = 1−

∫
X0

√
dμ

dζ

√
dν

dζ
dζ, (2.1)

where ζ is any probability measure on X with μ,ν ≺ ζ.

If (X,μ) =
∏

g∈G(X0,μg) is nonatomic and if the Bernoulli action G � (X,μ) is
nonsingular, then it is essentially free, by [7, Lemma 2.2].

Recall that for any permutation ρ of G (finite or infinite) such that the induced

transformation

αρ : X →X : (ρ ·x)h = xρ−1(h)

is nonsingular we have that

d(μ◦αρ)

dμ
(x) =

∏
h∈G

dμρ(h)

dμh
(xh), with unconditional convergence a.e. on X.
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We then have that

1−H2(μ◦αρ,μ) =
∏
h∈G

(1−H2(μρ(h),μh))> 0.

2.3. Maharam extension and associated flow

Let λ be the Lebesgue measure on R. The Maharam extension of a nonsingular

automorphism ϕ ∈ Aut(X,μ) is the nonsingular automorphism ϕ̃ ∈ Aut(X ×R,μ× λ)
that is given by

ϕ̃(x,t) =
(
ϕ(x),t+log

d(μ◦ϕ)
dμ

(x)
)
.

Note that ϕ̃ preserves the infinite measure dμ(x)×exp(−t)dλ(t). Also note that ϕ → ϕ̃ is

a continuous group homomorphism between the Polish group Aut(X,μ) and the Polish

group Aut(X×R,μ×λ).
The translation action s · (x,t) = (x,t+s) commutes with every ϕ̃. For any nonsingular

action G � (X,μ) Krieger’s associated flow (see [38]) is defined as the action of R on

the ergodic decomposition of the Maharam extension G�X×R, which amounts to the
action of R on L∞(X×R)G.

Recall from the introduction how the type of a nonsingular group action G� (X,μ) is

defined and that, for essentially free, ergodic actions of amenable groups, the type and
associated flow form a complete invariant of the action, both up to orbit equivalence and

up to isomorphism of the crossed product factors L∞(X)�G.

3. Poisson flows and infinite divisibility: proof of Theorem C

3.1. Tail boundary flows

Recall from [17] the construction of the tail boundary flow as the Poisson boundary

of a time-dependent Markov random walk on R with transition probabilities (μn)n∈N.

Consider

(Ω,μ) =

∞∏
k=1

(R,μk) and (Ωn,μ̃n) =

∞∏
k=n+1

(R,μk) . (3.1)

Choose a probability measure μ0 on R that is equivalent with the Lebesgue measure, and

define the nonsingular maps

πn : (R×Ω,μ0×μ)→ (R×Ωn,μ0× μ̃n) : πn(t,ω) = (t+ω1+ · · ·+ωn,ωn+1, . . .) .

Define the von Neumann algebras B = L∞(R×Ω) and An = (πn)∗(L
∞(R×Ωn)). Then

the tail boundary is defined as A =
⋂

n≥0An. The translation action of R in the first

variable defines an ergodic action of R on A, which is called the tail boundary flow.

We refer to [8, Section 2.3] for several basic results on tail boundary flows.
Tail boundary flows play a key role in this paper. When working with elements x of a

product space as in equation (3.1), we always denote by xk or xn the natural coordinates

of x.
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Note that the tail boundary flow does not change if we permute the probability measures
μn. More precisely, if σ : N→ N is any bijection, then the tail boundary flows of (μn)n∈N

and (μσ(n))n∈N are canonically isomorphic in the following way. Denoting by (Ω̃,μ̃) the

path space for the family (μσ(n))n∈N, the map

θ : (R×Ω,μ0×μ)→ (R× Ω̃,μ0× μ̃) : θ(t,ω) = (t,ωσ(1),ωσ(2), . . .)

is a measure preserving bijection. We consider the von Neumann subalgebras An ⊂
L∞(R×Ω) and Ãn ⊂ L∞(R× Ω̃), with intersections A=

⋂
nAn and Ã=

⋂
n Ãn realizing

the respective tail boundaries. For every n ∈ N, there exists an m ∈ N such that

σ({1, . . . ,n})⊂ {1, . . . ,m} and σ−1({1, . . . ,n})⊂ {1, . . . ,m}. Then, θ∗(Am)⊂ Ãn and Ãm ⊂
θ∗(An). Therefore, θ∗(A) = Ã, implementing the isomorphism.
Note that tail boundary G-actions can be associated in a similar way to any family

(μn)n∈N of Borel probability measures on a locally compact second countable abelian

group G.
We prove in this section two results on tail boundary flows that are of independent

interest. First recall for future reference the following well known and easy result. For

completeness, we include the short proof. The Hellinger distance H was defined in
equation (2.1). We also make use of the total variation distance between probability

measures μ,ν on a standard Borel space X :

dTV(μ,ν) = sup
{
|μ(A)−ν(A)|

∣∣A⊂X Borel
}
=

1

2

∫
X

|dμ/dζ−dν/dζ|dζ,

whenever ζ is a probability measure on X with μ,ν ≺ ζ. Note that

H2(μ,ν)≤ dTV(μ,ν)≤
√
2H(μ,ν)

for all probability measures μ and ν on X.

Lemma 3.1 (Cf. [17, Lemma 2.5]). If (μn)n∈N and (νn)n∈N are sequences of probability

measures on R such that
∞∑

n=1

H2(μn,νn)<+∞, (3.2)

then the tail boundary flows of (μn)n∈N and (νn)n∈N are isomorphic. This conclusion

holds in particular if
∑∞

n=1 dTV(μn,νn)<+∞.

Proof. Partition R into Borel sets R=Un�Vn�Wn such that μn|Un
∼ νn|Un

, νn(Vn) = 0
and μn(Wn) = 0. From equation (3.2), it follows in particular that

∞∑
n=1

μn(Vn)<+∞ and

∞∑
n=1

νn(Wn)<+∞ . (3.3)

Define (Ω,μ) and (Ωn,μ̃n) as in equation (3.1) so that the tail boundary A of (μn)n∈N is
realized as the intersection of An = (πn)∗(L

∞(R×Ωn)) inside B = L∞(R×Ω). Similarly

define (Ω′,ν), (Ω′
n,ν̃n) and π′

n so that the tail boundary C of (νn)n∈N is realized as the

intersection of Cn = (π′
n)∗(L

∞(R×Ω′
n)) inside D = L∞(R×Ω′).
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Define Xn ⊂ R×Ωn by (t,x) ∈ Xn iff xm ∈ Um for all m ≥ n+1. Similarly, define

X ′
n ⊂ R×Ω′

n. Denote pn = (πn)∗(1Xn
) and p′n = (π′

n)∗(1X′
n
). The Kakutani criterion

for the equivalence of product measures implies that the identity map Xn → X ′
n is

a nonsingular isomorphism, inducing a ∗-isomorphism θn : Anpn → Cnp
′
n. By equation

(3.3), the projections pn ∈A and p′n ∈D are increasing to 1. The ∗-isomorphisms θn are

compatible so that there is a unique ∗-isomorphism θ :A→C satisfying θ(a)p′n = θn(apn)
for all a ∈A and n ∈N. By construction, θ conjugates the tail boundary flows of (μn)n∈N

and (νn)n∈N.

We start by proving that such an identification of tail boundary flows also holds under a

different approximation assumption, replacing the Hellinger distance by the Wasserstein
2-metric. We can do even slightly better by taking the Wasserstein 2-metric w.r.t. the

metric on R given by d(x,y) = |Tκ(x− y)|, where for κ > 0, we denote by Tκ the cutoff

function

Tκ : R→ [−κ,κ] : Tκ(x) =

⎧⎪⎨⎪⎩
−κ if x≤−κ,

x if −κ≤ x≤ κ,

κ if x≥ κ.

(3.4)

Recall that a coupling between probability measures μ, ν on R is a probability measure

η on R2 such that, writing π1 : R
2 → R : π1(x,y) = x and π2 : R

2 → R : π2(x,y) = y, we
have (π1)∗(η) = μ and (π2)∗(η) = ν. The set of all couplings between μ, ν is denoted as

Γ(μ,ν). For every κ > 0, we then denote by

W2,κ(μ,ν) = inf
η∈Γ(μ,ν)

(∫
R2

Tκ(x−y)2 dη(x,y)
)1/2

the Wasserstein 2-metric between μ and ν, w.r.t. d(x,y) = |Tκ(x−y)| on R. Note that the
metrics W2,κ are equivalent for different values of κ > 0 and are dominated by the usual

Wasserstein 2-metric W2 w.r.t. the metric d(x,y) = |x−y|.

Proposition 3.2. If (μn)n∈N and (νn)n∈N are sequences of probability measures on R

such that for some κ > 0,

∞∑
n=1

W2,κ(μn,νn)
2 <+∞,

then the tail boundary flows of (μn)n∈N and (νn)n∈N are isomorphic.

Proof. Fix κ > 0, and choose couplings ζn ∈ Γ(μn,νn) such that∫
R2

Tκ(x−y)2 dζn(x,y)≤ 2−n+W2,κ(μn,νn)
2 .

So we get that

∞∑
n=1

∫
R2

Tκ(x−y)2 dζn(x,y)<+∞ .
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Define ψ : R2 → R2 : ψ(x,y) = (x− y,y), and put ηn = ψ∗(ζn). Fix a probability measure

λ on R that is equivalent with the Lebesgue measure. Consider

(X,μ) =
∞∏

n=1

(R,μn), (Y ,ν) =
∞∏

n=1

(R,νn) and (Ω,η) =
∞∏

n=1

(R2,ηn) .

Whenever x,y ∈ RN, we denote by (x,y) ∈ Ω the element (x1,y1,x2,y2, . . .). As in the

definition of the tail boundary flow, define

(Ωm,η̃m) =
∞∏

n=m+1

(R2,ηn) and

Sm : R×Ω→ R×Ωm : Sm(t,x,y) =

(
t+

m∑
i=1

(xi+yi),xm+1,ym+1,xm+2,ym+2, . . .

)
.

Note that the maps Sm are nonsingular factor maps. Denote B = L∞(R×Ω,λ×η), and

define Am ⊂ B by Am = (Sm)∗(L
∞(R×Ωm)). Define A =

⋂∞
m=1Am. We let R act by

translation in the first variable and obtain in this way an ergodic action R�A.

We identify the ergodic action R�A with both the tail boundary flow of (μn)n∈N and
the tail boundary flow of (νn)n∈N.

The first identification can be easily proved as follows and basically holds by definition.

Writing

(Xm,μ̃m) =
∞∏

n=m+1

(R,μn) and

sm : R×X → R×Xm : sm(t,x) =

(
t+

m∑
i=1

xi,xm+1,xm+2, . . .

)
,

the tail boundary of (μn) is defined by the intersection C of Cm = (sm)∗(L
∞(R×Xm))

inside D = L∞(R×X). Write S : R2 → R : S(x,y) = x+y. By construction, S∗(ηn) = μn,

and we get the measure preserving factor map

P : R×Ω→ R×X : P (t,x,y) = (t,x1+y1,x2+y2, . . .) .

By independence, we have that A ⊂ P∗(D) and Am ∩P∗(D) = P∗(Cm). Therefore, A =

P∗(C).
The second identification requires more work. We disintegrate the probability measures

ηn w.r.t. the second variable. We thus find probability measures ηn,y on R such that

∫
R2

F dηn =

∫
R

dνn(y)

∫
R

dηn,y(x)F (x,y)
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for all bounded Borel functions F : R2 → R. Writing, for y ∈ Y ,

(Ωy,ηy) =
∞∏

n=1

(R,ηn,yn
),

we can view (Ωy,ηy)y∈Y as the disintegration of (Ω,η) w.r.t. the measure preserving factor

map R : Ω→ Y :R(x,y) = y.
Define the Borel functions

ϕn : R→ [−κ,κ] : ϕn(z) =

∫
R

Tκ(x)dηn,z(x) and

F : Y → [0,+∞] : F (y) =

∞∑
n=1

∫
R

Tκ(x)
2 dηn,yn

(x) .

Since ∫
Y

F (y)dν(y) =

∞∑
n=1

∫
R2

Tκ(x)
2 dηn(x,y)<+∞,

we get that F (y)<+∞ for ν-a.e. y ∈ Y . Also note that

ϕn(y)
2 ≤
∫
R

Tκ(x)
2 dηn,y(x) so that

∞∑
n=1

∫
R

ϕn(y)
2 dνn(y)<+∞ .

Write sn =
∫
R
ϕn(y)dνn(y). Define the Borel sets U ⊂ Y and Vy ⊂ Ωy by

y ∈ U iff ϕ(y) = lim
n→+∞

n∑
k=1

(ϕk(yk)−sk) exists,

x ∈ Vy iff θy(x) = lim
n→+∞

n∑
k=1

(xk−ϕk(yk)) exists.

Also define the Borel set

V = {(x,y) ∈ Ω | F (y)<+∞, y ∈ U and x ∈ Vy} .

We already proved that F (y) < +∞ for ν-a.e. y ∈ Y . By van Kampen’s version of

Kolmogorov’s three series theorem (see, e.g., [47, Theorem 3 in Section 4.2]), we have
that ν(Y \ U) = 0 and that for all y ∈ Y with F (y) < +∞, also ηy(Ωy \ Vy) = 0. Since

F (y)<+∞ for ν-a.e. y ∈ Y , it follows that η(Ω\V) = 0. Write

π : V → R : π(x,y) = θy(x)+ϕ(y) = lim
n→+∞

n∑
k=1

(xk−sk), (3.5)

and define the nonsingular factor map Q : R×Ω→ R×Y :Q(t,x,y) = (t+π(x,y),y). We

view the tail boundary of (νn)n∈N as a von Neumann subalgebra N ⊂ L∞(R×Y ). We

prove that A=Q∗(N).
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More precisely, we write

(Ym,ν̃m) =

∞∏
n=m+1

(R,νn) and

rm : R×Y → R×Ym : rm(t,y) =

(
t+

m∑
i=1

yi,ym+1,ym+2, . . .

)
.

Defining Nm = (rm)∗(L
∞(R×Ym)), we have N =

⋂∞
m=1Nm.

It immediately follows from (3.5) that Q∗(Nm)⊂Am, so that Q∗(N)⊂A. To prove the
converse, fix F ∈A. It follows that for ν-a.e. y ∈ Y , we may view the function F (·,y) as an
element of the tail boundary for the measures (ηn,y)n∈N. By e.g. [8, Proposition 2.1], this

tail boundary is given by the translation action R�R and we find a unique Ky ∈L∞(R)
such that F (t,x,y) =Ky(t+θy(x)) for a.e. (t,x) ∈R×Ωy. Defining Gy(t) =Ky(t−ϕ(y)),

we get that F (t,x,y) =Gy(t+π(x,y)) for a.e. (t,x) ∈ R×Ωy. Writing G(t,y) =Gy(t), we

have found G ∈ L∞(R×Y ) such that Q∗(G) = F .
It also follows from equation (3.5) that Q∗(L

∞(R× Y ))∩Am = Q∗(Nm). Therefore,

G ∈Nm for all m ∈ N so that G ∈N . This concludes the proof of the proposition.

In our applications of Proposition 3.2 in this paper, we will only need the following

elementary estimate for the Wasserstein 2-distance. Assume that (βn)n∈N are probability

measures on R, and assume that, for every n ∈ N, we have tn ∈ R and pn ∈ [0,1] with∑∞
n=1 pn =1. Define the probability measures β=

∑∞
n=1 pnβn and ν =

∑∞
n=1 pn δtn . Then,

W2(β,ν)
2 ≤

∞∑
n=1

pn

∫
R

(x− tn)
2 dβn(x), (3.6)

which follows immediately by using the coupling η =
∑∞

n=1 pn (βn× δtn).

