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Abstract

We identify the Poisson boundary of the dual of the universal compact quantum group
Au(F ) with a measurable field of ITPFI (infinite tensor product of finite type I) factors.

1. Introduction and statement of main result

Poisson boundaries of discrete quantum groups were introduced by Izumi [Izu02] in his study of
infinite tensor product actions of SUq(2). Izumi was able to identify the Poisson boundary of the
dual of SUq(2) with the quantum homogeneous space L∞(SUq(2)/S1), called the Podleś sphere.
The generalization to SUq(n) was established by Izumi et al. [INT06], yielding L∞(SUq(n)/Sn−1)
as the Poisson boundary. A more systematic approach was given by Tomatsu [Tom07] who proved
the following very general result: if G is a compact quantum group with commutative fusion
rules and amenable dual Ĝ, the Poisson boundary of Ĝ can be identified with the quantum
homogeneous space L∞(G/K), where K is the maximal closed quantum subgroup of Kac type
inside G. Tomatsu’s result provides the Poisson boundary for the duals of all q-deformations of
classical compact groups.

All examples discussed in the previous paragraph concern amenable discrete quantum
groups. In [VV08], we identified the Poisson boundary for the (non-amenable) dual of the
compact quantum group Ao(F ) with a higher-dimensional Podleś sphere. Although the dual
of Ao(F ) is non-amenable, the representation category of Ao(F ) is monoidally equivalent with
the representation category of SUq(2) for the appropriate value of q. The second author and
De Rijdt provided in [DV06] a general result explaining the behavior of the Poisson boundary
under the passage to monoidally equivalent quantum groups. In particular, a combination of the
results of [DV06, Izu02] give a more conceptual approach to our identification in [VV08].

The quantum random walks studied on a discrete quantum group Ĝ have a semi-classical
counterpart, being a Markov chain on the (countable) set Irred(G) of irreducible representations
of G (modulo unitary equivalence). All of the examples above share the feature that the semi-
classical random walk on Irred(G) has trivial Poisson boundary.

In this paper, we identify the Poisson boundary for the dual of G =Au(F ). In that case,
Irred(G) can be identified with the Cayley tree of the monoid N ∗ N and, by the results
of [PW87], has a non-trivial Poisson boundary: the end compactification of the tree with the
appropriate harmonic measure. Before discussing our main result in more detail, we introduce
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some terminology and notation. For a more complete introduction to Poisson boundaries of
discrete quantum groups, we refer the reader to [Van08, ch. 4].

Compact quantum groups were originally introduced by Woronowicz in [Wor87] and their
definition finally took the following form.

Definition 1.1 (Woronowicz [Wor98, Definition 1.1]). A compact quantum group G is a pair
consisting of a unital C∗-algebra C(G) and a unital ∗-homomorphism ∆ : C(G)→ C(G)⊗ C(G),
called comultiplication, satisfying the following two conditions.

– Co-associativity: (∆⊗ id)∆ = (id⊗∆)∆.

– span ∆(C(G))(1⊗ C(G)) and span ∆(C(G))(C(G)⊗ 1) are dense in C(G)⊗ C(G).

In the above definition, the symbol ⊗ denotes the minimal (i.e. spatial) tensor product of
C∗-algebras.

Let G be a compact quantum group. By [Wor98, Theorem 1.3], there is a unique state h on
C(G) satisfying (id⊗ h)∆(a) = h(a)1 = (h⊗ id)∆(a) for all a ∈ C(G). We call h the Haar state
of G.

A unitary representation of G on the finite-dimensional Hilbert space H is a unitary operator
U ∈ L(H)⊗ C(G) satisfying (id⊗∆)(U) = U12U13. Given unitary representations U1, U2 on
H1, H2, we put

Mor(U2, U1) := {S ∈ L(H1, H2) | (S ⊗ 1)U1 = U2(S ⊗ 1)}.

Let U be a unitary representation of G on the finite-dimensional Hilbert space H. The elements
(ξ∗ ⊗ 1)U(η ⊗ 1) ∈ C(G) are called the coefficients of U . The linear span of all coefficients of all
finite-dimensional unitary representations of G forms a dense ∗-subalgebra of C(G) (see [Wor98,
Theorem 1.2]). We call U irreducible if Mor(U, U) = C1. We call U1 and U2 unitarily equivalent
if Mor(U2, U1) contains a unitary operator.

Let U be an irreducible unitary representation of G on the finite-dimensional Hilbert space H.
By [Wor98, Proposition 5.2], there exists an anti-linear invertible map j :H →H such that the
operator U c ∈ L(H)⊗ C(G) defined by the formula (j(ξ)∗ ⊗ 1)U c(j(η)⊗ 1) = (η∗ ⊗ 1)U∗(ξ ⊗ 1)
is unitary. One calls U c the contragredient of U . Since U is irreducible, the map j is uniquely
determined up to multiplication by a non-zero scalar. We normalize in such a way that Q := j∗j
satisfies Tr(Q) = Tr(Q−1). Then, j is determined up to multiplication by λ ∈ S1 and Q is uniquely
determined. We call Tr(Q) the quantum dimension of U and denote it by dimq(U). Note that
dimq(U) > dim(H) with equality holding if and only if Q= 1.

The tensor product U T© V of two unitary representations is defined as U13V23.
Given a compact quantum group G, we denote by Irred(G) the set of irreducible

unitary representations of G modulo unitary conjugacy. For every x ∈ Irred(G), we choose a
representative Ux on the Hilbert space Hx. We denote by Qx ∈ L(Hx) the associated positive
invertible operator and define the state ψx on L(Hx) by the formula

ψx(A) :=
Tr(QxA)
Tr(Qx)

.

The dual, discrete quantum group Ĝ is defined as the `∞-direct sum of matrix algebras

`∞(Ĝ) :=
∏

x∈Irred(G)

L(Hx).
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We denote by px, x ∈ Irred(G), the minimal central projections in `∞(Ĝ). Denote by ε ∈ Irred(G)
the trivial representation and by ε̂ : `∞(Ĝ)→ C the co-unit given by apε = ε̂(a)pε.

Whenever x, y, z ∈ I, we use the short-hand notation Mor(x⊗ y, z) := Mor(Ux T© Uy, U z) and
we write z ⊂ x⊗ y if Mor(x⊗ y, z) 6= {0}.

The von Neumann algebra `∞(Ĝ) carries a comultiplication ∆̂ : `∞(Ĝ)→ `∞(Ĝ)⊗`∞(Ĝ),
uniquely characterized by the formula

∆̂(a)(px ⊗ py)S = Sapz for all x, y, z ∈ Irred(G) and S ∈Mor(x⊗ y, z).

Denote by L∞(G) the weak closure of C(G) in the Gelfand-Naimark-Segal (GNS) representation
of the Haar state h. One defines the unitary V ∈ `∞(Ĝ)⊗ L∞(G) by the formula

V :=
⊕

x∈Irred(G)

Ux.

The unitary V implements the duality between G and Ĝ, in the sense that it satisfies

(∆̂⊗ id)(V) = V13V23 and (id⊗∆)(V) = V12V13.

Discrete quantum groups can also be defined intrinsically, see [VanD96].
Whenever ω ∈ `∞(Ĝ)∗ is a normal state, we consider the Markov operator

Pω : `∞(Ĝ)→ `∞(Ĝ) : Pω(a) = (id⊗ ω)∆̂(a).

By [NT04, Proposition 2.1], the Markov operator Pω leaves the center Z(`∞(Ĝ)) of `∞(Ĝ)
globally invariant if and only if

ω = ψµ :=
∑

x∈Irred(G)

µ(x)ψx where µ is a probability measure on Irred(G).

We only consider states ω of the form ψµ and denote by Pµ the corresponding Markov operator.
Note that we can define a convolution product on the probability measures on Irred(G) by the
formula

Pµ∗η = Pµ ◦ Pη.

Considering the restriction of Pµ to `∞(Irred(Ĝ)) = Z(`∞(Ĝ)), every probability measure µ on
Irred(G) defines a Markov chain on the countable set Irred(G) with n-step transition probabilities
given by

pxpn(x, y) = pxP
n
µ (py).

Note that the 1-step transition probabilities are given by

p1(x, y) =
∑
z∈x⊗y

µ(z)
dimq(y)

dimq(x) dimq(z)
. (1)

The probability measure µ is called generating if, for every x, y ∈ Irred(G), there exists an
n ∈ N\{0} such that pn(x, y)> 0.