Secondly, we prove a generalization of Orey’s fundamental result in [40, Theorem 3.1].

He proved that, if (μn)n∈N is a sequence of probability measures on R with uniformly
bounded support, i.e., for which there exists a C > 0 such that μn([−C,C]) = 1 for all

n ∈ N, the tail boundary flow is never properly ergodic: if
∑∞

n=1Varμn = +∞, the tail

boundary flow is periodic, and if
∑∞

n=1Varμn <+∞, the tail boundary flow is given by
the translation action R�R.

The following result says that periodicity of the tail boundary flow already follows if we

can find finite positive measures βn ≤ μn such that the sequence (βn)n∈N has uniformly
bounded width and such that the sum of the properly normalized variances of βn is

infinite.

More precisely, we prove the following and, in particular, provide a functional analytic

proof to [40, Theorem 3.1].

Proposition 3.3. Let (μn)n∈R be a sequence of probability measures on R. Assume that

βn are positive finite measures on R satisfying βn ≤ μn. Assume that there exists a C > 0
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such that |x−y| ≤ C for βn-a.e. x,y ∈ R. If

∞∑
n=1

βn(R) Var(βn(R)
−1βn) = +∞, (3.7)

then the tail boundary flow of (μn)n∈R is periodic.

Note that, by convention, if certain βn are zero, we interpret the corresponding term

in equation (3.7) as zero. The assumptions of Proposition 3.3 say in particular that, for

each fixed n, the measure βn has a bounded support so that its mean value and variance

are well defined and finite.

Proof. Note that it suffices to prove the proposition assuming that all βn 	= 0. Indeed, it

then follows that for I = {n ∈ N | βn 	= 0}, the tail boundary flow of (μn)n∈I is periodic,
from which it follows that, a fortiori, the tail boundary flow of (μn)n∈N is periodic.

Assume that the sum in equation (3.7) is infinite. We prove that the tail boundary flow

of (μn)n∈R is periodic.

Define the finite positive measures αn such that μn = αn+βn. Define X0 =R�R2, and
equip X0 with the probability measures ζn = αn�βn(R)

−1(βn×βn). Define the map T :

X0 →R by T (x) = 0 if x∈R and T (x,y) = x−y if (x,y)∈R2. Define (X,ζ) =
∏

n∈N
(X0,ζn)

and the independent random variables Tn : X → R : Tn(z) = T (zn). Note that |Tn| ≤ C
for all n, E(Tn) = 0 and

E(T 2
n) = 2βn(R) Var(βn(R)

−1βn) .

Since
∑∞

n=1E(T 2
n) =+∞ and E(T 2

n)≤C2 for every n∈N, we can choose 0≤n1 <n2 < · · ·
such that

(40C)2 ≤
nk+1∑

n=nk+1

E(T 2
n)≤ (50C)2

for all k ∈ N. Since |Tn| ≤ C for all n, we have that E(|Tn|3) ≤ CE(T 2
n) for all n ∈ N.

Define σk ∈ [40C,50C] by

σ2
k =

nk+1∑
n=nk+1

E(T 2
n) .

Write

Sk =

nk+1∑
n=nk+1

Tn and Fk(t) = ζ
(
{x ∈X | Sk(x)≤ σk t}

)
.

Denote by G the distribution function of a standard Gaussian random variable. By the
Berry–Esseen theorem (see, e.g., [48, Theorem 2.2.17]), we get that

|Fk(t)−G(t)| ≤ 10C

σk
≤ 1

4

https://doi.org/10.1017/S1474748022000263 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000263


84 T. Berendschot and S. Vaes

for all k ∈ N and all t ∈ R. Take δ < 0 such that G(δ) = 1/3. Then, Fk(δ) ≥ 1/12. Since

σk ≥ 40C and δ < 0, we conclude that

ζ
(
{x ∈X | Sk(x)≤ 40Cδ}

)
≥ 1

12
for all k ∈ N. (3.8)

Define (Ω,μ) =
∏

n∈N
(R,μn). Denote by μ0 the probability measure on R given by

dμ0(t) = (π(1+ t2))−1 dt. Consider the Hilbert spaces

H = L2(R×Ω,μ0×μ) and K = L2(R×X,μ0× ζ),

and define the subspaces HN ⊂H by HN = L2((R,μ)×
∏N

n=1(R,μn)).

Define the maps

θ1 :X0 → R : θ1(x) = x if x ∈ R, θ1(x,y) = x if (x,y) ∈ R2,

θ2 :X0 → R : θ2(x) = x if x ∈ R, θ2(x,y) = y if (x,y) ∈ R2.

Note that T (z) = θ1(z)− θ2(z) for all z ∈ X0. We consider the associated measure

preserving factor maps

π :X → Ω : (π(z))n = θ1(zn) and ρk :X → Ω : (ρk(z))n =

{
θ2(zn) if nk+1≤ n≤ nk+1,

θ1(zn) otherwise.

Define the isometries V :H →K and Wk :H →K by

V (ξ)(t,z) = ξ(t,π(z)) and Wk(ξ)(t,z) = ξ(t,ρk(z)) .

When ξ ∈ HN , we have Wk(ξ) = V (ξ) for all k large enough. By density, we get that

Wk → V strongly.

Let F ∈ L∞(R×Ω) be a function that generates the tail boundary of (μn)n∈N. Since F

belongs to the tail boundary algebra, we have

(Wk(F ))(t,z) = (V (F ))(t−Sk(z),z) for all k ∈ N and a.e. (t,z) ∈ R×X. (3.9)

Since

1+(t+s)2

1+ t2
≤ 2(1+s2) for all s,t ∈ R, (3.10)

and since each Sk is a bounded function, we can define the bounded linear operators

Rk :K →K : (Rk(ξ))(t,z) = ξ(t−Sk(z),z) .

Write D =
√
2(1+(50C)2). We claim that

‖Rk(ξ)‖22 ≤D‖ξ‖∞ ‖ξ‖2 for all ξ ∈ L∞(R×X)⊂K. (3.11)
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To prove this claim, note that the left-hand side can be estimated, using the Cauchy–
Schwartz inequality and equation (3.10), by

1

π

∫
X

dζ(z)

∫
R

dt
1

(1+(t+Sk(z))2)
|ξ(t,z)|2

≤ ‖ξ‖∞
∫
X

dζ(z)

∫
R

dt
1√

π(1+ t2)
|ξ(t,z)|

√
1+ t2√

π(1+(t+Sk(z))2)

≤ ‖ξ‖∞ ‖ξ‖2
(∫

X

dζ(z)

∫
R

dt
1+ t2

π(1+(t+Sk(z))2)2

)1/2
= ‖ξ‖∞ ‖ξ‖2

(∫
X

dζ(z)

∫
R

dt
1+(t−Sk(z))

2

π(1+ t2)2

)1/2
≤ ‖ξ‖∞ ‖ξ‖2

(∫
X

dζ(z)

∫
R

dμ0(t) 2(1+Sk(z)
2)
)1/2

=D‖ξ‖∞ ‖ξ‖2 .

So, the claim is proven.

Define the probability measure ηk = (Sk)∗(ζ). Then∫
R

t2 dηk(t) = E(S2
k)≤ (50C)2 for all k ∈ N

so that ηk is a tight family of probability measures. Choose a sequence kj →∞ such that
ηkj

converges weakly to a probability measure η on R with
∫
R
t2 dη(t) ≤ (50C)2 < +∞.

By equation (3.8), we have that ηk((−∞,40Cδ])≥ 1/12 for all k ∈ N. Therefore, η 	= δ0.

We can then define the bounded convolution operator

K →K : ξ → η ∗ ξ : (η ∗ ξ)(t,z) =
∫
R

ξ(t−s,z)dη(s) .

Note that by the Cauchy–Schwarz inequality and equation (3.10),

‖η ∗ ξ‖22 ≤
∫
X

dζ(z)

∫
R

dη(s)

∫
R

dμ0(t) |ξ(t−s,z)|2

≤
∫
X

dζ(z)

∫
R

dη(s)

∫
R

dμ0(t)2(1+s2) |ξ(t,z)|2

so that ‖η ∗ ξ‖2 ≤D‖ξ‖2 for all ξ ∈K. We have a similar convolution operator ξ → η ∗ ξ
on H. Note that V (η ∗ ξ) = η ∗V (ξ).

We finally prove that, for every ξ ∈ L∞(R×X)⊂K and every ξ′ ∈K, we have that

lim
j
〈Rkj

(ξ),ξ′〉= 〈η ∗ ξ,ξ′〉 . (3.12)

Define the closed subspacesKN =L2(R×
∏N

n=1X0) of K. Fix ξ ∈L∞(R×X)⊂K and ξ′ ∈
K. The orthogonal projection EN :K →KN corresponds to the conditional expectation

so that ‖EN (ξ)‖∞ ≤ ‖ξ‖∞ for all N ∈ N. By equation (3.11), the sequence ‖Rkj
(ξ)‖2 is
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bounded. To prove equation (3.12), we may thus assume that ξ′ ∈ KN for some N. By

(3.11), we also have that

‖Rkj
(ξ)−Rkj

(EN (ξ))‖22 = ‖Rkj
(ξ−EN (ξ))‖22 ≤D‖ξ−EN (ξ)‖∞ ‖ξ−EN (ξ)‖2

≤ 2D‖ξ‖∞ ‖ξ−EN (ξ)‖2,

which tends to zero as N →∞, uniformly in j. To prove (3.12), we may thus also assume
that ξ ∈KN . When ξ,ξ′ ∈KN and nkj

>N , we have

〈Rkj
(ξ),ξ′〉= 〈ηkj

∗ ξ,ξ′〉

for all j so that equation (3.12) follows.

We now return to our element F generating the tail boundary. By equation (3.9), we get

that Wk(F ) =Rk(V (F )). Since Wk → V strongly, we get that ‖Wk(F )−V (F )‖2 → 0. By

equation (3.12), we have that Rk(V (F ))→ η ∗V (F ) = V (η ∗F ) weakly. We thus conclude
that F = η ∗F . Since η 	= δ0, it follows from the Choquet–Dény theorem (see [9]) that F

is periodic in the first variable. So, the tail boundary flow is periodic.

In our applications of Proposition 3.3, we will use a few times the following elementary

equality and estimate

Varβ =
1

2

∫
R2

(x−y)2 dβ(x)dβ(y)

≥ 1

2

∫
(R∗×{0})∪({0}×R∗)

(x−y)2 dβ(x)dβ(y) = β({0})
∫
R

x2 dβ(x)
(3.13)

for every probability measure β on R.
Proposition 3.3 already says that aperiodic tail boundary flows can only occur if the

measures (μn)n∈N are sufficiently sparse: For each sequence of intervals In ⊂ R with

uniformly bounded length |In|, there exist points sn ∈ In such that

∞∑
n=1

∫
In

(x−sn)
2 dμn(x)<+∞ . (3.14)

In the following proposition, we develop this further and prove that, under the appropriate
assumptions, the resulting sequence sn must itself be sparse: Partitioning R into intervals

Ik of uniformly bounded length, we may assume that, within each Ik, the points sn lie

close to a single element tk ∈ Ik.

The proof of Proposition 3.4 is closely inspired by [26, Proposition 1.1] and [3, Lemma
8.6]. Although this is not strictly needed for the rest of this paper, we use the opportunity

to also deduce from Proposition 3.4 a more conceptual proof for the main result of [26]

saying that every ITPFI factor of bounded type is isomorphic with an ITPFI2 factor; see
Theorem 3.5. Recall that, by definition, an ITPFI factor of bounded type is an infinite

tensor product of matrix algebras Mnk
(C) with supknk <+∞.

Proposition 3.4. Let (μn)n∈N be probability measures on R. Let (Jk)k∈N be a family of

disjoint subsets of N. Assume that, for every k ∈N, we are given pk,qk > 0 and an interval

Ik ⊂ R\ (−1,1). Assume that |Ik| ≤ C for all k ∈ N.
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Assume that, for each k ∈ N and n ∈ Jk, we are given a probability measure βn with
βn(Ik) = 1 and pkδ0+ qkβn ≤ μn.

If the tail boundary flow of (μn)n∈N is aperiodic, each Jk is a finite set and there exist

tk ∈ Ik such that

∞∑
k=1

∑
n∈Jk

pkqk

∫
R

(x− tk)
2 dβn(x)<+∞ . (3.15)

Note that there is a twofold difference between equations (3.14) and (3.15). In equation

(3.15), the concentration points tk only depend on the interval Ik and are thus the same
for each n∈ Jk. On the other hand, the factor pkqk appearing in equation (3.15) is strictly

smaller than the factor qk = (qkβn)(Ik) that we would get in equation (3.14).

Proof. For a fixed k ∈N, we have that the measures (pkδ0+qkβn)n∈Jk
have a uniformly

bounded support in {0}∪ Ik. It thus follows from Proposition 3.3 that

(pk+ qk)
∑
n∈Jk

Var((pk+ qk)
−1(pkδ0+ qkβn))<+∞ .

Since Ik ⊂ R\ (−1,1) and βn is supported on Ik, by equation (3.13), the left-hand side is

larger or equal than pkqk(pk+ qk)
−1|Jk| so that Jk is a finite set.

We can also apply Proposition 3.3 to all the finite measures qkβn ≤ μn, with k ∈N and
n∈ Jk, because they have uniformly bounded width C. Defining for any k ∈N and n∈ Jk,

the point sn ∈ Ik by

sn =

∫
R

xdβn(x),

we get that

∞∑
k=1

∑
n∈Jk

qk

∫
R

(x−sn)
2 dβn(x)<+∞ . (3.16)

For every k ∈ N, we consider the finitely many points (sn)n∈Jk
in the interval Ik. We

denote by tk a ‘middle point’. More precisely, if |Jk| is odd, we write Jk =Ak�Bk�{jk}
with |Ak|= |Bk| such that sn ≤ sjk ≤ sm for all n ∈ Ak and m ∈ Bk. We put tk = sjk . If

|Jk| is even, we write Jk =Ak �Bk with |Ak|= |Bk| such that for some tk ∈ Ik, we again
have that sn ≤ tk ≤ sm for all n ∈Ak and m ∈Bk. We choose a bijection αk :Ak →Bk.

Since the tail boundary flow of (μn)n∈N is aperiodic, also the measures μn ∗μαk(n) with

k ∈ N and n ∈Ak have an aperiodic tail boundary. By construction,

pkqk(βn+βαk(n))≤ μn ∗μαk(n) for all k ∈ N,n ∈Ak.

Moreover, the measures on the left have their support in Ik, with |Ik| ≤ C for all k ∈ N.

Again applying Proposition 3.3, we conclude that

∞∑
k=1

∑
n∈Ak

pkqk Var((βn+βαk(n))/2)<+∞ .
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The mean value of (βn+βαk(n))/2 is (sn+sαk(n))/2, and we conclude that

∞∑
k=1

∑
n∈Ak

pkqk

∫
R

(
x−

sn+sαk(n)

2

)2

dβn(x)<+∞ . (3.17)

A direct computation gives that, for n ∈Ak,∫
R

(
x−

sn+sαk(n)

2

)2

dβn(x) = Var(βn)+
1

4
(sαk(n)−sn)

2

≥ 1

4

(
(sαk(n)− tk)

2+(tk−sn)
2
)

because sn ≤ tk ≤ sαk(n). It thus follows from equation (3.17) that

∞∑
k=1

∑
n∈Jk

pkqk (sn− tk)
2 =

∞∑
k=1

∑
n∈Ak

pkqk
(
(sαk(n)− tk)

2+(tk−sn)
2
)
<+∞ .

Since (x− tk)
2 ≤ 2(x− sn)

2+2(sn− tk)
2 and since pk ≤ 1, in combination with equation

(3.16), we have proven that equation (3.15) holds.

Theorem 3.5. Every ITPFI factor of bounded type is isomorphic with an ITPFI2 factor.

Proof. By induction, it suffices to prove that, for every integer N ≥ 2, every ITPFIN+1

factor of type III0 is isomorphic with the tensor product of an ITPFIN factor and an

ITPFI2 factor.

We denote in this proof by δ(a) the Dirac measure in a ∈R. For every a≥ 0, we define
the probability measure

γ(a) = (1+exp(−a))−1 (δ(0)+exp(−a)δ(a)) . (3.18)

For every a ∈ RN
≥0, we define the probability measure

ρ(a) =

(
1+

N∑
i=1

exp(−ai)

)−1 (
δ(0)+

N∑
i=1

exp(−ai)δ(ai)

)
and the state ψa on MN+1(C) by

ψa(A) =

(
1+

N∑
i=1

exp(−ai)

)−1 (
A00+

N∑
i=1

exp(−ai)Aii

)
.

By diagonalizing states, any ITPFIN+1 factor can be written as the tensor product of
a sequence (MN+1(C),ψan

) with an ∈ RN
≥0. By [17, Theorem 3.1], its flow of weights is

precisely the tail boundary flow of the sequence (ρ(an))n∈N.

We thus fix such a sequence an ∈ RN
≥0, we assume that the tail boundary flow of

μn = ρ(an), n ∈ N,

is aperiodic and we prove that it is isomorphic with the tail boundary flow of a family of

probability measures of the form ρ(b), b ∈ RN−1
≥0 , and γ(c), c≥ 0.
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For every k ∈ N and 1 ≤ i ≤ N , we denote Jk,i = {n ∈ N | an,i ∈ [k− 1,k)}. We put

p= (1+N)−1 and qk = p exp(−k). Fix i ∈ {1, . . . ,N}.
For every n ∈ J1,i, we have that

pδ(0)+pexp(−an,i)δ(an,i)≤ μn

and that the measures δ(an,i) are supported on the interval [0,1]. It follows from
Proposition 3.3 and equation (3.13) that∑

n∈J1,i

exp(−an,i)a
2
n,i <+∞ . (3.19)

For every k ≥ 2 and n ∈ Jk,i, we have that

pδ(0)+ qk δ(an,i)≤ μn

and that the measures at the left are supported on the interval [k−1,k). For n ∈ Jk,i, we

have that exp(−an,i)≤ exp(1)(N +1)qk. By Proposition 3.4, we thus find bk,i ∈ [k−1,k)
such that

∞∑
k=2

∑
n∈Jk,i

exp(−an,i)(bk,i−an,i)
2 <+∞ . (3.20)

Defining b1,i = 0 for all i ∈ {1, . . . ,N} and summing over i ∈ {1, . . . ,N}, it follows from

equations (3.19) and (3.20) that

∞∑
k=1

N∑
i=1

∑
n∈Jk,i

exp(−an,i)(bk,i−an,i)
2 <+∞ . (3.21)

Define the maps αn : {1, . . . ,N} → N by αn(i) = k if and only if n ∈ Jk,i. Define the

probability measures

μ′
n =

(
1+

N∑
i=1

exp(−an,i)

)−1 (
δ(0)+

N∑
i=1

exp(−an,i)δ(bαn(i),i)

)
.

Using the Wasserstein 2-distance, it follows from equations (3.21) and (3.6) that∑∞
n=1W2(μn,μ

′
n)

2 <+∞. It thus follows from Proposition 3.2 that (μn)n∈N and (μ′
n)n∈N

have isomorphic tail boundary flows.

When s,t ∈ R satisfy |s− t| ≤ 1, we have that(
exp(−s/2)− exp(−t/2)

)2
= exp(−s)

(
1− exp((s− t)/2)

)2 ≤ exp(−s)(s− t)2 .

It follows that for all n ∈ Jk,i,(
exp(−an,i/2)− exp(−bk,i/2)

)2 ≤ exp(−an,i)(bk,i−an,i)
2 . (3.22)
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Defining μ′′
n = ρ(bαn(1),1, . . . ,bαn(N),N ), it thus follows from equations (3.21) and (3.22)

that

∞∑
n=1

H2(μ′
n,μ

′′
n)<+∞ .

By Lemma 3.1, also (μ′
n)n∈N and (μ′′

n)n∈N have isomorphic tail boundary flows.
We order the elements (bk,i)i=1,...,N in [k−1,k) from smaller to larger, remove duplicates

and relabel so as to find an increasing sequence 0≤ b1 < b2 < · · · with bm ≥m/N −1 for

all m ∈ N and with all bk,i appearing in this sequence. Permuting elements (d1, . . . ,dN )

does not change the probability measure ρ(d1, . . . ,dN ). So every μ′′
n is of the form

μ′′
n = ρ(bθn(1), . . . ,bθn(N))

for a nondecreasing function θn : {1, . . . ,N}→ N.

For every 1≤M ≤N , denote by FM the set of nondecreasing functions from {1, . . . ,M}
to N. For every θ ∈ FM , denote

ζ(θ) = ρ(bθ(1), . . . ,bθ(M)) .

Define the subset J ⊂ FN as the set of all θ ∈ FN that are of the form θn for some
n ∈N. Define Lθ ∈N as the cardinality of {n ∈N | θn = θ}. As explained in the beginning

of Section 3.1, the tail boundary flow does not depend on the order of the transition

probability measures. So, by construction, the tail boundary flow of the family (μ′′
n)n∈N,

and hence also the tail boundary flow of (μn)n∈N, is isomorphic with the tail boundary

flow of the family of measures ζ(θ)∗Lθ , θ ∈ J .

For every θ ∈FN , we denote by θ̂ the restriction of θ to {1, . . . ,N−1}. For every θ ∈ J ,

we apply Lemma 3.6 below to

α=
N−1∑
i=1

exp(−bθ(i))≥ β = exp(−bθ(N)) and

P = α−1
N−1∑
i=1

exp(−bθ(i))δ(bθ(i)), Q= δ(bθ(N)) .

By Lemma 3.6, we thus find Kθ,Mθ ∈ N such that with the notation of equation (3.18),

dTV

(
ζ(θ)∗Lθ,ζ(θ̂)∗Kθ ∗γ(bθ(N))

∗Mθ
)
≤ 4exp(−bθ(N)/2) . (3.23)

Given k ∈ N, the number of elements θ ∈ FN with θ(N) = k is smaller than kN−1. Also
recall that bk ≥ k/N −1. Thus,

∑
θ∈FN

exp(−bθ(N))≤
∞∑
k=1

kN−1 exp(−bk)≤
∞∑
k=1

kN−1 exp(1) exp(−k/N)<+∞.
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It then follows from equation (3.23) and Lemma 3.1 that the tail boundary flow of (μn)n∈N

is isomorphic with the tail boundary flow of the family of measures

{ζ(θ̂)∗Kθ | θ ∈ J }∪{γ(bθ(N))
∗Mθ | θ ∈ J } .

This concludes the proof of the theorem.

Although the following lemma is an immediate consequence of [26, Lemma 2.2], it has
never been stated in this very general form.

Lemma 3.6. Let P and Q be probability measures on R and α,β > 0. For every L ∈ N,

we have that

dTV

((
(1+α+β)−1(δ0+αP +βQ)

)∗L
,(

(1+α)−1(δ0+αP )
)∗K ∗

(
(1+β)−1(δ0+βQ)

)∗M)≤ 2
√

β

for K = L−�(1+α+β)−1βL� and M = �(1+α+β)−1(1+β)L�.

Proof. For integers k, m≥ 0 with k+m≤ L, we write

μ(k,m) =
L!

(L−k−m)!k!m!

αk βm

(1+α+β)L
.

For all other integers k,m≥ 0, we write μ(k,m) = 0. Then,(
(1+α+β)−1(δ0+αP +βQ)

)∗L
=
∑

k,m≥0

μ(k,m)P ∗kQ∗m .

We similarly write for all integers 0≤ k ≤K and 0≤m≤M ,

μ′(k,m) =
K!

(K−k)!k!

αk

(1+α)K
M !

(M −m)!m!

βm

(1+β)M

and μ′(k,m) = 0 for all other integers k,m≥ 0 so that(
(1+α)−1(δ0+αP )

)∗K ∗
(
(1+β)−1(δ0+βQ)

)∗M
=
∑

k,m≥0

μ′(k,m)P ∗kQ∗m .

Parts (a) and (b) of the proof of [26, Lemma 2.2] are saying that H2(μ,μ′) ≤ 2β. Then

also dTV(μ,μ
′)≤ 2

√
β.

3.2. Poisson flows

Recall that to every finite positive measure μ on R is associated the compound Poisson

distribution on R, which is defined as the probability measure

E(μ) = exp(−‖μ‖) exp(μ) = exp(−μ(R))

(
δ0+

∞∑
k=1

1

k!
μ∗k

)
.
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Note that E(μ) is supported on R≥0 = [0,+∞) iff μ is supported on R≥0. If x → x2 is

μ-integrable, we have∫
R

xdE(μ)(x) =
∫
R

xdμ(x) and Var(E(μ)) =
∫
R

x2 dμ(x) . (3.24)

Definition 3.7. We call a Poisson flow any ergodic flow R� (Z,η) that arises as the tail

boundary flow of a sequence of compound Poisson distributions on R. If these compound

Poisson distributions can be chosen with support in R≥0, we call R � (Z,η) a Poisson
flow of positive type.

Note that compound Poisson distributions and tail boundary flows make sense on any

locally compact second countable abelian group G, leading to the concept of a Poisson

G-action, which we will use for G=R and G=Z. In Remark 3.16, we discuss the relation
between general Poisson flows and Poisson flows of positive type.

The two main results of this section are the following.

Theorem 3.8. Every ergodic almost periodic flow is a Poisson flow of positive type.

Theorem 3.9. The Poisson flows of positive type are precisely the flows of weights of
ITPFI2 factors.

By [26, Theorem 2.1], which we reproved as Theorem 3.5 above, every ITPFI factor of

bounded type is isomorphic with an ITPFI2 factor. So Poisson flows of positive type are

also precisely the flows of weights of ITPFI factors of bounded type. Note that Theorem
C is an immediate consequence of Theorems 3.8 and 3.9.

For Poisson flows with a nontrivial eigenvalue group, Theorem 3.9 was proven in [25,

Proposition 7.1]. It is easy to see that 2π/p is an eigenvalue of a Poisson flow R� (Z,η)

iff R� (Z,η) is the tail boundary flow of a sequence of compound Poisson distributions
with support in pZ. The main step in the proof of Theorem 3.9 is to show that in general,

if R� (Z,η) is a Poisson flow that is aperiodic, then we may realize R� (Z,η) as the tail

boundary flow of a sequence of compound Poisson distributions with very sparse support:
at most one atom in each length one interval.

Before proving Theorem 3.8, we recall the following definition from [31, Section 3], which

we generalize in the natural way to multiple flows of locally compact abelian groups. We
only use this concept for G= R and G= Z.

Definition 3.10 ([31, Section 3].). Let G be a locally compact second countable abelian

group. For i ∈ {1, . . . ,n}, let G � (Zi,ηi) be a nonsingular action. Consider the direct

sum G⊕n and its natural action G⊕n � Z = Z1 × ·· ·×Zn. Define the closed subgroup
G0 = {(g1, . . . ,gn) ∈G⊕n | g1+ · · ·+gn = 0} and the ergodic decomposition A= L∞(Z)G0

for the action G0 � Z.

The action of G on A in the first variable (or, which is the same, in any of the other

variables) is called the joint action of G� (Zi,ηi). When G=R, we use the terminology
joint flow, instead of joint action.

By construction, the tail boundary flow of the disjoint union (μn)n∈I�J of two countable

infinite families of probability measures on R is the joint flow of the tail boundary flows
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of (μn)n∈I and (μn)n∈J . Also by construction, the flow of weights of a tensor product

factor M1⊗M2 is the joint flow of the flows of weights of Mi.

As a final preparation to proving Theorem 3.8, we discuss the relation between tail
boundary flows and induced actions. Assume that G is a locally compact second countable

abelian group with closed subgroup H. Choose a probability measure ν on G/H that is

equivalent with the Haar measure. Recall that any nonsingular action H � (Y ,η) has an
induced action G� (G/H ×Y ,ν× η), which is defined as follows. Choosing a Borel lift

ψ :G/H →G, one defines the 1-cocycle Ω :G×G/H →H : Ω(g,x) = g+ψ(x)−ψ(g+x)

and the induced action

G�G/H×Y : g · (x,y) = (g+x,Ω(g,x) ·y) .

Another choice of lift ψ gives a cohomologous 1-cocycle and, thus, an isomorphic induced

action.
If (μn)n∈N is a family of probability measures on H, we have an associated tail boundary

H -action. We can also view (μn)n∈N as a family of probability measures on G. Since the

induction of the translation action H � H is, by construction, the translation action
G�G, we have by definition that the tail boundary G-action of (μn)n∈N is isomorphic

with the induction to G of the tail boundary H -action of (μn)n∈N.

Proof of Theorem 3.8. The cases of a trivial flow or a periodic flow are straightforward.

By, e.g., [8, Proposition 2.1], taking a > 0 and μn = E(δa) for all n ∈N, the tail boundary
flow is the periodic flow R�R/aZ. Similarly, taking a > 0 irrational and μn = E(δ1+δa)

for all n ∈ N, the tail boundary flow is trivial.

So, it suffices to consider an almost periodic, aperiodic, ergodic flow. Such a flow is given

by the translation action of R on a compact second countable abelian group L under a
dense embedding π : R→ L. We have to realize this flow as the tail boundary flow of a

sequence of compound Poisson distributions E(μn) with μn supported on R≥0. We start

by reducing this problem to a similar question for Z-actions.
Fix a nontrivial character ω0 ∈ L̂. Take t0 ∈R\{0} such that ω0(π(t)) = exp(2πit/t0) for

all t∈R. So, ω0 gives rise to a surjective, continuous group homomorphism θ :L→R/t0Z

such that θ ◦π : R→ R/t0Z is the natural quotient map. Define K = Kerθ as the kernel
of θ. Note that the restriction of π to t0Z is a dense embedding of t0Z into K. Note that

the translation action R � L is the induction to R of the translation action t0Z � K.

By the discussion preceding this proof, it thus suffices to prove that this translation

action t0Z � K can be realized as the tail boundary action of t0Z associated with a
sequence of compound Poisson distributions E(μn), where μn are finite positive measures

on t0N⊂ t0Z. Since we can rescale everything with t0, we may assume that t0 = 1.

Combining [16, Corollary 2.8] and [17, Theorem 3.4], we can take finitely supported
probability measures (ηn)n∈N on Z such that the associated tail boundary flow is given

by the translation Z�K. Denote by η̃n the probability measure given by η̃n(U)= ηn(−U).
The tail boundary flow of (η̃n)n∈N is given by the action of Z on K by n · k = −n+ k.
Through the isomorphism k → −k, this flow is isomorphic with the original translation

action Z�K. Since the joint flow of Z�K with itself is again Z�K, the tail boundary

flow of the measures (ηn ∗ η̃n)n∈N is still given by Z�K.
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For every μ ∈ �1(Z), we consider the Fourier transform

μ̂ : T→ C : μ̂(z) =
∑
k∈Z

μ(k)zk .