Definition 1.2. Let G be a compact quantum group and µ a generating probability measure
on Irred(G). The Poisson boundary of Ĝ with respect to µ is defined as the space of Pµ-harmonic
elements in `∞(Ĝ):

H∞(Ĝ, µ) := {a ∈ `∞(Ĝ) | Pµ(a) = a}.
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The weakly closed vector subspace H∞(Ĝ, µ) of `∞(Ĝ) is turned into a von Neumann algebra
using the product (cf. [Izu02, Theorem 3.6])

a · b := lim
n→∞

Pnµ (ab)

and where the sequence on the right-hand side is strongly∗ convergent.

– The restriction of ε̂ to H∞(Ĝ, µ) is a faithful normal state on H∞(Ĝ, µ).
– The restriction of ∆̂ to H∞(Ĝ, µ) defines a left action

αĜ : H∞(Ĝ, µ)→ `∞(Ĝ)⊗H∞(Ĝ, µ) : a 7→ ∆̂(a)

of Ĝ on H∞(Ĝ, µ).
– The restriction of the adjoint action to H∞(Ĝ, µ) defines an action

αG : H∞(Ĝ, µ)→H∞(Ĝ, µ)⊗ L∞(G) : a 7→ V(a⊗ 1)V∗.

We denote by H∞centr(Ĝ, µ) := H∞(Ĝ, µ) ∩ Z(`∞(Ĝ)) the space of bounded Pµ-harmonic
functions on Irred(G). Defining the conditional expectation

E : `∞(Ĝ)→ `∞(Irred(Ĝ)) : E(a)px = ψx(a)px,

we observe that E also provides a faithful conditional expectation of H∞(Ĝ, µ) onto the von
Neumann subalgebra H∞centr(Ĝ, µ).

We now turn to the concrete family of compact quantum groups studied in this paper and
introduced by Van Daele and Wang in [VW96]. Let n ∈ N\{0, 1} and let F ∈GL(n, C). One
defines the compact quantum group G =Au(F ) such that C(G) is the universal unital C∗-algebra
generated by the entries of an n× n matrix U satisfying the relations

U and FUF−1 are unitary, with (U)ij = (Uij)∗

and such that ∆(Uij) =
∑n

k=1 Uik ⊗ Ukj . By definition, U is an n-dimensional unitary
representation of Au(F ), called the fundamental representation.

Fix F ∈GL(n, C) and put G =Au(F ). For reasons to become clear later, we assume that F
is not a scalar multiple of a unitary 2× 2 matrix.

By [Ban97, Théorème 1], the irreducible unitary representations of G can be labeled by the
elements of the free monoid I := N ∗ N generated by α and β. We represent the elements of I as
words in α and β. The empty word is denoted by ε and corresponds to the trivial representation
of G, while α corresponds to the fundamental representation and β to the contragredient of α.
We denote by x 7→ x the unique antimultiplicative and involutive map on I satisfying α= β. This
involution corresponds to the contragredient on the level of representations. The fusion rules of
G are given by

x⊗ y ∼=
⊕

z∈I,x=x0z,y=zy0

x0y0.

So, if the last letter of x equals the first letter of y, the tensor product x⊗ y is irreducible and
given by xy. We denote this as xy = x⊗ y.

Denote by ∂I the compact space of infinite words in α and β. For x ∈ ∂I, the expression

x= x1 ⊗ x2 ⊗ · · · (2)

means that the infinite word x is the concatenation of the finite words x1x2 · · · and that the last
letter of xn equals the first letter of xn+1 for all n ∈ N. All elements x of ∂I can be decomposed
as in (2), except the countable number of elements of the form x= yαβαβ · · · for some y ∈ I.
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In the following, we only deal with non-atomic measures on ∂I, so that almost every point
of ∂I has a decomposition as in (2). We denote by ∂0I the subset of ∂I consisting of the infinite
words that have a decomposition of the form (2).

The following is the main result of the paper.

Theorem 1.3. Let F ∈GL(n, C) such that F is not a scalar multiple of a unitary 2× 2 matrix.
Write G =Au(F ) and suppose that µ is a finitely supported, generating probability measure on
I = Irred(G). Denote by ∂I the compact space of infinite words in the letters α, β. There exists:

– a non-atomic probability measure νε on ∂I;

– a measurable field M of infinite tensor product of finite type I (ITPFI) factors over (∂I, νε)
with fibers

(Mx, ωx) =
∞⊗
k=1

(L(Hxk
), ψxk

)

whenever x ∈ ∂0I is of the form x= x1x2x3 · · ·= x1 ⊗ x2 ⊗ x3 ⊗ · · · ;
– an action βĜ of Ĝ on M concretely given by (3) below;

such that, with ω∞ =
∫ ⊕

ωx dνε(x), the Poisson integral formula

Θµ :M →H∞(Ĝ, µ) : Θµ(a) = (id⊗ ω∞)βĜ(a)

defines a ∗-isomorphism of M onto H∞(Ĝ, µ), intertwining the action βĜ on M with the action

αĜ on H∞(Ĝ, µ).
Moreover, defining the action βxG of G on Mx as the infinite tensor product of the inner actions

a 7→ Uxk(a⊗ 1)(Uxk)∗, we obtain the action βG of G on M . The ∗-isomorphism Θµ intertwines
βG with αG.

The comultiplication ∆̂ : `∞(Ĝ)→ `∞(Ĝ)⊗ `∞(Ĝ) can be uniquely cut down into completely
positive maps ∆̂x⊗y,z : L(Hz)→L(Hx)⊗ L(Hy) in such a way that

∆̂(a)(px ⊗ py) =
∑
z⊂x⊗y

∆̂x⊗y,z(apz)

for all a ∈ `∞(Ĝ).
We denote by |x| the length of a word x ∈ I.
If now x, y ∈ I, z ∈ ∂I with yz = y ⊗ z and |y|> |x|, we define for all s⊂ x⊗ y,

∆̂x⊗yz,sz :Msz→L(Hx)⊗Myz

by composing ∆̂x⊗y,s ⊗ id with the identifications Msz
∼= L(Hs)⊗Mz and Myz

∼= L(Hy)⊗Mz.
The action βĜ :M → `∞(Ĝ)⊗M of Ĝ on M is now given by

βĜ(a)x,yz =
∑
s⊂x⊗y

∆̂x⊗yz,sz(asz) (3)

whenever a ∈M , x, y ∈ I, z ∈ ∂I, |y|> |x| and yz = y ⊗ z. Note that we identified `∞(Ĝ)⊗M
with a measurable field over I × ∂I with fiber in (x, z) given by L(Hx)⊗Mz.

Further notation and terminology
Fix F ∈GL(n, C) and put G =Au(F ). We identify Irred(G) with I := N ∗ N. We assume that F
is not a multiple of a unitary 2× 2 matrix. Equivalently, dimq(α)> 2. The first reason to do so
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is that under this assumption, the random walk defined by any non-trivial probability measure µ
on I (i.e. µ(ε)< 1), is automatically transient, which means that

∞∑
n=1

pn(x, y)<∞

for all x, y ∈ I. This statement can be proven in the same was as [NT04, Theorem 2.6]. For
the convenience of the reader, we give the argument. Denote by dimmin(y) the dimension of the
carrier Hilbert space of y, when y is viewed as an irreducible representation of Au(I2). Since F
is not a multiple of a unitary 2× 2 matrix, it follows that dimq(y)> dimmin(y) for all y ∈ I\{ε}.
Denote by mult(z; y1 ⊗ · · · ⊗ yn) the multiplicity of the irreducible representation z ∈ I in the
tensor product of the irreducible representations y1, . . . , yn. Since the fusion rules of Au(F ) and
Au(I2) are identical, it follows that

mult(z; y1 ⊗ · · · ⊗ yn) 6 dimmin(y1) · · · dimmin(yn).

One then computes, for all x, y ∈ I, n ∈ N,

pn(x, y) =
∑
z⊂x⊗y

µ∗n(z)
dimq(y)

dimq(x) dimq(z)

=
dimq(y)
dimq(x)

∑
z⊂x⊗y

∑
y1,...,yn∈I

mult(z; y1 ⊗ · · · yn)
µ(y1) · · · µ(yn)

dimq(y1) · · · dimq(yn)

6
dimq(y)
dimq(x)

dim(x⊗ y) ρn

where ρ=
∑

y∈I µ(y)(dimmin(y)/dimq(y)). Since µ is non-trivial and F is not a multiple of a
2× 2 unitary matrix, we have 0< ρ < 1. Transience of the random walk follows immediately.

An element x ∈ I is said to be indecomposable if x= y ⊗ z implies y = ε or z = ε.
Equivalently, x is an alternating product of the letters α and β.

For every x ∈ I, we denote by dimq(x) the quantum dimension of the irreducible
representation labeled by x. Since dimq(α)> 2, take 0< q < 1 such that dimq(α) = dimq(β) =
q + 1/q. An important part of the proof of Theorem 1.3 is based on the technical estimates
provided by Lemma A.1 and they require q < 1, i.e. dimq(α)> 2.