We view K̂ as a dense countable subgroup of T. The Fourier transform of ηn ∗ η̃n is a

positive function. We replace ηn by ηn ∗ η̃n, and we may thus assume that the probability

measures are finitely supported, with η̂n(ω) ≥ 0 for all n ∈ N and ω ∈ K̂, and with
associated tail boundary flow Z�K.

As each ω ∈ K̂ is an eigenvalue of the translation action Z � K, we know from [17,

Theorem 4.2] that

lim
n→+∞

∞∏
m=n

η̂m(ω) = 1 for every ω ∈ K̂.

Choose an increasing sequence of finite subsets Fk ⊂ K̂ such that K̂ =
⋃∞

k=1Fk. Then

inductively choose 1≤ n1 < n2 < · · · such that

∞∏
m=1+nk

η̂m(ω)> 1− (k+1)−3 for all ω ∈ Fk+1.

Then define the probability measures αk on Z by

α1 = η1 ∗η2 ∗ · · · ∗ηn1
and αk = η1+nk−1

∗ · · · ∗ηnk
for k ≥ 2. (3.25)

Since 0≤ η̂m(ω)≤ 1 for all m ∈ N, ω ∈ K̂, we thus have

α̂k(ω)≥ 1−k−3 for every ω ∈ Fk. (3.26)

Also, the tail boundary flow of (αk)k∈N is still given by Z�K.

For every k ∈ N,

Uk = {g ∈K | |ω(g)−1|< k−3 for all ω ∈ Fk }

is a neighborhood of 0 ∈ K. Since Z ⊂ K is dense, there are arbitrarily large positive

integers n ∈ Uk. Since the measures αk have finite support, we can choose mk ∈ N large

enough such that mk ∈ Uk and such that the translated measures defined by γk(V) =
αk(V −mk) have their support in N. Since mk ∈ Uk, using equation (3.26), we get that

|1− γ̂k(ω)| ≤ 2k−3 for every ω ∈ Fk. (3.27)

The tail boundary flow of (γk)k∈N is still given by Z�K.
Define the compound Poisson distributions βk = E(kγk), and denote by Z�X the tail

boundary flow of (βk)k∈N. We prove that Z�X is isomorphic with Z�K.

Since β̂k(ω) = exp(−k(1− γ̂k(ω))), we get that |β̂k(ω)| = exp(−k(1−Re γ̂k(ω))). From

equation (3.27) and the assumption that K̂ =
⋃∞

k=1Fk, it follows that

∞∏
k=1

|β̂k(ω)|> 0 for all ω ∈ K̂.
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Again by [17, Theorem 4.2], it follows that each ω ∈ K̂ is an eigenvalue of the tail boundary

flow of (βk)k∈N.

Since exp(−k) is summable, by Lemma 3.1, the term exp(−k)δ0 in the definition of
βk = E(kγk) is negligible so that Z�X is isomorphic with the tail boundary flow of

ρk = γk ∗ ζk where ζk = (exp(k)−1)−1

⎛⎝kδ0+

∞∑
j=1

kj+1

(j+1)!
γ∗j
k

⎞⎠ .

Denoting by Z � Y the tail boundary flow of the sequence (ζk)k∈N, we conclude that
Z�X is the joint flow of Z�K and Z� Y . Realizing this joint flow inside L∞(K×Y )

with Z acting in the first variable, we conclude that the action Z�X can be continuously

extended to an action of K. This means that Z�X is isomorphic with a factor of Z�K.

We have already seen that each ω ∈ K̂ is an eigenvalue of Z� X. So, Z � X must be
isomorphic with Z�K.

We finally prove Theorem 3.9. Here and in the rest of this section, we often make

use of Prokhorov’s theorem (see [45]) estimating the total variation distance between a

binomial distribution and a Poisson distribution. Given n ∈N, p ∈ [0,1] and λ≥ 0, define
the binomial distribution β and Poisson distribution π by

βn,p(k) = (nk ) p
k(1−p)n−k for k ∈ {0,1, . . . ,n}, and

πλ(k) = exp(−λ)
λk

k!
for k ∈ {0,1,2, . . .}.

In the version of [4, Theorem 1], Prokhorov’s theorem says that

dTV(βn,p,πnp)≤ p for all n ∈ N,p ∈ [0,1]. (3.28)

Proof of Theorem 3.9. The trivial flow and every periodic flow arise as the flow of

weights of an ITPFI2 factor and also arise as a Poisson flow of positive type. We thus

only consider the aperiodic case.
First assume that R�X is the flow of weights of an ITPFI2 factor and that R�X is

aperiodic. As we have seen in the proof of Theorem 3.5, we find for all k ∈ N, elements

bk ∈ [k−1,k) and integers Lk ≥ 0 such that R�X is isomorphic with the tail boundary

flow of the sequence γ(bk)
∗Lk , where γ(b) is defined by equation (3.18). By equation

(3.28), we get that

dTV

(
γ(bk)

∗Lk,E(λkδbk)
)
≤ exp(−bk) where λk =

Lk exp(−bk)

1+exp(−bk)
.

Since exp(−bk) ≤ exp(−k+1) is summable, it follows from Lemma 3.1 that R�X is a

Poisson flow of positive type.
Conversely, assume that R � X is the Poisson flow of positive type defined by the

sequence of probability measures μn = E(ηn), where each ηn is a finite positive measure

supported on (0,+∞). We may assume that R�X is aperiodic. Taking integers Ln ≥
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ηn(R), we can replace μn by E(ηn/Ln), each repeated Ln times. We may thus assume

that λn := ηn(R)≤ 1.

For every fixed C > 0, we have that

βn := exp(−λn)(δ0+ηn|(0,C])≤ μn

for all n ∈N and that all βn are supported on [0,C]. It follows from Proposition 3.3 that

∞∑
n=1

βn(R) Var(βn(R)
−1βn)<+∞ . (3.29)

Since exp(−λn)≥ exp(−1) and ηn((0,C])≤ 1 for all n∈N, it follows from equations (3.29)

and (3.13) that for every C > 0,

∞∑
n=1

∫
(0,C]

x2 dηn(x)<+∞ . (3.30)

Denote ρn = ηn|(0,1] and, for all k ∈N, ηn,k = ηn|(k,k+1]. Since E(ηn) is the convolution of
the measures E(ρn) and E(ηn,k), n,k ∈N, we conclude that R�X also is the tail boundary

flow of the union of the probability measures E(ρn), n ∈ N, and E(ηn,k), n,k ∈ N.

By equations (3.30) and (3.24), we have
∑∞

n=1Var(E(ρn)) < +∞. By, e.g., [8,

Proposition 2.1], the tail boundary flow of (E(ρn))n∈N is given by the translation action
R�R, so that R�X is the tail boundary flow of the measures E(ηn,k), n,k ∈ N.

For every fixed k ∈ N, it follows from equation (3.30) that
∑∞

n=1 ηn,k(R) < +∞. We

define ζk =
∑∞

n=1 ηn,k and conclude that R�X is the tail boundary flow of E(ζk), k ∈ I,
where ζk is a finite positive measure supported on (k,k+1].

Write �k = ζk(R), and fix integers Lk ≥ �k. Since R�X also is the tail boundary flow

of the measures E(ζk/Lk), each repeated Lk times, and since exp(−1)L−1
k ζk ≤ E(ζk/Lk),

it follows from Proposition 3.3 that the points

bk = �−1
k

∫
R

xdζk(x) ∈ (k,k+1] satisfy
∞∑
k=1

∫
R

(x− bk)
2 dζk(x)<+∞ .

Denote by W2 the Wasserstein 2-distance. By equation (3.6), we have that

W2(E(ζk),E(�kδbk))2 ≤ exp(−�k)

∞∑
j=1

1

j!

∫
R

(x− jbk)
2 dζ∗jk (x) .

For every j ≥ 1, we have that∫
R

(x− jbk)
2 dζ∗jk (x) =

∫
Rj

(
(x1− bk)+ · · ·+(xj − bk)

)2
dζk(x1) · · · dζk(xj)

= j �j−1
k

∫
R

(x− bk)
2 dζk(x) .

We conclude that

W2(E(ζk),E(�kδbk))2 ≤
∫
R

(x− bk)
2 dζk(x) so that

∞∑
k=1

W2(E(ζk),E(�kδbk))2 <+∞ .
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By Proposition 3.2, R�X is also the tail boundary flow of the sequence E(�kδbk), k ∈N.

Write �′k = exp(−bk)(1+exp(−bk))
−1. Take integers Mk ≥ 1 such that |Mk�

′
k − �k| ≤ �′k.

For all c,d > 0 and k ∈ N, one has

|ck−dk|= |c−d|
∣∣k−1∑
i=0

cidk−1−i
∣∣≤ k |c−d|(max{c,d})k−1

so that dTV(E(cδb),E(dδb))≤ |c−d| for all c,d > 0. Therefore,

dTV

(
E(Mk�

′
k δbk),E(�k δbk)

)
≤ exp(−bk) for all k ∈ N.

By equation (3.28), we have

dTV

(
E(Mk�

′
k δbk),γ(bk)

∗Mk
)
≤ �′k ≤ exp(−bk) .

Since bk > k, the sequence exp(−bk) is summable. It then follows from Lemma 3.1 that

R�X is the tail boundary flow of the measures (γ(bk)
∗Mk)k∈N and, hence, is isomorphic

with the flow of weights of an ITPFI2 factor.

The proof of Theorem 3.9 relied on Prokhorov’s (3.28). Using the full force of [4,

Theorem 1], we can also prove the following result.

Proposition 3.11. The Poisson flows are exactly the tail boundary flows of sequences

(μn)n∈N where the support of all μn consists of two points and supn∈NVarμn <+∞.

The Poisson flows of positive type are exactly the tail boundary flows of such sequences
(μn)n∈N with support an < bn and μn(an)≥ μn(bn), and supn∈NVarμn <+∞.

Some bound on the variances Varμn must be imposed in order to get a Poisson flow.
Combining [28, Theorem 2.1] and Proposition 3.13 below, it follows that the tail boundary

flow of the sequence of probability measures
(
(δ0+ δ8n)/2

)
n∈N

is not a Poisson flow.

Proof. First, assume that R � Z is a Poisson flow. In most of the proof of Theorem

3.9, we did not use that the measures are supported on the positive real line. Writing

I = Z \ {−1,0}, we find for every k ∈ I, elements bk ∈ (k,k+1] and constants λk > 0
such that R� Z is isomorphic with the tail boundary flow of the family (E(λkδbk))k∈I .

Choose for every k ∈ I an integer Mk ≥ 1 such that M−1
k λk ≤ 2−|k|. Define for k ∈ I, the

probability measure

ηk = (1−M−1
k λk)δ0+M−1

k λkδbk .

By equation (3.28), we have dTV

(
E(λkδbk),η

∗Mk

k

)
≤M−1

k λk ≤ 2−|k|, which is summable.
By Lemma 3.1, R � Z is isomorphic with the tail boundary flow of the probability

measures ηk repeated Mk times, k ∈ I. Since

Varηk ≤M−1
k λkb

2
k ≤ 2−|k|(|k|+1)2 → 0,

one implication of the proposition is proven.
Conversely, assume that (μn)n∈N is a sequence of probability measures whose support

consists of two points and that satisfy Varμn ≤C for all n∈N. Denote by R�Z their tail

boundary flow. We have to prove that R�Z is a Poisson flow. We may thus assume that
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R� Z is aperiodic. Since translating the measures μn does not change the tail boundary
flow, we may assume that μn(0)≥ 1/2 for all n ∈ N, and we denote by dn ∈ R the other

atom of μn. Write pn = μn(dn) Since Varμn ≤ C, we get that pnd
2
n ≤ 2C for all n ∈ N.

For every k ∈ Z, write Jk = {n ∈N | dn ∈ [k,k+1)}. Write I = Z\{−1,0,1}. Arguing as
in the proof of Theorem 3.9, it follows from Proposition 3.3 that∑

n∈J−1∪J0∪J1

Var(μn)<+∞, (3.31)

and it follows from Proposition 3.4 that we find for every k ∈ I an element bk ∈ [k,k+1)

such that ∑
k∈I

∑
n∈Jk

pn(bk−dn)
2 <+∞ . (3.32)

By equation (3.31), the tail boundary flow of the measures (μn)n∈J−1∪J0∪J1
is given by

the translation action R�R so that these measures may be ignored. Defining for every
k ∈ I and n ∈ Jk the probability measure ηn = (1− pn)δ0 + pnδbk , note that equation

(3.32) is saying that ∑
k∈I

∑
n∈Jk

W2(μn,ηn)
2 <+∞ .

It thus follows from Proposition 3.2 that R�Z is the tail boundary flow of the measures
ηn, k ∈ I, n ∈ Jk. Write λk =

∑
n∈Jk

pn. By [4, Theorem 1], we have for every k ∈ I that

dTV

(
∗

n∈Jk

ηn , E(λkδbk)
)
≤ λ−1

k

∑
n∈Jk

p2n ≤max
n∈Jk

pn ≤max
n∈Jk

2Cd−2
n ≤ 2C

(|k|−1)2
,

where we used that dn ∈ [k,k+1) if n∈ Jk. Since the right-hand side is summable, it follows

from Lemma 3.1 that R� Z is also the tail boundary flow of the Poisson distributions

(E(λkδbk))k∈I and thus is a Poisson flow.
The positive case is proven entirely analogously.

3.3. Infinitely divisible flows

Definition 3.12. We say that a flow R� (Z,η) is infinitely divisible if for every integer

L ≥ 1, there exists a flow R� (Z1,η1) such that R� (Z,η) is isomorphic with the joint

flow of L copies of R� (Z1,η1).

Proposition 3.13. Every Poisson flow is infinitely divisible.

Every tail boundary flow of a sequence of infinitely divisible distributions is a Poisson
flow.

Proof. If R � Z is the tail boundary flow of the sequence (E(μn))n∈N, where μn is
a sequence of finite positive measures on R, and if L ≥ 1 is an integer, we can define

R�Z1 as the tail boundary flow of the sequence (E(L−1μn))n∈N. By construction, R�Z

is isomorphic with the joint flow of L copies of R� Z1.
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Since compound Poisson distributions E(μ) are weakly dense in the set of infinitely

divisible distributions (see, e.g., [48, Theorem 3.2.7]), the second statement follows directly

from Lemma 3.14 below.

Lemma 3.14. Let F ⊂ Prob(R) with weak closure F . Every ergodic flow that can be

obtained as the tail boundary flow of a sequence in F can also be obtained as the tail

boundary flow of a sequence in F .

Proof. Let (μn)n∈N be a sequence in F . Denote by νn the uniform probability measure
on the interval [−1/n,1/n] so that Varνn = n−2/2 is summable. By, e.g., [8, Proposition

2.1], the tail boundary flow of the sequence (νn)n∈N is the translation action R � R.

Therefore, (μn)n∈N and (μn ∗νn)n∈N give rise to isomorphic tail boundary flows.
Since F is weakly dense in F and since νn is absolutely continuous, we can choose μ′

n ∈F
such that dTV

(
μ′
n ∗νn,μn ∗νn

)
≤ n−2. By Lemma 3.1, also (μn ∗νn)n∈N and (μ′

n ∗νn)n∈N

give rise to isomorphic tail boundary flows, with the latter being isomorphic to the tail
boundary flow of (μ′

n)n∈N.

Define for every λ > 0 and a ∈ R the standard Poisson distribution with support {ka |
k = 0,1,2, . . .} given by

σλ,a({ka}) = exp(−λ)
λk

k!
for all k ∈ {0,1,2, . . .}. (3.33)

Proposition 3.15. Every Poisson flow is the tail boundary flow of a sequence

(σλn,an
)n∈N with λn > 0 and an ∈ R.

Proof. The convolution products of measures of the form σλ,a are precisely the compound
Poisson distributions E(μ) where μ is a finite positive measure with finite support. These

E(μ) are weakly dense in the set of all compound Poisson distributions. The conclusion

thus immediately follows from Lemma 3.14.

Remark 3.16. Because of Proposition 3.13, it is tempting to speculate that every

infinitely divisible flow is a Poisson flow, at least if the flow is assumed to be approximately

transitive (and thus, the tail boundary flow of some sequence of probability measures, by

[17, Theorem 3.2]). We have, however, no idea how to prove such a statement.
Going back to Theorem 3.9, it is also unclear whether every Poisson flow is auto-

matically of positive type. Because of Theorem 3.9, this question is equivalent with the

following seemingly innocent, but highly tantalizing, problem: If R �α Z is the flow of
weights of an ITPFI2 factor, does it follow that the reverse flow βt(z) = α−t(z) also is

the flow of weights of an ITPFI2 factor?

Combining both open problems, it is tempting to speculate that the ITPFI2 factors are
precisely the injective factors M that are infinitely divisible, in the sense that for every

integer L≥ 1, there exists a factor N such that M ∼=N⊗L, or to speculate that at least,

infinite divisibility characterizes the ITPFI2 factors among the ITPFI factors.
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4. Nonsingular Bernoulli shifts: proof of Theorem A

The goal of this section is to prove the following more precise formulation of Theorem A.
Since we want to describe absolutely general Bernoulli shifts, the formulation becomes a

bit lengthy because we have to deal with the less interesting cases that may arise where

the space has atoms or the action is dissipative.
We denote by S the group of finite permutations of the countable set Z and let S act

on (X,μ) =
∏

n∈Z
(Xn,μn) by (σ ·x)n = xσ−1(n).

Theorem 4.1. Let X0 be any standard Borel space, and let (μn)n∈Z be any family

of equivalent probability measures on X0 such that the Bernoulli shift Z � (X,μ) =∏
n∈Z

(X0,μn) is nonsingular.

Then precisely one of the following statements holds.

1. There exists an atom b ∈X0 with
∑

n∈Z
(1−μn({b}))<+∞. Define a ∈X by an = b

for all n ∈ Z. Then, a is an atom in X that is fixed by Z. The action of Z on X \{a}
is essentially free and dissipative.

2. The action Z� (X,μ) is essentially free and dissipative.

3. The space (X,μ) is nonatomic, and there exists a Borel set C0 ⊂ X0 of positive

measure, unique up to a null set, such that
∑

n∈Z
(1−μn(C0))<+∞ and such that

the following holds.
• The action Z� CZ

0 is a weakly mixing Bernoulli shift, and its associated flow is
infinitely divisible. Moreover, the permutation action S � CZ

0 is ergodic, and for
every ergodic probability measure preserving (pmp) action Z� (Y ,ν), the actions
Z� CZ

0 , Z� CZ
0 ×Y and S � CZ

0 have the same associated flow.
• The action Z�X \CZ

0 is essentially free and dissipative.

As already suggested by the formulation of Theorem 4.1, we again exploit the relation

between a Bernoulli shift and the action S � (X,μ). This method was discovered in [37,
18] and has been further developed in [7, 8].

Because of Theorem 4.1, to study nonsingular Bernoulli shifts in their full generality,

it suffices to consider Bernoulli shifts that are conservative. Also, given any conservative

Bernoulli action G �
∏

g∈G(C0,ηg), we can add a standard Borel space C1 to C0 by
putting X0 = C0 �C1 and by choosing μg to be a family of equivalent measures on X0

such that
∑

g∈Gμg(C1) < +∞ and such that μg|C0
= μg(C0)ηg. The result is again a

nonsingular Bernoulli action G � (X,μ) =
∏

g∈G(X0,μg) with dissipative part X \CG
0

and conservative part CG
0 .

Note that if Z� (X,μ) is a conservative ergodic nonsingular Bernoulli shift, it follows

from Theorem 4.1 that it is has stable type in the strongest possible sense. Indeed,
whenever Z� (Y ,ν) is an ergodic pmp action, the diagonal action Z�X×Y is ergodic

of the same type, and with the same associated flow as Z� (X,μ). This rigidity property

for the group Z is not shared by all countable infinite groups G, see [49, Proposition 7.3]
and [7, Remark 6.4].

When we rephrase Theorem 4.1 in terms of von Neumann algebras, we get the following

result.
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Corollary 4.2. Every crossed product L∞(X)�Z by a nonsingular Bernoulli shift Z�

(X,μ), decomposes as

L∞(X)�Z=N ⊕M,

where N is a type I von Neumann algebra, and M is an injective factor that is a p’th
tensor power for every integer p≥ 2.

In addition to the structure result of Theorem 4.1, we are able to give a complete

type classification for conservative nonsingular Bernoulli shifts, distinguishing between

types II1, II∞ and III. The formulation of the result is similar to [8, Theorem 4.1], but
the important difference is that in our Theorem 4.3, we make no assumptions on the

behavior of the Radon–Nikodym derivatives dμn/dμ0.

Theorem 4.3. Let Z� (X,μ) =
∏

n∈Z
(X0,μn) be a conservative nonsingular Bernoulli

shift. Then Z� (X,μ) is weakly mixing and the following holds.

1. Z� (X,μ) is of type II1 if and only if there exists a probability measure ν ∼ μ0 on

X0 such that νZ ∼ μ.

2. Z� (X,μ) is of type II∞ if and only if there exists a σ-finite measure ν ∼ μ0 on X0

and Borel sets Un ⊂X0 such that ν(Un)<+∞ for all n ∈ Z and such that∑
n∈Z

μn(X0 \Un)<+∞,
∑
n∈Z

H2
(
μn,ν(Un)

−1ν|Un

)
<+∞,

∑
n∈Z

ν(X0 \Un) = +∞.

3. Z� (X,μ) is of type III in all other cases.

A key point in relating the Bernoulli shift Z� (X,μ) to the permutation action S �

(X,μ) is the following lemma. The proof uses a key idea of [7, Theorem 3.3].

Lemma 4.4. Let Z � (X,μ) =
∏

n∈Z
(X0,μn) be a nonsingular Bernoulli shift that is

essentially free and not dissipative. When viewing Z and S as subgroups of Aut(X,μ), we

have that Z belongs to the closure of S.

Proof. We start by proving the following claim.

Claim. There exist sequences nk →−∞,mk →+∞ such that

lim
k→∞

H
(
μnk

,μmk

)
= 0. (4.1)

We prove this claim using essentially the same argument as the one given in [7, Theorem

3.3]. Indeed, if such sequences do not exist, there are δ > 0 and N ∈ N such that for all

n≤−N,m≥N we have that H(μn,μm)> δ. Define the 1-cocycle

c : Z→ �2(Z)⊗L2(X0,μ0) : cn(k,·) =
√
dμk/dμ0−

√
dμk−n/dμ0,

as introduced in [49, Theorem 3.1]. We have that

‖ck‖2 = ‖c−k‖2 = 2
∑
m∈Z

H2(μm+k,μm)≥ 2
−N∑

m=N−k

H2(μm+k,μm)≥ 2(k−2N)δ2
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for every k ≥ 2N . Therefore,
∑

k∈Z
exp
(
−‖ck‖2/2

)
< +∞, and it follows from [49,

Theorem 4.1] that the action Z � (X,μ) is dissipative, which is in contradiction with
our assumptions.

Let nk → −∞ and mk → +∞ be sequences such that equation (4.1) holds. We may

assume that nk < 0 < mk for all k ∈ N. Let α ∈ Aut(X,μ) denote the shift by one, i.e.,
(α(x))k = xk−1. To prove the lemma, it suffices to show that α belongs to the closure of

S.
For each k ∈ N, we define the permutation σk ∈ S by

σk(n) =

⎧⎪⎨⎪⎩
n if n≤ nk or n≥ 1+mk

n−1 if 2+nk ≤ n≤mk

mk if n= 1+nk

and write βk = σk ◦α ∈Aut(X,μ). Define the unitary operators θk : L
2(X,μ)→ L2(X,μ)

by

θk(F )(x) =

√
d(μ◦βk)

dμ
(x)F (βk(x)).

We will show that ‖θk(F )−F‖2 → 0 for all F in a total subset of L2(X,μ) so that βk → id
as k →+∞. This then concludes the proof of the lemma.

Take F ∈L∞(X,μ) depending only on the coordinates xn, for |n| ≤N , for some N ∈N.

With unconditional convergence almost everywhere, we have that

d(μ◦βk)

dμ
(x) =

nk−1∏
n=−∞

dμn+1

dμn
(xn) ·

dμmk

dμnk

(xnk
) ·

∞∏
n=mk

dμn+1

dμn
(xn).

Therefore,∫
X

√
d(μ◦βk)/dμdμ=

(
1−H2(μnk

,μmk
)
) ∏
n≤nk or n≥1+mk

(
1−H2(μn−1,μn)

)
→ 1

as H2(μn−1,μn) is summable and by our choice of nk,mk. We see that for nk <−N and

mk >N we have that

‖θk(F )−F‖2 ≤ ‖F‖∞
∥∥1−√d(μ◦βk)/dμ

∥∥
2
,

which converges to 0 as k tends to infinity.

Lemma 4.5. Let Z � (X,μ) =
∏

n∈Z
(X0,μn) be a nonsingular Bernoulli shift that is

essentially free and not dissipative. Let C ⊂X denote its conservative part. Let Z� (Y ,ν)

be any ergodic pmp action, and consider the diagonal product action Z�X ×Y . Then
the following holds.

1. C is S-invariant.
2. The Maharam extensions satisfy

L∞(C×R×Y )Z = L∞(C×R)S ⊗1 = L∞(C×R)Z⊗1.
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Proof. Let αk ∈Aut(X,μ) denote the translation by k, i.e., (k ·x)m = xm−k. We proceed

as in the proof of [7, Lemma 3.1] and show that the dissipative part D ⊂X given by

D =

{
x ∈X

∣∣∣∑
k∈Z

d(μ◦αk)

dμ
(x)<+∞

}
is S-invariant. It suffices to show that D is invariant under the permutation σn ∈ S that

interchanges the coordinate 0 and n. Fix n ∈ Z\{0}. For each η > 0 and each k ∈ Z, we
define

Aη
k =
{
x ∈X0

∣∣ ∣∣√dμn+k/dμk(x)−1
∣∣≥ η

}
,

Bη
k =

{
x ∈X0

∣∣ ∣∣√dμk/dμn+k(x)−1
∣∣≥ η

}
.

(4.2)

For every η > 0, we have that∑
k∈Z

μk(A
η
k) =

∑
k∈Z

∫
Aη

k

dμk

dμ0
dμ0 ≤ η−2

∑
k∈Z

∫
Aη

k

dμk

dμ0

∣∣√dμn+k/dμk−1
∣∣2dμ0

≤ 2η−2
∑
k∈Z

H2(μn+k,μk)<+∞.

This means that the set

Aη := {x ∈X | xk ∈X0 \Aη
k for all k ∈ Z }

has positive measure, μ(Aη) > 0. From the nonsingularity of Z� (X,μ), it follows that

μ(αm(Aη)) > 0 for every m ∈ Z. Since x ∈ αm(Aη) if and only if xk ∈X0 \Aη
k−m for all

k ∈ Z, we conclude that
∑

k∈Z
μk+m(Aη

k)<+∞ for every m ∈ Z.

Similarly, we have that
∑

k∈Z
μk+m(Bη

k)<+∞ for every η > 0 and every m ∈ Z. Write

Cη
k =Aη

k∪Bη
k . For x ∈X0, we define W

η
x = {k ∈ Z | x ∈Cη

k}. For m ∈ Z, denote πm : X →
X0 for the coordinate projection πm(x) = xm. For any m ∈ Z, we have that∫

X

∑
k∈Wη

xm

d(μ◦αk)

dμ
dμ=

∫
X

∑
k∈Z

1Cη
k
◦πm

d(μ◦αk)

dμ
dμ=

∑
k∈Z

∫
X

1Cη
k
◦πm+kdμ

=
∑
k∈Z

μk+m (Cη
k )<+∞.

(4.3)

Therefore, we have that ∑
k∈W 1

x0
∪W 1

xn

d(μ◦αk)

dμ
(x)<+∞ for a.e. x ∈X. (4.4)

Borrowing some notation form [7], we write

Dn,m(x,y) =
dμn

dμm
(y)

dμm

dμn
(x), for n,m ∈ Z and x,y ∈X0.

Note that

d(μ◦αk)

dμ
(σn(x)) =

d(μ◦αk)

dμ
(x)Dk,k+n(x0,xn)Dn,0(x0,xn). (4.5)
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By the definition of W 1
xi

and the sets Aη
k and Bη

k in equation (4.2), we have that 1/16≤
Dk,k+n(x0,xn)≤ 16 whenever k /∈W 1

x0
∪W 1

xn
. So it follows from equations (4.4) and (4.5)

that D is invariant under σn.

We now prove point 2. Let G� (Y ,ν) be an ergodic pmp action. One can repeat the

proof of [7, Lemma 3.1], making use of the ergodic theorem established in [18, Theorem

A.1], to conclude that

L∞(C×R×Y )Z ⊂ L∞(C×R)S ⊗L∞(Y ) . (4.6)

Write λ for the Lebesgue measure on R. As the Maharam extension map

Aut(X,μ)→Aut(X×R,μ×λ) : ϕ → ϕ̃

is continuous, it follows from the S-invariance of C and Lemma 4.4 that

L∞(C×R)S ⊂ L∞(C×R)Z .

In combination with equation (4.6), we get that

L∞(C×R×Y )Z ⊂ L∞(C×R)Z⊗L∞(Y ) .

As Z� (Y ,ν) is ergodic, the Z-invariant elements of L∞(C×R)Z⊗L∞(Y ) are contained
in L∞(C ×R)Z ⊗ 1. The converse inclusion L∞(C ×R)Z ⊗ 1 ⊂ L∞(C ×R× Y )Z holds

trivially, proving the second statement of the Lemma.

Remark 4.6. Except for the point where we invoke Lemma 4.4, the proof of Lemma

4.5 remains valid for a nonsingular Bernoulli action G�
∏

g∈G(X0,μg) of any countable

infinite amenable group G, as long as also the right Bernoulli action is nonsingular, e.g.,
when G is abelian. However, we were unable to prove an analogue of Lemma 4.4 for

arbitrary abelian groups. That is the main reason why this section is restricted to the

group of integers. Note that it is nevertheless straightforward to generalize our results
from Z to virtually cyclic abelian groups.

Proof of Theorem 4.1. First, assume that (X,μ) admits an atom d ∈X. Then dn ∈X0

is an atom for every n ∈ Z and
∑

n∈Z
(1−μn({dn}))<+∞. Writing

U = {x ∈X | xn = dn for all but finitely many n ∈ Z },

it follows that μ(X \U) = 0. Since the shift is nonsingular, the set 1 · U ∩U has measure

1. We thus find N ∈ N such that dn−1 = dn for all |n| ≥N .

There are now two possibilities. Either we find an atom b ∈X0 such that dn = b for all
|n| ≥N , or we find two distinct atoms b,c ∈X0 such that dn = b for all n≥N and dn = c

for all n≤−N .

In the first case, we get that
∑

n∈Z
(1−μn({b}))<+∞, and we define the atom a ∈X

by an = b for all n ∈ Z. Clearly, g ·a= a for all g ∈ Z. We define for every k ∈N, the Borel

set Wk = {x ∈X | xn = b whenever |n| ≥ k }. We have
⋃

k∈N
Wk = U so that this set has

a complement of measure zero. Also, g · (Wk \{a})∩Wk = ∅ whenever g ∈ Z and |g|> 2k.
So, for every k ∈N, the set Wk \{a} belongs to the dissipative part of the essentially free

action Z�X. Taking the union over k, we conclude that Z�X \{a} is essentially free

and dissipative.
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In the second case, we define for every k ∈ N, the Borel set

Vk = {x ∈X | xn = c if n≤−k, and xn = b if n≥ k } .