Denote the q-numbers

[n]q :=
qn − q−n

q − q−1
= qn−1 + qn−3 + · · ·+ q−n+3 + q−n+1.

Writing x= x1 ⊗ · · · ⊗ xn where the words x1, . . . , xn are indecomposable, we have

dimq(x) = [|x1|+ 1]q · · · [|xn|+ 1]q. (4)

For later use, note that it follows that

dimq(xy) > q−|y| dimq(x) (5)

for all x, y ∈ I.

Whenever x ∈ I ∪ ∂I, we denote by [x]n the word consisting of the first n letters of x and by
[x]n the word that arises by removing the first n letters from x. So, by definition, x= [x]n[x]n.
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2. Poisson boundary of the classical random walk on Irred(G)

Given a probability measure µ on I := Irred(G), the Markov operator Pµ : `∞(Ĝ)→ `∞(Ĝ)
preserves the center Z(`∞(Ĝ)) = `∞(I) and, hence, defines an ordinary random walk on the
countable set I with n-step transition probabilities

pxpn(x, y) = pxP
n
µ (py). (6)

As shown above, this random walk is transient whenever µ(ε)< 1. Denote by H∞centr(Ĝ, µ) the
commutative von Neumann algebra of bounded Pµ-harmonic functions in `∞(I), with product
given by a · b= limn P

n
µ (ab) and the sequence being strongly∗-convergent. Write p(x, y) =

p1(x, y).
The set I becomes in a natural way a tree: the Cayley tree of the semi-group N ∗ N. Let µ

be a generating probability measure on I with finite support.

Lemma 2.1. There exists a δ > 0 such that p(x, y)> 0 implies that p(x, y) > δ.

Proof. Take L, δ0 > 0 such that for all z ∈ supp µ, we have |z| 6 L and µ(z) > δ0. By (1), if
p(x, y)> 0, we obtain z with |z| 6 L, y ∈ x⊗ z and

p(x, y) > δ0
dimq(y)

dimq(x) dimq(z)
.

Write x= x0r, z = rz1 and y = x0z1. Put η = q + 1/q. Then,

p(x, y) > δ0
dimq(x0)

dimq(x0)η|r|η|z|
> δ0η

−2L.

So, we can put δ = δ0η
−2L. 2

The following properties of the random walk on I can be checked easily.

– Uniform irreducibility: there exists an integer M such that, for any pair x, y ∈ I of
neighboring edges of the tree, there exists an integer k 6M , such that pk(x, y)> 0.

– Bounded step-length: there exists an integerN such that p(x, y)> 0 implies that d(x, y) 6N
where d(x, y) equals the length of the unique geodesic path from x to y.

Combining these remarks with Lemma 2.1, we can apply [PW87, Theorem 2] and identify
the Poisson boundary of the random walk on I, with the boundary ∂I of infinite words in α,β,
equipped with a probability measure in the following way.

Theorem 2.2 (Picardello and Woess [PW87, Theorem 2]). Let µ be a finitely supported
generating measure on I = Irred(Au(F )), where F is not a scalar multiple of a 2× 2 unitary
matrix. Consider the associated random walk on I with transition probabilities given by (6) and
the compactification I ∪ ∂I of I.

– The random walk converges almost surely to a point in ∂I.

– For every x ∈ I, denote by νx the hitting probability measure on ∂I, where νx(U) is defined
as the probability that the random walk starting in x converges to a point in U . Then, the
formula

Υ(F )(x) =
∫
∂I
F (z) dνx(z) (7)

defines a ∗-isomorphism Υ : L∞(∂I, νε)→H∞centr(Ĝ, µ).
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In fact, [PW87, Theorem 2], identifies ∂I with the Martin compactification of the given
random walk on I. It is a general fact (see [Woe00, Theorem 24.10]), that a transient random
walk converges almost surely to a point of the minimal Martin boundary and that the hitting
probability measures provide a realization of the Poisson boundary through the Poisson integral
formula (7), see [Woe00, Theorem 24.12].

Since a continuous function on the compact space I ∪ ∂I is entirely determined by its values
on I, we can and do view C(I ∪ ∂I) as a C∗-subalgebra of `∞(I).

The rest of this section is devoted to the proof of the non-atomicity of the harmonic
measures νx.

Lemma 2.3. For all x, y ∈ I and z ∈ ∂I, the sequence(
dimq(x[z]n)
dimq(y[z]n)

)
n

converges. By a slight abuse of notation, we denote the limit by dimq(xz/yz). The following
properties hold.

(i) For all x, y ∈ I, the map ∂I → R+ : z 7→ dimq(xz/yz) is continuous.

(ii) For all x, y ∈ I and w ∈ ∂I, the sequence of continuous functions

∂I → R+ : z 7→ dimq

(
x[w]n z
y[w]n z

)
converges uniformly on ∂I to the constant function dimq(x w/y w).

Proof. Fix x, y ∈ I. Whenever z ∈ ∂I and n ∈ N, denote

fn(z) =
dimq(x[z]n)
dimq(y[z]n)

.

If z 6∈ {αβα · · ·, βαβ · · ·}, write z = z1 ⊗ z2 for some z1 ∈ I, z1 6= ε and some z2 ∈ ∂I. Denote by
U the neighborhood of z consisting of words of the form z1z

′ = z1 ⊗ z′. For all s ∈ U and all
n > |z1|, we have

fn(s) =
dimq(xz1)
dimq(yz1)

.

Hence, for all s ∈ U , the sequence n 7→ fn(s) is eventually constant and converges to a limit that
is constant on U .

Also for z ∈ {αβα · · ·, βαβ · · ·}, the sequence fn(z) is convergent. Take z = αβα · · · . Write
x= x0 ⊗ x1 where x1 is the longest possible (and maybe empty) indecomposable word ending
with β. Write y = y0 ⊗ y1 similarly. It follows that

fn(z) =
dimq(x0)
dimq(y0)

[n+ |x1|+ 1]q
[n+ |y1|+ 1]q

→ dimq(x0)
dimq(y0)

q|y1|−|x1|.

The convergence of fn(z) for z = βαβ · · · is proven analogously.
Write f(z) = limn fn(z). We have seen above that every z ∈ ∂I, z 6∈ {αβα · · ·, βαβ · · ·}, has

a neighborhood on which f is constant. We now prove that f is also continuous in z = αβα · · ·
and in z = βαβ · · · . In both cases, define, for every n ∈ N, the neighborhood Un of z consisting
of all s ∈ ∂I with [s]n = [z]n. For every s ∈ Un, s 6= z, there exists m > n such that f(s) = fm(z).
The continuity of f in z follows and we have proven statement (i).
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It remains to prove statement (ii). If w is decomposable, i.e. w = w0 ⊗ w1 with |w0| > 1, then
for all n > |w0|, we have

dimq

(
x[w]n z
y[w]n z

)
=

dimq(xw0)
dimq(yw0)

and hence statement (ii) follows. If w is indecomposable, let us assume that w = αβα · · ·; the case
w = βαβ · · · is analogous. Write x= x0 ⊗ x1 and y = y0 ⊗ y1, where x1, y1 are maximal, possibly
empty, indecomposable words ending with the letter β. If z is indecomposable, the expression
dimq(x[w]n z/y[w]n z) is alternatingly equal to

dimq(x0)
dimq(y0)

[|x1|+ n+ 1]q
[|y1|+ n+ 1]q

and
dimq(x0)
dimq(y0)

q|y1|−|x1|. (8)

When z = z0 ⊗ z1 where z0 is an indecomposable word with length at least 1, the expression
dimq(x[w]n z/y[w]n z) is alternatingly equal to

dimq(x0)
dimq(y0)

[|x1|+ n+ 1]q
[|y1|+ n+ 1]q

and
dimq(x0)
dimq(y0)

[|x1|+ n+ |z0|+ 1]q
[|y1|+ n+ |z0|+ 1]q

. (9)

Since the four expressions appearing in (8) and (9) converge uniformly in z, to

dimq(x0)
dimq(y0)

q|y1|−|x1| = dimq

(
x w

y w

)
when n→∞, statement (ii) is proven. 2

Whenever x, y ∈ I ∪ ∂I, define (x|y) := max{n | [x]n = [y]n}.

Lemma 2.4. Let x, z ∈ I with |x| 6 |z|. Denote by Uz the subset of ∂I consisting of infinite words
that start with z. For every 0 6 k 6 (x|z), define the function fk ∈ C(∂I) with support U

[x]k[z]k
,

given by

fk([x]k[z]ky) =
1

dimq(x)
dimq

(
z y

[x]k[z]k y

)
.

We then have

νx(Uz) =
(x|z)∑
k=0

∫
∂I
fk(y) dνε(y).

Moreover, for all w ∈ ∂I, we have

νx({w}) =
1

dimq(x)

(x|w)∑
k=0

dimq

(
[w]k[w]k

[x]k[w]k

)
νε({[x]k[w]k}).

Proof. By Lemma 2.3, the functions fk are well defined and belong to C(∂I). By Theorem 2.2,
our random walk converges almost surely to a point of ∂I and we denoted by νx the hitting
probability measure. So, (ψx ⊗ ψµ∗n)∆̂→ νx weakly∗ in C(I ∪ ∂I)∗.

Recall that E : `∞(Ĝ)→ `∞(I) denotes the conditional expectation defined by E(b)py =
ψy(b)py. Whenever |z| > |x|, we have

E((ψx ⊗ id)∆̂(pz)) =
(x|z)∑
k=0

dimq(z)

dimq(x) dimq([x]k[z]k)
p

[x]k[z]k
.
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Denote qz =
∑

s∈I pzs and observe that qz ∈ C(I ∪ ∂I). It follows that for all |z| > |x|,

E((ψx ⊗ id)∆̂(qz)) =
(x|z)∑
k=0

Fk

where Fk ∈ `∞(I) is defined by Fk(y) = 0 if y does not start with [x]k[z]k and

Fk([x]k[z]ky) =
1

dimq(x)
dimq(zy)

dimq([x]k[z]ky)
.

Note that Fk ∈ C(I ∪ ∂I)⊂ `∞(I) and that Fk is a continuous extension of fk. Hence, it follows
that, for |z| > |x|,

νx(Uz) =
(x|z)∑
k=0

∫
∂I
fk(y) dνε(y).

Finally, let w ∈ ∂I. Write w = w0w1, where |w0| > |x|. Let n ∈ N. We apply the above formula to
z = w0[w1]n. Since Uw0[w1]n decreases to {w}, we have

νx(Uw0[w1]n)→ νx({w}).
On the other hand, because (x|w0[w1]n) = (x|w0), we have

νx(Uw0[w1]n) =
(x|w0)∑
k=0

∫
∂I
gnk (y) dνε(y),

where gnk ∈ C(∂I) is supported on the words that start with [x]k[w0]k[w1]n and is given by

gnk ([x]k[w0]k[w1]ny) =
1

dimq(x)
dimq

(
w0[w1]ny

[x]k[w0]k[w1]ny

)
.

By Lemma 2.3(ii), when n→∞, the right-hand side of this last expression converges uniformly
in y to

1
dimq(x)

dimq

(
w0w1

[x]k[w0]kw1

)
=

1
dimq(x)

dimq

(
[w]k[w]k

[x]k[w]k

)
.

Since U
[x]k[w0]k[w1]n

decreases to {[x]k[w]k} and since (x|w) = (x|w0), the lemma is proven. 2

Proposition 2.5. The support of the harmonic measure νε is the whole of ∂I. The harmonic
measure νε has no atoms in words ending with αβαβ · · · .

Remark 2.6. The same methods as in the proof of Proposition 2.5 given below, but involving
more tedious computations, show in fact that νε is non-atomic. To prove our main theorem, it
is only crucial that νε has no atoms in words ending with αβαβ · · · . We believe that it should
be possible to give a more conceptual proof of the non-atomicity of νε and refer to [Van08,
Proposition 8.3.10] for an ad hoc proof along the lines of the proof of Proposition 2.5.

Proof of Proposition 2.5. In order to prove that the support of νε is the whole of ∂I, it suffices to
show that νε(Uz)> 0 for all z ∈ I. Since νε and νz are absolutely continuous, it suffices to show
that νz(Uz)> 0 for all z ∈ I. By Lemma 2.4, we have

νz(Uz) >
1

dimq(x)

∫
∂I

dimq

(
zy

y

)
dνε(y).

Since the integral of a strictly positive function is strictly positive, it follows that νz(Uz)> 0.
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Owing to Lemma 2.4 and the equality

νε =
∑
x∈I

µ∗k(x)νx

for all k > 1, we observe that if w is an atom for νε, then all w′ with the same tail as w are atoms for
all νx, x ∈ I. So, we assume that w := αβαβ · · · is an atom for νε and derive a contradiction.

Denote by δw the function on ∂I that is equal to one in w and zero elsewhere. Using the
∗-isomorphism in Theorem 2.2, it follows that the bounded function

ξ ∈ `∞(Ĝ) : ξ(x) := νx({w}) =
∫
∂I
δw dνx

is harmonic.
We prove that ξ attains its maximum and apply the maximum principle for irreducible

random walks (see, e.g., [Woe00, Theorem 1.15]) to deduce that ξ must be constant. This will
lead to a contradiction.

Denote
wαn := αβα · · ·︸ ︷︷ ︸

n letters

and wβn := βαβ · · ·︸ ︷︷ ︸
n letters

.

Note that all elements of I are either of the form

wα2n+1x where n ∈ N and x ∈ {ε} ∪ αI

or of the form
wα2nx where n ∈ N and x ∈ {ε} ∪ βI.

By Lemma 2.4 and formula (4), we obtain that for n ∈ N and x ∈ {ε} ∪ αI,

ξ(wα2n+1x) =
2n+1∑
k=0

1
[2(n+ 1)]q dimq(x)2

dimq

(
wαk [w]k

wβ2n+1−k [w]k

)
νε(xβαβ · · ·)

=
2n+1∑
k=0

1
[2(n+ 1)]q dimq(x)2

q2(n−k)+1 νε(xβαβ · · ·) =
νε(xβαβ · · ·)

dimq(x)2
.

Since νε is a probability measure, it follows that x 7→ ξ(wα2n+1x) is independent of n and
summable over the set {ε} ∪ αI. Analogously, it follows that x 7→ ξ(wα2nx) is independent of n
and summable over the set {ε} ∪ βI. As a result, ξ attains its maximum on I. By the maximum
principle, ξ is constant. Since ξ(ε) 6= 0, this constant is non-zero and we arrive at a contradiction
with the summability of x 7→ ξ(wα2n+1x) over the infinite set {ε} ∪ αI. 2

3. Topological boundary and boundary action for the dual of Au(F )

Before proving Theorem 1.3, we construct a compactification for Ĝ, i.e. a unital C∗-algebra B

lying between c0(Ĝ) and `∞(Ĝ). This C∗-algebra B is a non-commutative version of C(I ∪ ∂I).
The construction of B follows word by word the analogous construction given in [VV07, § 3] for
G =Ao(F ). So, we only indicate the necessary modifications.

For all x, y ∈ I and z ⊂ x⊗ y, we choose an isometry V (x⊗ y, z) ∈Mor(x⊗ y, z). Since z
appears with multiplicity one in x⊗ y, the isometry V (x⊗ y, z) is uniquely determined up to
multiplication by a scalar λ ∈ S1. Therefore, the following unital completely positive maps are
uniquely defined (cf. [VV07, Definition 3.1]).
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Definition 3.1. Let x, y ∈ I. We define unital completely positive maps

ψxy,x : L(Hx)→L(Hxy) : ψxy,x(A) = V (x⊗ y, xy)∗(A⊗ 1)V (x⊗ y, xy).

Theorem 3.2. The maps ψxy,x form an inductive system of completely positive maps. Defining

B = {a ∈ `∞(Ĝ) | ∀ε > 0, ∃n ∈ N such that ‖apxy − ψxy,x(apx)‖< ε

for all x, y ∈ I with |x| > n},

we get that B is a unital C∗-subalgebra of `∞(Ĝ) containing c0(Ĝ).

– The restriction of the comultiplication ∆̂ yields a left action βĜ of Ĝ on B:

βĜ : B→M(c0(Ĝ)⊗B) : a 7→ ∆̂(a).

– The restriction of the adjoint action of G on `∞(Ĝ) yields a right action of G on B:

βG : B→B⊗ C(G) : a 7→ V(a⊗ 1)V∗.

Here, V ∈ `∞(Ĝ)⊗ L∞(G) is defined as V =
∑

x∈I U
x. The action βG is continuous in the

sense that span βG(B)(1⊗ C(G)) is dense in B⊗ C(G).

Proof. One can repeat word by word the proofs of [VV07, Propositions 3.4 and 3.6]. The crucial
ingredients of these proofs are the approximate commutation formulae provided by [VV07,
Lemmas A.1 and A.2] and they have to be replaced by the inequalities provided by Lemma A.1. 2

We denote B∞ := B/c0(Ĝ) and call it the topological boundary of Ĝ. Both actions βG and
βĜ preserve the ideal c0(Ĝ) and hence yield actions on B∞ that we still denote by βG and βĜ.