Again,
⋃

k∈N
Vk = U has a complement of measure zero and g ·Vk∩Vk = ∅ whenever g ∈ Z

and |g|> 2k+1. So, Z�X is essentially free and dissipative.

For the rest of the proof, we may thus assume that (X,μ) is nonatomic. Then the

Bernoulli shift Z� (X,μ) is essentially free by [7, Lemma 2.2]. If Z� (X,μ) is dissipative,
the conclusion of point 2 holds. It now remains to consider the case where the conservative

part C ⊂X of Z� (X,μ) has positive measure. We have to prove the structural result

in point 3 of the theorem.
Note that C is Z-invariant. By Lemma 4.5, C is also S-invariant. We claim that for

any integer p≥ 2 we have that

L∞(C)pZ = L∞(C)Z. (4.7)

To prove this claim, fix p≥ 2 and define Y =Z/pZ, equipped with the normalized counting

measure ν. We let Z act on Y by translation. From Lemma 4.5, we get the equality
L∞(C×Y )Z = L∞(C)Z⊗1, and this is exactly the statement (4.7).

For any integer p≥ 2 and i ∈ {0,1. . . ,p−1}, we write (Zp,i,νp,i) =
∏

n∈i+pZ(X0,μn). We

identify

(X,μ) =

p−1∏
i=0

(Zp,i,νp,i), (4.8)

and we obtain measure preserving factor maps πp,i : X →Zp,i. For each i∈ {0,1, . . . ,p−1},
we have a Bernoulli action pZ� Zp,i, and the factor maps πp,i are pZ-equivariant. Let

Sp,i denote the group of finite permutations of i+pZ. We also have a nonsingular action

Sp,i � Zp,i, and πp,i is Sp,i-equivariant as well.

For i ∈ {0,1, . . . ,p− 1}, write αi ∈ Aut(X,μ) for the shift by i. There is a natural
nonsingular isomorphism θp,i : Zp,0 → Zp,i such that θp,i ◦πp,0 = πp,i ◦αi.

We start by using equation (4.7) for p = 2 to show that L∞(C)Z is discrete as a von

Neumann algebra. To simplify the notation, we will drop the index p for this special case
p= 2.

Let E0 ⊂Z0 be a Borel set such that (π0)∗μ|C ∼ ν0|E0
. Then E0 is uniquely determined

up to a null set. As C is Z-invariant and π0 is a 2Z-equivariant factor map, E0 is 2Z-
invariant. Similarly, E0 is S0-invariant. Since 2Z⊂Z has finite index, the action 2Z�C is

conservative. Therefore, also 2Z�E0 is conservative, and it follows that E0 is contained

in the conservative part of the Bernoulli action 2Z� Z0. By Lemma 4.5, we have that

L∞(E0)
2Z = L∞(E0)

S0 .

Put E1 = θ1(E0) ⊂ Z1. As θ1 ◦ π0 = π1 ◦ α1, we have that (π1)∗μ|C ∼ ν1|E1
. By the

equivariance of θ1, we also have that E1 is 2Z- and S1-invariant and that

L∞(E1)
2Z = L∞(E1)

S1 .
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Let F ∈ L∞(E0)
2Z be arbitrary. Then F ◦π0 ∈ L∞(C)2Z, and we apply equation (4.7) to

conclude that F ◦π0 is Z-invariant. Using that θ1 ◦π0 = π1 ◦α1 and viewing X = Z0×Z1,

we can also express this as

F ⊗1 = 1⊗ (F ◦θ−1
1 ) a.e. on C. (4.9)

The equality (4.9) holds for any F ∈L∞(E0)
2Z, forcing L∞(E0)

2Z to be discrete. Similarly,

we see that L∞(E1)
2Z is discrete as well.

Using once more the identification X = Z0×Z1, we have that C ⊂E0×E1. Therefore,
by Lemma 4.5, we have that

L∞(C)Z = L∞(C)S ⊂ L∞(C)S0×S1

= 1C
(
L∞(E0)

S0 ⊗L∞(E1)
S1
)
= 1C

(
L∞(E0)

2Z⊗L∞(E1)
2Z
)

so that also L∞(C)Z is discrete.

Take a Z-invariant Borel set U ⊂X with μ(U)> 0 such that 1U is a minimal projection

in L∞(C)Z. So, Z � U is ergodic. We prove that U is of the form U = CZ
0 for some

C0 ⊂X0.

For any integer p ≥ 2 and i ∈ {0,1, . . . ,p−1}, define the Borel set Up,i by (πp,i)∗μ|U ∼
(νp,i)|Up,i

. First of all, note that Up,i is pZ-invariant and Sp,i-invariant. By equation (4.7)

the action pZ�U is ergodic so that also pZ�Up,i is ergodic. Since we can view pZ�Zp,i

as a Bernoulli action, it follows from Lemma 4.5 that Sp,i � Up,i is ergodic as well.

Using the identification (4.8), we have that U ⊂Up,0×Up,1×·· ·×Up,p−1 for any p≥ 2. As

U is invariant under the subgroup Sp,0×Sp,1×. . .Sp,p−1 and as Sp,i �Up,i acts ergodically
for each i ∈ {0,1, . . . ,p−1}, we have that

U = Up,0×Up,1×. . .Up,p−1mod μ, for every p≥ 2. (4.10)

Let n ∈ N, and let An ⊂ L∞(X) denote the subalgebra of elements only depending on
the variables xj , for −n ≤ j ≤ n, and let En : L

∞(X) → An be the unique conditional

expectation preserving the measure μ. For any n ∈N, we apply the decomposition (4.10)

to p = 2n+1. Since the numbers {j | −n ≤ j ≤ n} are distinct representatives of the
elements of Z/(2n+1)Z, there exist an,j ∈ L∞(X0,μj) such that

En(1U ) = an,−n⊗an,−n+1⊗·· ·⊗an,n and 0≤ an,j ≤ 1 a.e. for every −n≤ j ≤ n.

Expressing that En ◦Em = En for m≥ n yields

En(1U ) = an,−n⊗an,−n+1⊗·· ·⊗an,n = am,−n⊗am,−n+1⊗·· ·⊗am,n ·
∏

n<|j|≤m

μj(am,j) .

(4.11)

For each j ∈Z, letting m→+∞, we have that am,j is a sequence in L∞(X0,μj) such that
0≤ am,j ≤ 1 for all m. Similarly, for a fixed n ∈ N, we have that∏

n<|j|≤m

μj(am,j) ∈ [0,1] for every m≥ n.
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Thus, we can choose a subsequence mk → +∞ such that amk,j → bj weakly for every
j ∈ Z and bj ∈ L∞(X0,μj) satisfying 0≤ bj ≤ 1 and such that

∏
n<|j|≤mk

μj(amk,j)→ λn

for every n ∈ N for some λn ∈ [0,1]. The equality (4.11) implies that

En(1U ) = λnb−n⊗ b−n+1⊗·· ·⊗ bn for every n ∈ N.

As En(1U ) is nonzero for every n, we see that λn and bj are nonzero for every n ∈N and

j ∈ Z. Expressing once more that En ◦Em = En for m≥ n, we obtain that

λn = λm

∏
n<|j|≤m

μj(bj)≤
∏

n<|j|≤m

μj(bj),

which shows that the infinite product
∏

|j|>nμj(bj) converges to a nonzero limit for each
n ∈ N. Let λ ∈ [0,1] be any limit point of the sequence λn. Using that En(1U ) → 1U
strongly as n → +∞, we see that the infinite product of the bj converges and that we

have an equality

1U = λ
⊗
j∈Z

bj .

Together with the fact that U is Z-invariant, this implies that there is a Borel set C0 ⊂X0

such that U = CZ
0 . Write C1 =X0 \C0. As μ(U)> 0, we have that∑

n∈Z

μn(C1)<+∞ .

By construction, the action Z � X \CZ
0 is dissipative. It follows that C = CZ

0 = U . We

have chosen U such that Z� U is ergodic; thus, it follows from Lemma 4.5 that S � CZ
0

is ergodic, that Z�CZ
0 is weakly mixing and that for any ergodic pmp action Z� (Y ,ν)

the nonsingular actions Z�CZ
0 , S �CZ

0 and Z�CZ
0 ×Y have the same associated flow.

It remains to prove that this flow is infinitely divisible. For this remaining part of the

proof, we may replace X0 by C0 and thus assume that C0 =X0.
To prove this, let p≥ 1 be an integer. We use the notation introduced in equation (4.8).

Let Sp,i ⊂ S denote the subgroup of finite permutations of i+pZ. We have that

L∞(X×R)Z = L∞(X×R)S ⊂ L∞(Zp,0×·· ·×Zp,p−1×R)Sp,0×···×Sp,p−1 . (4.12)

For each i∈ {0,1, . . . ,p−1}, we write Γp,i for the group Γp,i = pZ, acting naturally on Zp,i.
We can view the action Γp,i � Zp,i as a nonsingular Bernoulli action, which is a factor

of the conservative nonsingular Bernoulli action pZ � (X,μ). Therefore, Γp,i � Zp,i is

conservative, and by Lemma 4.4, we have that L∞(Zp,i×R)Sp,i ⊂ L∞(Zp,i×R)Γp,i , for
each i ∈ {0,1, . . . ,p−1} so that

L∞(Zp,0×·· ·×Zp,p−1×R)Sp,0×···×Sp,p−1 ⊂ L∞(Zp,0×·· ·×Zp,p−1×R)Γp,0×···×Γp,p−1 .

(4.13)

Each Γp,i is a copy of pZ, and the diagonal copy of pZ inside Γp,0×·· ·×Γp,p−1 acts on

X by the Bernoulli action pZ�X. Continuing the chain of inclusions (4.13), we obtain

L∞(Zp,0×·· ·×Zp,p−1×R)Γp,0×···×Γp,p−1 ⊂ L∞(X×R)pZ = L∞(X×R)Z, (4.14)
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where the last equality follows from point 2 of Lemma 4.5, applied to the ergodic pmp
action Z � Y = Z/pZ. Combining equations (4.12), (4.13) and (4.14), we see that all

inclusions must in fact be equalities.

Put (Dp,ηp) =
∏

n∈pZ(X0,μn). For each i ∈ {0,1, . . . ,p− 1}, the action Γp,i � Zp,i is
conjugate with pZ�Dp. From the equality

L∞(X×R)Z = L∞(Zp,0×·· ·×Zp,p−1×R)Γp,0×···×Γp,p−1,

it then follows that the associated flow of Z � X is the joint flow of p copies of the

associated flow of pZ�Dp. This concludes the proof of the theorem.

We end this section by proving Theorem 4.3. We first need the following lemma.

Lemma 4.7. Let X0 be a standard Borel space equipped with a sequence of equivalent
probability measures μn. Let S denote the group of finite permutations of N, and let

S1 ⊂S be the subgroup fixing 1∈N. Consider the nonsingular group actions S � (X,μ) =∏∞
n=1(X0,μn) and S1 � (Z,η) =

∏∞
n=2(X0,μn). Assume that the action S1 � (Z,η) is

ergodic.

Then S � (X,μ) is ergodic and the following holds.

1. S � (X,μ) is of type II1 if and only if there exists a probability measure ν ∼ μ1 on

X0 such that νN ∼ μ.

2. S � (X,μ) is of type II∞ if and only if there exists a σ-finite measure ν ∼ μ1 on X0

and Borel sets Un ⊂X0 such that ν(Un)<+∞ for all n ∈ N and such that

∞∑
n=1

μn(X0 \Un)<+∞,

∞∑
n=1

H2
(
μn,ν(Un)

−1ν|Un

)
<+∞,

∞∑
n=1

ν(X0 \Un) = +∞.

Note that Lemma 4.7 strongly resembles [8, Theorem 3.3]. There is, however, an

important difference: In [8, Theorem 3.3], it is part of the hypotheses that the Radon–
Nikodym derivatives dμn/dμ0 satisfy a certain boundedness condition. We do not

make such an assumption because we will use Lemma 4.7 in the context of totally

arbitrary Bernoulli shifts. As a compensation, we make an ergodicity assumption on
the permutation action. Thanks to Theorem 4.1, this ergodicity assumption will hold

automatically when the Bernoulli shift Z�X is conservative.

When X0 is a finite set and (μn)n≥1 are equivalent probability measures on X0, there

is a necessary and sufficient ergodicity criterion for the nonsingular permutation action
S � (X,μ) =

∏∞
n=1(X0,μn) in terms of the measures μn; see [2, Theorem 1.6]. However,

when X0 is infinite, only sufficient conditions are known; see [2, Theorems 1.8 & 1.12].

The measure ν appearing in statement 2 of Lemma 4.7 is either finite or infinite. Of
course, if ν is finite, the condition ν(Un)<+∞ is automatically fulfilled. Similarly, when

ν is infinite, the conditions ν(Un)<+∞ trivially imply that
∑∞

n=1 ν(X0 \Un) = +∞.

Proof. Suppose that F ∈ L∞(X) is S-invariant. As S1 acts ergodically on (Z,η), we
see that F essentially only depends on the coordinate x1. But as F is S-invariant, it
follows that F essentially only depends on the coordinate x2; thus, F must be essentially

constant. So the action S � (X,μ) is ergodic.
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If x,y ∈X are elements that differ in only finitely many coordinates, we write

α(x,y) =
∑
n∈N

(
αn(xn)−αn(yn)

)
, where αn = log

dμn

dμ1
.

Assume that the action S � (X,μ) is semifinite. Then there exists a Borel map F : X →R

such that

α(x,σ(x)) = F (x)−F (σ(x)) for every σ ∈ S and a.e. x ∈X. (4.15)

Define (X̃,μ̃) = (X0×X0×Z,μ1×μ1×η), by doubling the first coordinate, and consider
the map

H : X̃ → R : H(x,x′,z) = F (x,z)−F (x′,z) .

For each σ ∈S1, we have thatH(x,x′,z) =H(x,x′,σ(z)) for a.e. (x,x′,z)∈ X̃. As the action

S1 � (Z,η) is ergodic, H is essentially independent of the z -variable. Therefore, there

exists a Borel map L : X0×X0 → R such that H(x,x′,z) = L(x,x′) for a.e. (x,x′,z) ∈ X̃.
Let z ∈ Z be an element that witnesses this equality a.e., and put β(x) = F (x,z). So we

have found a Borel map β : X0 → R such that

F (x)−F (y) = β(x1)−β(y1),

when x and y are unequal only in the first coordinate. For n ≥ 2, using equation (4.15)

and the element σn ∈ S flipping the elements 1 and n, we see that

F (x)−F (y) = αn(xn)+β(xn)−αn(yn)−β(yn), (4.16)

whenever x,y ∈X are unequal only in the n’th coordinate. When x,y ∈X are elements

that differ in only finitely many coordinates, write

Ω(x,y) =
∑
n∈N

(
αn(xn)+β(xn)−αn(yn)−β(yn)

)
.

Let RΩ be the equivalence relation on X ×R that is given by (x,t) ∼ (y,s) if and only

if x and y differ only in finitely many coordinates and s− t = Ω(x,y). Then the flow

R� L∞(X×R)RΩ is isomorphic with the tail boundary flow associated to the sequence
of probability measures (αn+β)∗μn. By equation (4.16), we have that Ω(x,y) = F (x)−
F (y) for x,y ∈X that differ only in finitely many coordinates. We conclude that the tail

boundary flow associated to (αn+β)∗μn is isomorphic with the translation action R�R.
We again use the cutoff function Tκ : R→ R for κ > 0, as defined in equation (3.4). By

[8, Proposition 2.1], there exists a sequence tn ∈ R such that

∞∑
n=1

∫
X0

Tκ(αn(x)+β(x)− tn)
2dμn(x)<+∞, (4.17)

for every κ > 0. Define the σ-finite measure ν ∼ μ1 by dν/dμ1 = exp(−β). If ν is finite,

then we can add a constant to β so that ν becomes a probability measure. Then equation

https://doi.org/10.1017/S1474748022000263 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000263


110 T. Berendschot and S. Vaes

(4.17) still holds with a potentially different sequence tn ∈R. Thus, we may assume that

ν is either infinite or a probability measure. Define the sets

Un = {x ∈X0 | |αn(x)+β(x)− tn| ≤ 1} .

By equation (4.17), we have that
∑∞

n=1μn(X0 \Un) < +∞. There exists a C > 0 such
that |1− r| ≤ C| log(r)| for all r ∈ [exp(−1), exp(1)] so that

|1− exp(−(αn(x)+β(x)− tn)/2)| ≤ C|αn(x)+β(x)− tn|, for every x ∈ Un .

Taking κ= 1, it follows from equation (4.17) that

∞∑
n=1

∫
Un

|1− exp(−(αn(x)+β(x)− tn)/2)|2dμn(x)<+∞ .

The left-hand side equals

∞∑
n=1

∫
Un

(√
dμn/dμ1− exp(tn/2)

√
dν/dμ1

)2
dμ1

and since
∞∑

n=1

∫
X0

(√
dμn/dμ1−1Un

√
dμn/dμ1

)2
dμ1 =

∞∑
n=1

μn(X0 \Un)<+∞,

we conclude that also
∞∑

n=1

∫
X0

(√
dμn/dμ1− exp(tn/2)1Un

√
dν/dμ1

)2
dμ1 <+∞ . (4.18)

On Un we have that exp(−β) ≤ exp(1 + |tn|)exp(αn). As exp(αn) is μ1-integrable, it

follows that exp(−β) is μ1|Un
-integrable, so ν(Un) < +∞. For each n ∈ N define the

probability measure νn = ν(Un)
−1ν|Un

.

For any pair of nonzero vectors ξ1,ξ2 in a Hilbert space, with ‖ξ1‖ = 1, we have that

‖ξ1−‖ξ2‖−1ξ2‖ ≤ 2‖ξ1− ξ2‖. Thus, it follows from equation (4.18) that

∞∑
n=1

H2(μn,νn)<+∞ .

Define the map γn by

γn : X0 → R : γn(x) = log
dμn

dν
(x)+ log(ν(Un)) .

Let D > 0 be such that T1(r)≤D|1− exp(−r/2)|, for every r ∈ R. It follows that∫
Un

T1(γn(x))
2 dμn(x)≤D2

∫
Un

|1− exp(−γn/2)|2dμn ≤D2H2(μn,νn) . (4.19)

Define an increasing sequence of subsets Zk ⊂X by

Zk = {x ∈X | xm ∈ Um for every m> k} .
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Note that μ(X \Zk)→ 0 as
∑∞

n=1μn(X \Un)<+∞. By equation (4.19) the function

G(x) =
∞∑

n=1

(
log

dμn

dν
(xn)+ log(ν(Un))

)
(4.20)

converges unconditionally a.e. on Zk, for every k ∈ N. Therefore, the sum converges

unconditionally a.e. As in the proof of [8, Theorem 3.3], the σ-finite measure ζ ∼ μ defined

by dζ/dμ= exp(−G) is S-invariant and ζ is a finite measure if and only if ν is finite and∑∞
n=1 ν(X0 \Un)<+∞.

If S � (X,μ) is of type II1, then ζ must be finite, and we have that μ∼ νN. Conversely,

if there exists a probability measure ν ∼ μ1 such that μ ∼ νN, it follows directly that

S � (X,μ) is of type II1.
If S� (X,μ) is of type II∞, then ζ must be infinite. So we have shown that all conditions

in point 2 of the lemma are true. Conversely, if there exist a σ-finite measure ν and subsets

Un ⊂X0 satisfying the conditions of point 2, then the sum (4.20) converges a.e. and the
σ-finite measure ζ ∼ μ defined by dζ/dμ= exp(−G) is infinite and S-invariant.

Proof of Theorem 4.3. First of all, by Theorem 4.1 the Bernoulli shift Z� (X,μ) is
weakly mixing and S � (X,μ) is ergodic. Moreover the Maharam extensions of Z� (X,μ)

and S � (X,μ) satisfy

L∞(X×R)Z = L∞(X×R)S . (4.21)

Write (Z,η) =
∏

n∈Z,n=1(X0,μn). Let S1 ⊂ S be the subgroup of finite permutations that

fix 1 ∈ Z so that S1 � (Z,η). Let θ denote the partial shift

θ : (X,μ)→ (Z,η) : θ(x)n =

{
xn if n≤ 0

xn−1 if n≥ 2
.

It follows directly from the Kakutani criterion that θ is a nonsingular isomorphism. It

intertwines the actions S � (X,μ) and S1 � (Z,η). So S1 � (Z,η) is ergodic, and Lemma
4.7 applies. If Z� (X,μ) is semifinite, then by equation (4.21) also S� (X,μ) is semifinite.

To complete the proof of the theorem, it suffices to show that Z� (X,μ) is of type II∞
if there exist a σ-finite measure ν and Borel sets Un ⊂X0 satisfying the conditions of the

second point of the theorem.
Assume we are given such ν and Un. Then, as in equation (4.20), the sum

G(x) =
∑
n∈Z

(
log

dμn

dν
(xn)+ log(ν(Un))

)

is unconditionally convergent a.e. By equation (4.21), the map (x,t) → t−G(x) is invariant
under the Maharam extension of Z. Also, it is R-equivariant.

It follows that the σ-finite measure ζ ∼ μ defined by dζ/dμ = exp(−G) is an infinite

Z-invariant measure.
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5. Nonsingular Poisson suspensions: proof of Proposition D

We start this section by recalling the construction of the Poisson suspension. For a detailed
treatment, we refer to [46, 21]. Let (X0,μ0) be a σ-finite standard measure space. We write

B0 = {A ⊂ X0 | A is Borel and μ0(A) < +∞}. To (X0,μ0), one associates a standard

probability space (X,μ) and random variables PA : X →{0,1,2, . . . } for every A∈B0 such
that the following holds.

1. The random variable PA is Poisson distributed with intensity μ0(A).

2. If A,B ∈ B0 are disjoint, then PA and PB are independent random variables and we
have that PA∪B = PA+PB .

3. The family (PA)A∈B0
separates the points of X.

These three properties uniquely characterize (X,μ) and the random variables (PA)A∈B0
.

The probability space (X,μ) is called the Poisson suspension over the base space (X0,μ0).

By the functoriality of this construction, every measure preserving Borel automorphism

θ :X0 →X0 gives rise to an essentially unique, measure preserving Borel automorphism
θ̂ :X →X such that for every A ∈ B0, we have

PA(θ̂(x)) = Pθ−1(A)(x) for μ-a.e. x ∈X. (5.1)

In [21, Theorem 3.3], it was discovered that a nonsingular Borel automorphism θ :X0 →
X0 gives rise to a nonsingular Borel automorphism θ̂ :X →X satisfying equation (5.1) if

and only if √
d(θ∗μ0)

dμ0
−1 ∈ L2(X0,μ0) . (5.2)

For completeness, we include below a short proof of one implication, namely that every θ

satisfying equation (5.2) has a suspension θ̂. This proof is essentially taken from [21] but
presented in a more direct way.

So, whenever G� (X0,μ0) is a nonsingular action of a locally compact second countable

(lcsc) group such that

sup
g∈K

∥∥√d(gμ0)/dμ0−1
∥∥
2
<+∞ for every compact K ⊂G, (5.3)

we have an essentially unique nonsingular action G� (X,μ) characterized by PA(g ·x) =
Pg−1·A(x), which is called the Poisson suspension action.

The main goal of this section is to prove Proposition D. We actually prove the following

stable version, that also considers the associated flow of the diagonal action G�X×Y
for any ergodic pmp action G� (Y ,ν).

Proposition 5.1. Let G be any lcsc group that does not have property (T ). Let R� (Z,ζ)

be any Poisson flow. Then G admits a nonsingular action G � (X0,μ0) of which the
Poisson suspension G � (X,μ) is well-defined, weakly mixing, essentially free and such

that for any ergodic pmp action G� (Y ,ν) the diagonal action G�X×Y has associated

flow R� Z.
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Proposition 5.1 is sharp in the following sense: By [21, Theorem G], if G has property

(T), then every Poisson suspension action admits an equivalent invariant probability

measure. This follows by applying the Delorme–Guichardet theorem (see, e.g., [5,
Theorem 2.12.4]) to the 1-cocycle g →

√
d(gμ0)/dμ0 − 1 with values in the Koopman

representation of G� (X0,μ0).

Before proving Proposition 5.1, we introduce some further background, based on [21].
In particular, we give a short proof that every nonsingular automorphism θ : X0 → X0

satisfying equation (5.2) admits a Poisson suspension θ̂. This proof is essentially taken

from [21], but since our approach is direct and short, we include it here for convenience
of the reader.

Write H = L2
R
(X0,μ0), and denote by Hn ⊂ H⊗n the closed subspace of symmetric

vectors (i.e., invariant under the action of the symmetric group Sn on H⊗n). The key

point is that there is a canonical isometric isomorphism

U : R⊕
⊕
n=1

Hn → L2
R
(X,μ) (5.4)

between the symmetric Fock space Fs(H) of H and L2
R
(X,μ). This isomorphism U is

defined as follows. For every ξ ∈H, denote by exp(ξ)∈Fs(H) the usual exponential given
by

exp(ξ) = 1⊕
∞⊕

n=1

1

n!
ξ⊗n .

For every A ∈ B0 and α ∈ R, define Tα,A : X → R by

Tα,A = exp(−(α−1)μ0(A))α
PA . (5.5)

If ξ ∈ 1+L2
R
(X0,μ0) takes only finitely many function values, i.e., is of the form ξ=1A+∑m

i=1αi1Ai
for αi ∈ R, disjoint Ai ∈ B0 and A = R\

⋃m
i=1Ai, we define T (ξ) ∈ L2

R
(X,μ)

by

T (ξ) =
m∏
i=1

Tαi,Ai
.

A direct computation shows that

〈T (ξ),T (ξ′)〉= exp(〈ξ−1,ξ′−1〉) = 〈exp(ξ−1), exp(ξ′−1)〉

for all ξ,ξ′ of such a form. The vectors exp(ξ−1) are total in the symmetric Fock space
Fs(H), and the functions T (ξ) are total in L2

R
(X,μ). Therefore, T uniquely extends to a

continuous map T : 1+L2
R
(X0,μ0)→ L2

R
(X,μ), and the isomorphism U in equation (5.4)

is uniquely defined by U(exp(ξ−1)) = T (ξ) for all ξ ∈ 1+L2
R
(X0,μ0).

When ξ,ξ′ ∈ 1+L2
R
(X0,μ0) are such that their product ξξ′ still belongs to 1+L2

R
(X0,μ0),

we have

T (ξ)T (ξ′) = exp(〈ξ−1,ξ′−1〉)T (ξξ′), (5.6)

which is immediate when ξ,ξ′ only take finitely many values and is then valid for all ξ,ξ′

by density and continuity.
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When ξ ∈ 1+L2
R
(X0,μ0) satisfies ξ(x) ≥ 0 for a.e. x ∈ X0, we have by construction

that T (ξ)(x) ≥ 0 for a.e. x ∈ X. We next prove that if ξ(x) > 0 for a.e. x ∈ X0, then
T (ξ)(x)> 0 for a.e. x ∈X. To see this, define Cn = {x ∈X | n−1 ≤ ξ(x)≤ n} and define

ξn ∈ 1+L2
R
(X0,μ0) by ξn(x) = ξ(x)−1 if x ∈ Cn and ξn(x) = 1 if x 	∈ Cn. Define Fn ∈

L2
R
(X,μ) by Fn = exp(−〈ξ−1,ξn−1〉)T (ξn). By equation (5.6), we get that T (ξ)Fn → 1

in L2
R
(X,μ). Therefore, T (ξ)(x) 	= 0 for a.e. x ∈X.

Note, for later use, that it follows in particular that if ξ ∈ 1+L2
R
(X0,μ0) is such that

also ξ−1 ∈ 1+L2
R
(X0,μ0), then

T (ξ)−1 = exp(−〈ξ−1,ξ−1−1〉)T (ξ−1) . (5.7)

Now assume that ν0 is a σ-finite measure on X0 such that ν0 ∼ μ0. Write ξ=
√

dν0/dμ0,
and assume that ξ ∈ 1+L2

R
(X0,μ0). Define F ∈ L2(X,μ) by F = exp(−‖ξ−1‖22/2)T (ξ).

By the discussion above, F (x)> 0 for a.e. x ∈X. Also,∫
X

F 2 dμ= exp(−‖ξ−1‖22) 〈T (ξ),T (ξ)〉= 1 .

We can thus define a unique probability measure ν ∼ μ such that√
dν/dμ= exp(−‖

√
dν0/dμ0−1‖22/2) T (

√
dν0/dμ0) . (5.8)

We show that, for every A ∈ B0, the variable PA has, w.r.t. ν, a Poisson distribution
with intensity ν0(A). Let α > 0 be arbitrary. Still writing ξ =

√
dν0/dμ0, define ξA ∈

1+L2
R
(X0,μ0) by ξA(x) = αξ(x) if x ∈ A and ξA(x) = ξ(x) if x 	∈ A. By equation (5.6),

we get that

αPA T (ξ) = exp
(
(α−1)

∫
A

ξ dμ0

)
T (ξA) .

It follows that∫
X

αPA dν = exp(−‖ξ−1‖22) 〈αPA T (ξ),T (ξ)〉= exp((α−1)ν0(A)) .

Since this holds for every α > 0, the distribution of PA w.r.t. ν is Poisson with intensity

ν0(A).

Finally, given A∈B0, the partition X0 =A�(X0 \A) gives rise to a decomposition of X
as the direct product of the Poisson suspension of (A,μ0) and the Poisson suspension

of (X0 \A,μ0). By equations (5.6) and (5.8), also ν is a product measure in this

decomposition. It follows that PA is independent from PB for every B ∈B0 that is disjoint
from A.

Altogether, we have thus proven that (X,ν) is the Poisson suspension of (X0,ν0). This

observation implies that, for every automorphisms θ satisfying equation (5.2), there is an
essentially unique nonsingular Poisson suspension θ̂ given by equation (5.1). So also, for

every nonsingular action G� (X0,μ0) satisfying equation (5.3), the Poisson suspension

action G� (X,μ) is well defined.
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An important step in the proof of Proposition 5.1 is to ensure that the Poisson
suspension action G � (X,μ) is conservative. If in the discussion above, both ξ =√
dν0/dμ0 and ξ−1 belong to 1+L2

R
(X0,μ0), it follows from equation (5.7) that√

dμ/dν = exp
(
‖ξ−1‖22/2−〈ξ−1,ξ−1−1〉

)
T (ξ−1)

so that∫
X

dμ

dν
dμ= exp

(
‖ξ−1‖22−2〈ξ−1,ξ−1−1〉+‖ξ−1−1‖22

)
= exp(‖ξ− ξ−1‖22) . (5.9)

So whenever G� (X0,μ0) is a nonsingular action, we denote

κ(g) =
∥∥√d(gμ0)/dμ0−

√
dμ0/d(gμ0)

∥∥2
2
∈ [0,+∞] . (5.10)

The following result is then an immediate consequence of equation (5.9) and [8, Lemma

2.6] (adapted to the locally compact setting) and is similar to [20, Lemma 1.3].