As before, we view C(I ∪ ∂I)⊂ `∞(I) by restricting continuous functions on I ∪ ∂I to I. A
bounded function on I extends continuously to I ∪ ∂I if and only if, for every ε > 0, there exists
an n ∈ N such that |f(xy)− f(x)|< ε for all x, y ∈ I with |x| > n. Hence, when viewing C(I ∪ ∂I)
as a C∗-subalgebra of `∞(I), we obtain C(I ∪ ∂I) = B ∩ Z(`∞(Ĝ)) = B ∩ `∞(I). Taking the
quotient with c0(I), we view C(∂I)⊂B∞.

We partially order I by writing x 6 y if y = xz for some z ∈ I. Define

ψ∞,x : L(Hx)→B : ψ∞,x(A)py =

{
ψy,x(A) if y > x

0 otherwise.

We use the same notation for the composition of ψ∞,x with the quotient map B→B∞, yielding
the map ψ∞,x : L(Hx)→B∞.

Observe that the linear span of all ψ∞,x(L(Hx)) is dense in B∞. Indeed, whenever a ∈B and
ε > 0, we can take n ∈ N such that ‖apxy − ψxy,x(apx)‖ 6 ε whenever |x| > n. If x1, . . . , xm is an
enumeration of all elements in I of length n, it follows that∥∥∥∥π(a)−

m∑
k=1

ψ∞,xk
(apxk

)
∥∥∥∥ 6 ε.

Lemma 3.3. The inclusion C(∂I)⊂B∞ defines a continuous field of unital C∗-algebras. For
every x ∈ ∂I, denote by Jx the closed two-sided ideal of B∞ generated by the functions in C(∂I)
vanishing in x.
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For every x= x1 ⊗ x2 ⊗ · · · in ∂0I, there exists a unique surjective ∗-homomorphism

πx : B∞→
∞⊗
k=1

L(Hxk
)

satisfying Ker πx = Jx and πx(ψ∞,x1···xn(A)) =A⊗ 1 for all A ∈
⊗n

k=1 L(Hxk
) = L(Hx1···xn).

Proof. Given x ∈ ∂I, define the decreasing sequence of projections en ∈B given by

en :=
∑
y∈I

p[x]ny.

Denote by π : B→B∞ the quotient map. It follows that

‖π(a) + Jx‖= lim
n
‖aen‖ (10)

for all a ∈B.

To prove that C(∂I)⊂B∞ is a continuous field, let y ∈ I, A ∈ L(Hy) and define a ∈B by
a := ψ∞,y(A). Put f : ∂I → R+ : f(x) = ‖π(a) + Jx‖. We have to prove that f is a continuous
function. Define U ⊂ ∂I consisting of infinite words starting with y. Then, U is open and closed
and f is zero, in particular continuous, on the complement of U . Assume that the last letter of y
is α (the other case, of course, being analogous). If x ∈ U and x 6= yβαβα · · · , write x= yz ⊗ u
for some z ∈ I, u ∈ ∂I. Define V as the neighborhood of x consisting of infinite words of the
form yzu′ where u′ ∈ ∂I and yzu′ = yz ⊗ u′. Then, f is constantly equal to ‖ψyz,y(A)‖ on V. It
remains to prove that f is continuous in x := yβαβα · · · . Let

wn = βαβ · · ·︸ ︷︷ ︸
n letters

.

Then, the sequence ‖ψywn,y(A)‖ is decreasing and converges to f(x). If Un is the neighborhood
of x consisting of words starting with ywn, it follows that

f(x) 6 f(u) 6 ‖ψywn,y(A)‖

for all u ∈ Un. This proves the continuity of f in x. So, C(∂I)⊂B∞ is a continuous field of
C∗-algebras.

Let now x= x1 ⊗ x2 ⊗ · · · be an element of ∂0I. Put yn = x1 ⊗ · · · ⊗ xn and

fn :=
∑
z∈I

pynz.

The map A 7→ fn+1ψ∞,yn(A) defines a unital ∗-homomorphism from L(Hyn) to fn+1B.
Since π(1− fn+1) ∈ Jx, we obtain the unital ∗-homomorphism θn : L(Hyn)→B∞/Jx. The
∗-homomorphisms θn are compatible and combine into the unital ∗-homomorphism

θ :
∞⊗
k=1

L(Hxk
)→B∞/Jx.

By (10), θ is isometric. Since the union of all ψ∞,yn(L(Hyn)) + Jx, n ∈ N, is dense in B∞, it
follows that θ is surjective. The composition of the quotient map B∞→B∞/Jx and the inverse
of θ provides the required ∗-homomorphism πx. 2
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4. Proof of Theorem 1.3

We prove Theorem 1.3 by performing the following steps.

– Construct on the boundary B∞ of Ĝ, a faithful Kubo–Martin–Schwinger (KMS) state ω∞,
to be considered as the harmonic state and satisfying (ψµ ⊗ ω∞)βĜ = ω∞. Extend βĜ to an
action

βĜ : (B∞, ω∞)′′→ `∞(Ĝ)⊗ (B∞, ω∞)′′

and denote by Θµ := (id⊗ ω∞)βĜ the Poisson integral.

– Prove a quantum Dirichlet property: for all a ∈B, we have Θµ(a)− a ∈ c0(Ĝ). It will follow
that Θµ is a normal and faithful ∗-homomorphism of (B∞, ω∞)′′ onto a von Neumann
subalgebra of H∞(Ĝ, µ).

– By Theorem 2.2, Θµ is a ∗-isomorphism of L∞(∂I, νε)⊂ (B∞, ω∞)′′ onto H∞centr(Ĝ, µ).
Deduce that the image of Θµ is the whole of H∞(Ĝ, µ).

– Use Lemma 3.3 to identify (B∞, ω∞)′′ with a field of ITPFI factors.

Proposition 4.1. The sequence ψµ∗n of states on B converges weakly∗ to a KMS state ω∞
on B. The state ω∞ vanishes on c0(Ĝ). We still denote by ω∞ the resulting KMS state on B∞.
Then, ω∞ is faithful on B∞.

We have (ψµ ⊗ ω∞)βĜ = ω∞, so that we can uniquely extend βĜ to an action

βĜ : (B∞, ω∞)′′→ `∞(Ĝ)⊗ (B∞, ω∞)′′

that we still denote by βĜ.

The state ω∞ is invariant under the action βG of G on B∞. We extend βG to an action on
(B∞, ω∞)′′ that we still denote by βG.

The normal, completely positive map

Θµ : (B∞, ω∞)′′→H∞(Ĝ, µ) : Θµ = (id⊗ ω∞)βĜ (11)

is called the Poisson integral. It satisfies the following properties (recall that αĜ and αG were
introduced in Definition 1.2):

– ε̂ ◦Θµ = ω∞;

– (Θµ ⊗ id) ◦ βG = αG ◦Θµ;

– (id⊗Θµ) ◦ βĜ = αĜ ◦Θµ.

For every x= x1 ⊗ x2 ⊗ · · · in ∂0I, denote by ωx the infinite tensor product state on⊗∞
k=1 L(Hxk

), of the states ψxk
on L(Hxk

). Using the notation πx of Lemma 3.3, we have

ω∞(a) =
∫
∂0I

ωx(πx(a)) dνε(x) (12)

for all a ∈B∞.

Proof. Define the one-parameter group of automorphisms (σt)t∈R of `∞(Ĝ) given by

σt(a)px =QitxapxQ
−it
x .

Since σt(ψ∞,x(A)) = ψ∞,x(QitxAQ
−it
x ), it follows that (σt) is norm-continuous on the C∗-

algebra B.
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By Theorem 2.2, the sequence of probability measures µ∗n on I ∪ ∂I converges weakly∗ to νε.
It follows that ψµ∗n(a)→ 0 whenever a ∈ c0(Ĝ). Given x ∈ I and A ∈ L(Hx), put a := ψ∞,x(A).
As before, denote by Ux the set of infinite words starting with x and by U0

x its intersection with
∂0(I). Using Proposition 2.5, we obtain

ψµ∗n(a) =
∑
y∈I

µ∗n(y)ψy(ψ∞,x(A)) =
∑
y∈xI

µ∗n(y)ψx(A)

→ ψx(A)νε(U0
x) = ψx(A)νε(U0

x) =
∫
∂0I

ωy(πy(a)) dνε(y).