Proposition 5.2. Let G� (X0,μ0) be a nonsingular action of a locally compact second

countable group G on an infinite, σ-finite standard measure space (X0,μ0) such that

equation (5.3) holds. Let λ denote a left invariant Haar measure on G. If

limsup
s→+∞

logλ({g ∈G | κ(g±1)≤ s})
s

> 3,

then the nonsingular Poisson suspension G� (X,μ) is conservative.

For lcsc groups G with the Haagerup approximation property, one can give a very short

proof of Proposition 5.1 by only using Proposition 5.2. For the general case, where G is

only assumed to be non-(T), we have to make use of recurrence of G � (X,μ) along
specific subsets Λ⊂G. We thus recall the following two definitions from [1].

Definition 5.3 ([1, Definitions 7.12 and 7.13].). Let π : G � H be an orthogonal

representation on a real Hilbert space H and Λ ⊂ G a countable subset. We say that
π is mixing along Λ if

lim
g∈Λ, g→∞

〈πg(ξ),η〉= 0 for every ξ,η ∈H.

A pmp action G� (X,μ) is mixing along Λ if the reduced Koopman representation

π : G→O(L2
R
(X,μ)�R1) : (πgξ)(x) = ξ(g−1 ·x)

is mixing along Λ.

A nonsingular action G� (X,μ) is said to be recurrent along Λ if for every nonnegligible

Borel set A⊂X there exist infinitely many g ∈ Λ such that μ(g ·A∩A)> 0.

Similarly to Proposition 5.2, combining [1, Lemma 7.15] and [8, Lemma 2.6], we then

get the following.
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Proposition 5.4. Let G� (X0,μ0) be a nonsingular action of a locally compact second

countable group G on an infinite, σ-finite standard measure space (X0,μ0) such that

equation (5.3) holds. Let Λ⊂G be a countable infinite subset. If

limsup
s→+∞

log |{g ∈ Λ | κ(g±1)≤ s}|
s

> 3,

then the nonsingular Poisson suspension G� (X,μ), and for every pmp action G� (Y ,ν),
the Maharam extension of the diagonal action G�X×Y are recurrent along ΛΛ−1.

The first step in proving Proposition 5.1 is to translate the absence of property (T) to a

dynamical property: There exists a measure preserving action G� (W,ρ) on a standard,
infinite, σ-finite measure space such that the Koopman representation on L2(W,ρ) is

weakly mixing and the action admits a Følner sequence, i.e., a sequence of Borel sets

An ⊂W such that 0< ρ(An)<+∞ for every n ∈ N and

lim
n→∞

ρ(g ·An �An)

ρ(An)
= 0 uniformly on compact subsets K ⊂G.

This characterization is proven in [19, Section 4] and is a consequence of the Connes–
Weiss characterization of property (T) (see [15] and [5, Theorem 6.3.4]): Taking a weakly

mixing pmp action G� (B,β) that admits a Følner sequence Bn ⊂B with β(Bn) = 1/2

for all n ∈ N, we can pass to a subsequence and assume that for every compact K ⊂G,

∞∑
n=1

sup
g∈K

β(g ·Bn �Bn)<+∞ .

Then, the diagonal action of G on the restricted infinite product

W =

∞∏
n=1

(B,Bn) = {x ∈BN | xn ∈Bn for all but finitely many n ∈ N }

equipped with the product measure ρ = (2β)N is well defined and satisfies all the

requirements.

Lemma 5.5. Let G be an lcsc group and G� (W,ρ) a measure preserving action on a

standard, infinite, σ-finite measure space such that its Koopman representation is weakly

mixing and the action admits a Følner sequence An ⊂W . Let λn > 0 and an ∈ R \ {0}.
Define X0 =W ×N, and define the measure μ0 on X0 by

μ0(U ×{n}) = λn ρ(An)
−1
(
ρ(U ∩An)+ ean ρ(U \An)

)
.

Consider the nonsingular action G� (X0,μ0) defined by g · (x,n) = (g ·x,n).
After replacing An by a subsequence, we get that the Poisson suspension G� (X,μ) of

G� (X0,μ0) is well defined and weakly mixing and has the property that, for any ergodic
pmp action G� (Y ,ν), the associated flow of the diagonal action G�X×Y is given by

the tail boundary flow of the sequence of Poisson distributions σλn,an
defined by equation

(3.33).
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Proof. Denote by π :G→U(L2(W,ρ)) : (π(g)ξ)(x) = ξ(g−1 ·x) the Koopman representa-

tion. By [1, Lemma 7.17], we can fix an infinite subset Λ⊂G such that π is mixing along
ΛΛ−1. Define

κn :G→ [0,+∞) : κn(g) =
1

2
λn

ρ(g ·An �An)

ρ(An)
(ean − e−an)(ean −1) and

κ0 :G→ [0,+∞] : κ0(g) =
∞∑

n=1

κn(g) .

Replacing An by a subsequence, we may assume that

sup
g∈K

κ0(g)<+∞ for every compact subset K ⊂G, and

limsup
s→+∞

log |{g ∈ Λ | κ0(g
±1)≤ s}|

s
> 3 .

Define the measure μ0 as in the formulation of the lemma. A direct computation gives

that ∥∥√d(g ·μ0)/dμ0−
√
dμ0/d(g ·μ0)

∥∥2
2
= κ0(g)<+∞ .

Since |a− 1| ≤ |a− a−1| for all a > 0, we also find that equation (5.3) holds. So, the

Poisson suspension G � (X,μ) of G � (X0,μ0) is well-defined. By Proposition 5.4, the
action G� (X,μ) is recurrent along ΛΛ−1.

Let γ :G� (Y ,ν) be any ergodic pmp action. We prove that the diagonal action G�

X × Y is ergodic and that its associated flow is isomorphic with R � Z. Part of this

argument is similar to the proof of [19, Proposition 1.17].
Denote by ρn the measure on W given by ρn(U) = μ0(U ×{n}). Viewing X0 as the

disjoint union of the G-invariant subsets W ×{n}, we identify (X,μ) with
∏∞

n=1(Xn,μn),

where (Xn,μn) is the Poisson suspension of (W,ρn). Then α :G� (X,μ) is the diagonal
product action of αn :G� (Xn,μn). Define the probability measures νn ∼ μn by

dνn
dμn

= T (1W\An
+ ean1An

) . (5.11)

Then G� (Xn,νn) is the Poisson suspension of G� (W,βnρ), with βn = λne
anρ(An)

−1.

Since G � (W,βnρ) is measure preserving, the probability measure νn is G-invariant.

Through equation (5.4), the Koopman representation of G � (Xn,νn) is the natural

representation of G on the symmetric Fock space Fs(L
2
R
(W,βnρ)) associated with the

Koopman representation of G on L2
R
(W,βnρ). Therefore, G� (Xn,νn) is weakly mixing

along ΛΛ−1.

Consider the Maharam extension G�X ×Y ×R of the diagonal action G�X ×Y .
Fix F ∈ L∞(X×Y ×R)G. Define ψn =− logdμn/dνn. Fix N ∈ N, and write

(X ′
N,μ

′
N ) =

N∏
n=1

(Xn,μn) and (X ′′
N,μ

′′
N ) =

∞∏
n=N+1

(Xn,μn) .
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We identify X =X ′
N ×X ′′

N and define

ΨN :X ′
N ×X ′′

N ×Y ×R→X ′
N ×X ′′

N ×Y ×R :

ΨN (x′,x′′,y,t) =
(
x′,x′′,y,t+

N∑
n=1

ψn(x
′
n)
)
.

We denote by α′
N : G�X ′

N and α′′
N : G�X ′′

N the obvious diagonal product actions so

that α is the diagonal product of α′
N and α′′

N .

Since νn is G-invariant, the map ΨN intertwines the Maharam extension of α×γ with
the diagonal product of α′

N and the Maharam extension of α′′
N ×γ. Since the pmp action

α′
N of G on (X ′

N,ν1×·· ·×νN ) is mixing along ΛΛ−1 and since the Maharam extension

of α′′
N × γ is recurrent along ΛΛ−1, it follows from [1, Theorem 7.14] that the function

F ◦Ψ−1
N is essentially independent of the X ′

N -variable.

So, for every N ∈N, we find a unique FN ∈L∞(X ′′
N ×Y ×R) with ‖FN‖∞ = ‖F‖∞ and

F = FN ◦ΨN a.e. Define the probability measures ζn = (ψn)∗(μn) on R. Denote

(Ω,ζ) =

∞∏
n=1

(R,ζn),

and realize the tail boundary B of the sequence (ζn)n∈N inside L∞(R×Ω). Consider the

natural factor map

Φ :X×Y ×R→ R×Ω×Y : Φ(x,y,t) = (t,(ψn(xn))n∈N,y) .

We have thus proven that for every F ∈ L∞(X × Y ×R)G, there exists a unique H ∈
B⊗L∞(Y ) such that F =H ◦Φ a.e.

We also consider the diagonal action α′
N × id× γ of G on X ×Y , with its Maharam

extension MN : G � X × Y ×R. Since (α′
N × id× γ)g → (α× γ)g in Aut(X × Y ), we

also have that MN,g(F )→ F weakly. For every K ∈ B⊗L∞(Y ), we have that Φ∗((id⊗
γg)(K)) = MN,g(Φ∗(K)) for all N ∈ N. Since F = Φ∗(H), we conclude that Φ∗((id⊗
γg)(H)) = Φ∗(H) for all g ∈G. Since the action γ is ergodic, we conclude that H ∈B⊗1.

Conversely, for every H ∈ B, we find that Φ∗(H ⊗ 1) is invariant under MN,g for all

N ∈ N and g ∈ G. Since MN,g converges to the Maharam extension of α× γ, it follows

that Φ∗(H⊗1) is invariant under the latter. We have thus identified the associated flow
of G�X×Y with the tail boundary flow of the sequence (ζn)n∈N.

By equation (5.11) and using the notation (5.5),

ψn = log(Tean,An
) = (1− ean)ρn(An)+anPAn

.

Therefore, ζn is a translation of the Poisson distribution with support {kan : k=0,1,2, . . . }
and intensity ρn(An) = λn, i.e., a translation of σλn,an

. This concludes the proof of the

lemma.

Proof of Proposition 5.1. Take an lcsc group G that does not have property (T),
and take a Poisson flow R� Z. By Proposition 3.15 and using the notation in equation

(3.33), we write R� Z as the tail boundary flow of a sequence σλn,an
with λn > 0 and

an ∈ R \ {0}. As explained above, we can take a measure preserving action G � (W,ρ)
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on a standard, infinite, σ-finite measure space such that the Koopman representation π
of G on L2(W,ρ) is weakly mixing and the action admits a Følner sequence An ⊂W .

Replace An by a subsequence, and define (X0,μ0) so that the conclusions of Lemma 5.5

hold. Define V0 = G×N, and denote by η0 the product of the Haar measure on G and
the counting measure on N. Let G � (V ,η) be the Poisson suspension of G � (V0,η0).

Then, G� (V ,η) is a mixing pmp action that can be written as the infinite product of a

faithful pmp G-action. Hence, G� (V ,η) is essentially free. Taking the disjoint union of

X0 and V0, we obtain the nonsingular action G� (X0�V0,μ0�η0) that, by Lemma 5.5
satisfies all the conclusions of the proposition.

6. Bernoulli actions of amenable groups: proof of Theorem B

In Theorem 6.1 below, as in the previous section, we prove a stable version of Theorem B.

Theorem 6.1. Let R � (Z,ζ) be a Poisson flow, and let G be a countable infinite

amenable group. Then there exists a countable set X0 and a family of equivalent probability

measures (μg)g∈G on X0 such that the Bernoulli action

G�
∏
g∈G

(X0,μg)

is nonsingular, weakly mixing and such that for any ergodic pmp action G� (Y ,η) the
associated flow of the diagonal action G�X×Y is isomorphic with R� Z.

For the periodic flows R�R/Z logλ, i.e., the type IIIλ case, Theorem 6.1 was proven

independently in [8] and [39]. For the trivial flow, which corresponds to the type III1 case,

the result was already proven in [7, Theorem 6.1]. The novelty lies in the type III0 case,
i.e., the properly ergodic flows.

As in the introduction, for any countable subgroup Λ⊂R, we denote by MΛ the unique

injective factor whose flow of weights is the almost periodic flow R � Λ̂. Combining
Theorems 3.9 and 3.8 with Theorem 6.1, we obtain the following immediate corollary.

Corollary 6.2. Let G be a countable infinite amenable group. Any ITPFI2 factor of type

III, and in particular all the injective factors MΛ where Λ ⊂ R is a countable subgroup,
are isomorphic to the crossed product L∞(X)�G of a nonsingular Bernoulli action G�

(X,μ) of G.

If γ0 is a measure on V0 =G×N that is equivalent with the counting measure and if the

nonsingular action G� (V0,γ0) : g · (h,n) = (gh,n) has a well-defined Poisson suspension
G � (V ,η), then G � (V ,η) is canonically isomorphic with the nonsingular Bernoulli

action

G�
∏
g∈G

(X0,μg) with X0 = (N∪{0})N and μg =
∏
n∈N

μn,g , (6.1)

where μn,g is the Poisson distribution with intensity γ0(g,n).

Therefore, Theorem 6.1 can be deduced as follows from Lemma 5.5.
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Proof of Theorem 6.1. By Proposition 3.15 and using the notation in equation (3.33),

we write R�Z as the tail boundary flow of a sequence σλn,an
with λn > 0 and an ∈R\{0}.

Denote by ρ the counting measure on G. Since G is amenable, the translation action
G� (G,ρ) admits a Følner sequence An ⊂G, which we may choose in such a way that |An|
is an increasing unbounded sequence. Replacing An by a subsequence, we may further

assume that

λn |An|−1 (1+ ean)≤ 2−n (6.2)

for all n ∈ N. Define V0 =G×N, and define the measure γ0 on V0 by

γ0(g,n) =

{
λn |An|−1 if g ∈An,

λn |An|−1 ean if g 	∈An.

After replacing once more An by a subsequence, it follows from Lemma 5.5 that the

Poisson suspension G� (X,μ) of G� (V0,γ0) is well defined, weakly mixing and has the
property that for every ergodic pmp action G� (Y ,η), the associated flow of the diagonal

action G�X×Y is isomorphic with R� Z. Note that equation (6.2) remains valid in

this passage to a subsequence.

By equation (6.1), we may view G� (X,μ) as a nonsingular Bernoulli action. Since by
equation (6.2)

μn,e(0) = exp(−γ0(e,n))≥ 1−γ0(e,n)≥ 1−2−n,

the base space (X0,μe) of the nonsingular Bernoulli action G� (X,μ) is atomic so that

Theorem 6.1 is proven.

Remark 6.3. Note that, although our proof of Theorem 6.1 makes use of Lemma 5.5,

the proof actually does not rely in an essential way on the theory of Poisson suspensions.

It follows from equation (6.1) that the nonsingular Bernoulli action G� (X,μ) that we

construct in the proof of Theorem 6.1 is an infinite product action G�
∏

n∈N
(Xn,μn),

where for each n, there is a natural G-invariant probability measure νn ∼ μn such that

G� (Xn,νn) is a pmp Bernoulli action. The argument in the proof of Lemma 5.5 then

provides the identification of the associated flow as the correct tail boundary flow.
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