So, the sequence ψµ∗n of states on B converges weakly∗ to a state on B that we denote by ω∞
and that satisfies (12). Since all ψµ∗n satisfy the KMS condition with respect to (σt), also ω∞ is a
KMS state. If a ∈B+

∞ and ω∞(a) = 0, it follows from (12) that ωx(πx(a)) = 0 for νε-almost every
x ∈ ∂0I. Since ωx is faithful, it follows that ‖π(a) + Jx‖= 0 for νε-almost every x ∈ ∂I. By Propo-
sition 2.5, the support of νε is the whole of ∂I and by Lemma 3.3, x 7→ ‖π(a) + Jx‖ is a continuous
function. It follows that ‖π(a) + Jx‖= 0 for all x ∈ ∂I and, hence, a= 0. So, ω∞ is faithful.

Since (ψµ ⊗ ψµ∗n)βĜ = ψµ∗(n+1) , it follows that (ψµ ⊗ ω∞)βĜ = ω∞. So, (ψµ∗k ⊗ ω∞)βĜ = ω∞
for all k ∈ N. Since µ is generating, there exists for every x ∈ I, a Cx > 0 such that (ψx ⊗ ω∞)βĜ 6
Cxω∞. As a result, we can uniquely extend βĜ to a normal ∗-homomorphism

(B∞, ω∞)′′→ `∞(Ĝ)⊗ (B∞, ω∞)′′.

Since βĜ is an action, the same holds for the extension to the von Neumann algebra (B∞, ω∞)′′.
Because (ψµ ⊗ ω∞)βĜ = βĜ and because βĜ is an action, the Poisson integral defined by (11)

takes values in H∞(Ĝ, µ). It is straightforward to check that Θµ intertwines βG with αG and βĜ
with αĜ. 2

Theorem 4.2. The compactification B of Ĝ satisfies the quantum Dirichlet property, meaning
that, for all a ∈B,

‖(Θµ(a)− a)px‖→ 0
if |x| →∞.

In particular, the Poisson integral Θµ is a normal and faithful ∗-homomorphism of (B∞, ω∞)′′

onto a von Neumann subalgebra of H∞(Ĝ, µ).

We deduce Theorem 4.2 from the following lemma.

Lemma 4.3. For every a ∈B, we have that

sup
y∈I
‖(id⊗ ψy)∆̂(a)px − apx‖→ 0 (13)

when |x| →∞.

Proof. Fix a ∈B with ‖a‖ 6 1. Choose ε > 0. Take n such that ‖apx0x1 − ψx0x1,x0(apx0)‖< ε for
all x0, x1 ∈ I with |x0|= n.

Denote dS1(V, W ) = inf{‖V − λW‖ | λ ∈ S1}. By formula (A.2) in the appendix, take k such
that

dS1((V (x0 ⊗ x1x2, x0x1x2)⊗ 1)V (x0x1x2 ⊗ x2u, x0x1u),

(1⊗ V (x1x2 ⊗ x2u, x1u))V (x0 ⊗ x1u, x0x1u))<
ε

2
(14)

whenever |x1| > k.
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Finally, take l such that q2l < ε. We prove that

‖(id⊗ ψy)∆̂(a)px − apx‖< 5ε (15)

for all x, y ∈ I with |x| > n+ k + l.
Choose x, y ∈ I with |x| > n+ k + l and write x= x0x1x2 with |x0|= n, |x1|= k and, hence,

|x2| > l. We obtain

(id⊗ ψy)∆̂(a)px =
∑
z⊂x⊗y

(id⊗ ψy)(V (x⊗ y, z)apzV (x⊗ y, z)∗)

=
∑
z⊂x⊗y

dimq(z)
dimq(x) dimq(y)

V (z ⊗ y, x)∗(apz ⊗ 1)V (z ⊗ y, x)

=
∑

z⊂x2⊗y

dimq(x0x1z)
dimq(x) dimq(y)

V (x0x1z ⊗ y, x)∗(apx0x1z ⊗ 1)V (x0x1z ⊗ y, x)

+
∑

remaining terms.

In order to have remaining terms, y should be of the form y = x2y0 and then, using (5) and the
assumption ‖a‖ 6 1,∑

‖remaining terms‖ =
∑

z⊂x0x1⊗y0

dimq(z)
dimq(x0x1x2) dimq(x2y0)

6
∑

z⊂x0x1⊗y0

q2|x2| dimq(z)
dimq(x0x1) dimq(y0)

= q2|x2| < ε.

Combining this estimate with the fact that ‖apx0x1z − ψx0x1z,x0(apx0)‖< ε, it follows that

‖(id⊗ ψy)∆̂(a)px − apx‖

6 2ε+
∥∥∥∥apx − ∑

z⊂x2⊗y

dimq(x0x1z)
dimq(x) dimq(y)

V (x0x1z ⊗ y, x)∗

(ψx0x1z,x0(apx0)⊗ 1)V (x0x1z ⊗ y, x)
∥∥∥∥.

However, (14) now implies that

‖(id⊗ ψy)∆̂(a)px − apx‖ 6 3ε+
∥∥∥∥apx − ∑

z⊂x2⊗y

dimq(x0x1z)
dimq(x) dimq(y)

ψx,x0(apx0)
∥∥∥∥.

Since ‖ψx,x0(apx0)− apx‖< ε and ‖a‖ 6 1, we obtain

‖(id⊗ ψy)∆̂(a)px‖ 6 4ε+
(

1−
∑

z⊂x2⊗y

dimq(x0x1z)
dimq(x) dimq(y)

)
.

The second term on the right-hand side is zero, unless y = x2y0, in which case it equals∑
z⊂x0x1⊗y0

dimq(z)
dimq(x0x1x2) dimq(x2y0)

6
∑

z⊂x0x1⊗y0

q2|x2| dimq(z)
dimq(x0x1) dimq(y0)

6 ε

because of (5). Finally, (15) follows and the lemma is proven. 2

Proof of Theorem 4.2. Let a ∈B. Given ε > 0, Lemma 4.3 provides k such that

‖(id⊗ ψµ∗n)∆̂(a)px − apx‖ 6 ε
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for all n ∈ N and all x with |x| > k. Since ψµ∗n → ω∞ weakly∗, it follows that

‖(Θµ(a)− a)px‖ 6 ε

whenever |x| > k. This proves (13).
It remains to prove the multiplicativity of Θµ. We know that Θµ : B∞→H∞(Ĝ, µ) is a

unital, completely positive map. Since ε̂ ◦Θµ = ω∞, Θµ is faithful. Denote by π : H∞(Ĝ, µ)→
`∞(Ĝ)/c0(Ĝ) the quotient map, which is also a unital, completely positive map. By (13), we
have π ◦Θµ = id. So, for all a ∈B∞, we find

π(Θµ(a)∗ ·Θµ(a)) 6 π(Θµ(a∗a)) = a∗a= π(Θµ(a))∗π(Θµ(a)) 6 π(Θµ(a)∗ ·Θµ(a)).

We claim that π is faithful. If a ∈H∞(Ĝ, µ)+ ∩ c0(Ĝ), we have ε̂(a) = ψµ∗n(a) for all n and the
transience of µ combined with the assumption a ∈ c0(Ĝ), implies that ε̂(a) = 0 and, hence, a= 0.
So, we conclude that Θµ(a)∗ ·Θµ(a) = Θµ(a∗a) for all a ∈B∞. Hence, Θµ is multiplicative on
B∞ and also on (B∞, ω∞)′′ by normality. 2

Remark 4.4. We now give a reinterpretation of Theorem 2.2. Denote by Ω = IN the path space
of the random walk with transition probabilities (6). Elements of Ω are denoted by x, y, etc. For
every x ∈ I, one defines the probability measure Px on Ω such that Px({x} × I × I × · · · ) = 1
and

Px({(x, x1, x2, . . . , xn)} × I × I × · · · ) = p(x, x1) p(x1, x2) · · · p(xn−1, xn).

Choose a probability measure η on I with I = supp η. Write P =
∑

x∈I η(x)Px.
Define on Ω the following equivalence relation: x∼ y if and only if there exist k, l ∈ N

such that xn+k = yn+l for all n ∈ N. Whenever F ∈H∞centr(Ĝ, µ), the martingale convergence
theorem implies that the sequence of measurable functions Ω→ C : x 7→ F (xn) converges
P-almost everywhere to a ∼-invariant bounded measurable function on Ω, that we denote
by π∞(F ). Denote by L∞(Ω/∼, P) the von Neumann subalgebra of ∼-invariant functions in
L∞(Ω, P). As such, π∞ : H∞centr(Ĝ, µ)→ L∞(Ω/∼, P) is a ∗-isomorphism.

By Theorem 2.2, we can define the measurable function bnd : Ω→ ∂I such that bnd x=
limn xn for P-almost every x ∈ Ω and where the convergence is understood in the compact
space I ∪ ∂I. Recall that, for x ∈ I, we denote by νx the hitting probability measure on ∂I.
So, νx(A) = Px(bnd−1(A)) for all measurable A⊂ ∂I and all x ∈ I.

Again by Theorem 2.2, π∞ ◦Υ is a ∗-isomorphism of L∞(∂I, νε) onto L∞(Ω/∼, P). We claim
that for all F ∈ L∞(∂I, νε), we have

((π∞ ◦Υ)(F ))(x) = F (bnd x) for P-almost every x ∈ Ω.

Let A⊂ ∂I be measurable. Define Fn : Ω→ R : Fn(x) = νxn(A). Then, Fn converges almost
everywhere with limit equal to (π∞ ◦Υ)(χA). If the measurable function G : Ω→ C only depends
on x0, . . . , xk, one checks that∫

Ω
Fn(x)G(x) dP(x) =

∫
bnd−1(A)

G(x) dP(x) for all n > k.

From this, the claim follows.
Since the ∗-isomorphism π∞ ◦Υ is given by bnd, it follows that for every ∼-invariant bounded

measurable function F on Ω, there exists a bounded measurable function F1 on ∂I such that
F (x) = F1(bnd x) for P-almost every path x ∈ Ω.

1089

https://doi.org/10.1112/S0010437X1000477X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1000477X


S. Vaes and N. Vander Vennet

As before, we view C(∂I) as a C∗-subalgebra of B∞. The restriction of the state ω∞ to C(∂I)
is, by definition, given by integration along νε. So, we can and do view L∞(∂I, νε) as a von
Neumann subalgebra of (B∞, ω∞)′′. However, then both Υ and Θµ are normal ∗-homomorphisms
from L∞(∂I, νε) to H∞centr(Ĝ, µ). We claim that, viewed in this way, Υ = Θµ on L∞(∂I, νε). Since
almost every path x converges to bnd x, Theorem 4.2 implies that ((π∞ ◦Θµ)(a))(x) = a(bnd x)
for all a ∈ C(∂I). Since C(∂I) is weakly dense in L∞(∂I, νε) and since π∞ ◦Υ and π∞ ◦Θµ are
both normal, we conclude that π∞ ◦Υ = π∞ ◦Θµ and, hence, Υ = Θµ on L∞(∂I, νε).

We are now ready to prove the main Theorem 1.3.

Proof of Theorem 1.3. Owing to Theorem 4.2 and Lemma 3.3, it remains to show that

Θµ : (B∞, ω∞)′′→H∞(Ĝ, µ)

is surjective.
Whenever γ :N →N ⊗ L∞(G) is an action of G on the von Neumann algebra N , we denote,

for x ∈ I, by Nx ⊂N the spectral subspace of the irreducible representation x. By definition,
Nx is the linear span of all S(Hx), where S ranges over the linear maps S :Hx→N satisfying
γ(S(ξ)) = (S ⊗ id)(Ux(ξ ⊗ 1)). The linear span of all Nx, x ∈ I, is a weakly dense ∗-subalgebra
of N , called the spectral subalgebra of N . For n ∈ N, we denote by Nn the linear span of all Nx,
|x| 6 n.

Fixing x, y ∈ I, consider the adjoint action γ : L(Hxy)→L(Hxy)⊗ C(G) given by γ(A) =
Uxy(A⊗ 1)U∗xy. The fusion rules of G =Au(F ) imply that L(Hxy)2|x| = ψxy,x(L(Hx)).

For the rest of the proof, put M := (B∞, ω∞)′′. We use the action βG of G on M and the
action αG of G on H∞(Ĝ, µ). It suffices to prove that H∞(Ĝ, µ)k ⊂Θµ(M) for all k ∈ N.

Define, for all y ∈ I, the subset

Vy := {yz | z ∈ I and yz = y ⊗ z}.

Define the projections

qy =
∑
z∈Vy

pz ∈B

and consider qy also as an element of the von Neumann algebra M . Define Wy ⊂ ∂I as the subset
of infinite words of the form yu, where u ∈ ∂I and yu= y ⊗ u.

Fix y ∈ I. Let F ∈ C(Wy) and A ∈ L(Hy). Let F̃ ∈ C(I ∪ ∂I) be a continuous extension
of F . Define b ∈ `∞(Ĝ) by the formula bpyz = F̃ (yz)ψyz,y(A) when yz = y ⊗ z and bpr = 0
elsewhere. Note that b ∈B and that the image π(b) of b in B∞ actually belongs to Mqy. We put
ζ(F ⊗A) := π(b). As such, we have defined, for every y ∈ I, the unital ∗-homomorphism

ζ : C(Wy)⊗ L(Hy)→Mqy.

Claim. For all y ∈ I, there exists a linear map

Ty : H∞(Ĝ, µ)2|y| ·Θµ(qy)⊂H∞(Ĝ, µ)→ L∞(Wy)⊗ L(Hy)

satisfying the following conditions:

– Ty is isometric for the 2-norm on H∞(Ĝ, µ) given by the state ε̂ and the 2-norm on
L∞(Wy)⊗ L(Hy) given by the state νε ⊗ ψy;

– (Ty ◦Θµ ◦ ζ)(F ) = F for all F ∈ C(Wy)⊗ L(Hy).
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To prove this claim, we use the notation and results introduced in Remark 4.4. Fix y ∈ I.
Consider a ∈H∞(Ĝ, µ)2|y| ·Θµ(qy). If x ∈ Ω is such that bnd(x) ∈Wy, then, for n big enough,
xn will be of the form xn = y ⊗ zn. By the definition of αG, we have that apxn ∈ L(Hxn)2|y|.
So, we can take elements ax,n ∈ L(Hy) such that apxn = ψxn,y(ax,n). We prove that, for
P-almost every path x with bnd x ∈Wy, the sequence (ax,n)n is convergent. We then define
Ty(a) ∈ L∞(Wy)⊗ L(Hy) such that Ty(a)(bnd x) = limn ax,n for P-almost every path x with
bnd x ∈Wy.

Take d ∈ L(Hy). Then, for P-almost every path x such that bnd x ∈Wy and n big enough,
we obtain that

ψy(dax,n) = ψxn(ψxn,y(dax,n)) = ψxn(ψxn,y(d)ψxn,y(ax,n)) = ψxn(ψxn,y(d)apxn).

In the second step, we used the multiplicativity of ψxn,y : L(Hy)→L(Hxn) which follows because
xn = y ⊗ zn. Also note that ‖ax,n‖ 6 ‖a‖. From Theorem 4.2, it follows that

‖Θµ(ζ(1⊗ d))pxn − ψxn,y(d)pxn‖→ 0

whenever xn converges to a point in Wy. This implies that

|ψy(dax,n)− ψxn(Θµ(ζ(1⊗ d))apxn)| → 0

for P-almost every path x with bnd x ∈Wy.
From [INT06, Proposition 3.3], we know that for P-almost every path x,

|ψxn(Θµ(ζ(1⊗ d))apxn)pxn − E(Θµ(ζ(1⊗ d)) · a)pxn | → 0.

As before, E(b)px = ψx(b)px. It follows that

|ψy(dax,n)pxn − E(Θµ(ζ(1⊗ d)) · a)pxn | → 0.

Note that E maps H∞(Ĝ, µ) onto H∞centr(Ĝ, µ). Whenever F ∈H∞centr(Ĝ, µ), the sequence
F (xn) converges for P-almost every path x. We conclude that for every d ∈ L(Hy), the sequence
ψy(dax,n) is convergent for P-almost every path x with bnd x ∈Wy. Since L(Hy) is finite
dimensional, it follows that the sequence (ax,n)n in L(Hy) is convergent for P-almost every
path x with bnd x ∈Wy.

By Remark 4.4, we get Ty(a) ∈ L∞(Wy)⊗ L(Hy) such that Ty(a)(bnd x) = limnax,n for
P-almost every path x with bnd x ∈Wy. From the definition of ax,n, we obtain that

‖ψxn,y(Ty(a)(bnd x))− apxn‖→ 0 (16)

for P-almost every path x such that bnd x ∈Wy.
The map Ty is isometric. Indeed, by the defining property (16) and again by [INT06,

Proposition 3.3], we have, for P-almost every path x with bnd x ∈Wy,

ψy(Ty(a)(bnd x)∗Ty(a)(bnd x)) = lim
n→∞

ψxn(a∗apxn) = (π∞ ◦ E)(a∗ · a)(x).

Here, π∞ denotes the ∗-isomorphism H∞centr(Ĝ, µ)→ L∞(Ω/∼, P) introduced in Remark 4.4.
On the other hand, by Remark 4.4, ((π∞ ◦Θµ)(qy))(x) = 0 for P-almost every path x with
bnd x 6∈Wy. Since ∫

Ω
((π∞ ◦ E)(b))(x) dPε(x) = ε̂(b)

for all b ∈H∞(Ĝ, µ), it follows that Ty is an isometry in 2-norm.
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We next prove that (Ty ◦Θµ ◦ ζ)(F ) = F for all F ∈ C(Wy)⊗ L(Hy). Let ã ∈ C(I ∪ ∂I)⊂
`∞(I) and let a be the restriction of ã to ∂I. Take A ∈ L(Hy). It suffices to take F = a⊗A.
Theorem 4.2 implies that

‖ãpxnψxn,y(A)− (Θµ ◦ ζ)(a⊗A)pxn‖→ 0

for P-almost every path x. On the other hand, for P-almost every path x with bnd x ∈Wy, the
scalar ãpxn converges to a(bnd x). In combination with (16), it follows that (Ty ◦Θµ ◦ ζ)(a⊗
A) = a⊗A, concluding the proof of the claim.

Having proven the claim, we now show that for all y ∈ I, H∞(Ĝ, µ)2|y| ·Θµ(qy)⊂Θµ(M).
Take a ∈H∞(Ĝ, µ)2|y| ·Θµ(qy). Let dn be a bounded sequence in the C∗-algebra C(Wy)⊗ L(Hy)
converging to Ty(a) in 2-norm. Since Ty ◦Θµ is an isometry in 2-norm, it follows that ζ(dn) is
a bounded sequence in M that converges in 2-norm. Denoting by c ∈M the limit of ζ(dn), we
conclude that Ty(Θµ(c)) = Ty(a) and, hence, Θµ(c) = a.

Fix k ∈ N. A fortiori, H∞(Ĝ, µ)k ·Θµ(qy)⊂Θµ(M) for all y ∈ I with 2|y| > k. By
Proposition 2.5, the harmonic measure νε has no atoms in infinite words ending with αβαβ · · · .
As a result, 1 is the smallest projection in M that dominates all qy, y ∈ I, 2|y| > k. So,
H∞(Ĝ, µ)k ⊂Θµ(M) for all k ∈ N. This finally implies that Θµ is surjective. 2

5. Solidity and the Akemann–Ostrand property

In § 3, we followed the approach of [VV07] to construct the compactification B of Ĝ. In fact,
more of the constructions and results of [VV07] carry over immediately to the case G =Au(F ).
We continue to assume that F is not a multiple of a 2× 2 unitary matrix.

Denote by L2(G) the GNS Hilbert space defined by the Haar state h on C(G). Denote by
λ : C(G)→L(L2(G)) the corresponding GNS representation and define Cred(G) := λ(C(G)). We
can view λ as the left-regular representation. We also have a right-regular representation ρ and
the operators λ(a) and ρ(b) commute for all a, b ∈ C(G) (see [VV07, Formulae (1.3)]).

Repeating the proofs of [VV07, Proposition 3.8 and Theorem 4.5], we arrive at the following
result.

Theorem 5.1. The boundary action βĜ of Ĝ on B defined in Theorem 3.2 is:

– amenable in the sense of [VV07, Definition 4.1];

– small at infinity in the sense that the comultiplication ∆̂ restricts as well to a right action
of Ĝ on B; this action leaves c0(Ĝ) globally invariant and becomes the trivial action on the
quotient B∞.

By construction, B is a nuclear C∗-algebra and, hence, as in [VV07, Corollary 4.7], we obtain
that:

– G satisfies the Akemann–Ostrand property, which is that the homomorphism

Cred(G)⊗alg Cred(G)→ L(L2(G))
K(L2(G))

: a⊗ b 7→ λ(a)ρ(b) +K(L2(G))

is continuous for the minimal C∗-tensor product ⊗min;

– Cred(G) is an exact C∗-algebra.
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As before, we denote by L∞(G) the von Neumann algebra acting on L2(G) generated by
λ(C(G)). From [Ban97, Théorème 3], it follows that L∞(G) is a factor of type II1 if F is a
multiple of an n× n unitary matrix and of type III in the other cases.

Applying [Oza04, Theorem 6] (in fact, its slight generalization provided by [VV07, Theo-
rem 2.5]), we obtain the following corollary of Theorem 5.1. Recall that a II1 factor M is called
solid if for every diffuse von Neumann subalgebra A⊂M , the relative commutant M ∩A′ is
injective. An arbitrary von Neumann algebra M is called generalized solid if the same holds for
every diffuse von Neumann subalgebra A⊂M which is the image of a faithful normal conditional
expectation.

Corollary 5.2. When n > 3 and G =Au(In), the II1 factor L∞(G) is solid. When n > 2,
F ∈GL(n, C) is not a multiple of an n× n unitary matrix and G =Au(F ), the type III factor
L∞(G) is generalized solid.

Appendix A. Approximate intertwining relations

We fix an invertible matrix F and assume that F is not a scalar multiple of a unitary 2× 2
matrix. Define G =Au(F ) and label the irreducible representations of G by the monoid N ∗ N,
freely generated by α and β. The representation labeled by α is the fundamental representation of
G and β is its contragredient. Define 0< q < 1 such that dimq(α) = dimq(β) = q + (1/q). Recall
from § 3 that whenever z ⊂ x⊗ y, we choose an isometry V (x⊗ y, z) ∈Mor(x⊗ y, z). Observe
that V (x⊗ y, z) is uniquely determined up to multiplication by a scalar λ ∈ S1. We denote by
px⊗yz the projection V (x⊗ y, z)V (x⊗ y, z)∗.

Lemma A.1. There exists a constant C > 0 that only depends on q such that

‖(V (xr ⊗ ry, xy)⊗ 1z)p
xy⊗z
xyz − (1xr ⊗ pry⊗zryz )(V (xr ⊗ ry, xy)⊗ 1z)‖ 6 Cq|y|,

‖(1x ⊗ V (yr ⊗ rz, yz))px⊗yzxyz − (px⊗yrxyr ⊗ 1rz)(1x ⊗ V (yr ⊗ rz, yz))‖ 6 Cq|y|
(A.1)

for all x, y, z, r ∈ I.

One way of proving Lemma A.1 consists of repeating the proof of [VV07,
Lemma A.1] step by step. However, as we explain now, Lemma A.1 can also be deduced more
directly from [VV07, Lemma A.1].

Sketch of proof. Whenever y = y1 ⊗ y2 with y1 6= ε 6= y2, the expressions above are easily seen to
be 0. Denote

vn = α⊗ β ⊗ α⊗ · · ·︸ ︷︷ ︸
n tensor factors

and wn = β ⊗ α⊗ β ⊗ · · ·︸ ︷︷ ︸
n tensor factors

.

The remaining estimates that have to be proven reduce to estimates of norms of operators in
Mor(vn, vm) and Mor(wn, wm). Putting these spaces together in an infinite matrix, one defines
the C∗-algebras

A := (Mor(vn, vm))n,m and B := (Mor(wn, wm))n,m
generated by the subspaces Mor(vn, vm) and Mor(wn, wm), respectively. Choose unit vectors
t ∈Mor(α⊗ β, ε) and s ∈Mor(β ⊗ α, ε) such that (t∗ ⊗ 1)(1⊗ s) = (q + 1/q)−1. By [Ban97,
Lemme 5], the C∗-algebra A is generated by the elements 1⊗2k ⊗ t⊗ 1⊗l, 1⊗(2k+1) ⊗ s⊗ 1⊗l.
A similar statement holds for B.
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Denote by U the fundamental representation of the quantum group SU−q(2) and let
t0 ∈Mor(U ⊗ U, ε) be a unit vector. The proofs of [BDV06, Theorems 5.3 and 6.2] (which heavily
rely on the results in [Ban96, Ban97]) imply the existence of ∗-isomorphisms

πA : (Mor(U⊗n, U⊗m))n,m→A and πB : (Mor(U⊗n, U⊗m))n,m→B

satisfying

πA(1⊗2k ⊗ t0 ⊗ 1⊗l) = 1⊗2k ⊗ t⊗ 1⊗l and πA(1⊗(2k+1) ⊗ t0 ⊗ 1⊗l) = 1⊗(2k+1) ⊗ s⊗ 1⊗l

and similarly for πB.
As a result, the estimates to be proven follow directly from the corresponding estimates for

SU−q(2) proven in [VV07, Lemma A.1]. 2

Using the notation

dS1(V, W ) = inf{‖V − λW‖ | λ ∈ S1},
several approximate commutation relations can be deduced from Lemma A.1. For instance, after
a possible increase of the constant C, (A.1) implies that

dS1((1x ⊗ V (yr ⊗ rz, yz))V (x⊗ yz, xyz), (V (x⊗ yr, xyr)⊗ 1rz)V (xyr ⊗ rz, xyz)) 6 Cq|y|

(A.2)
for all x, y, z, r ∈ I. We again refer to [VV07, Lemma A.1] for a full list of approximate
intertwining relations.
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