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Abstract

Following the end of universal testing in the UK, hospital admissions are a key measure of
COVID-19 pandemic pressure. Understanding leading indicators of admissions at the National
Health Service (NHS) Trust, regional and national geographies help health services plan for
ongoing pressures. We explored the spatio-temporal relationships of leading indicators of
hospitalisations across SARS-CoV-2 waves in England. This analysis includes an evaluation of
internet search volumes from Google Trends, NHS triage calls and online queries, the NHS
COVID-19 app, lateral flow devices (LFDs), and the ZOE app. Data sources were analysed for
their feasibility as leading indicators using Granger causality, cross-correlation, and dynamic
time warping at fine spatial scales. Google Trends and NHS triages consistently temporally led
admissions in most locations, with lead times ranging from 5 to 20 days, whereas an incon-
sistent relationship was found for the ZOE app, NHS COVID-19 app, and LFD testing, which
diminished with spatial resolution, showing cross-correlation of leads between –7 and 7 days.
The results indicate that novel surveillance sources can be used effectively to understand the
expected healthcare burden within hospital administrative areas though the temporal and
spatial heterogeneity of these relationships is a key determinant of their operational public
health utility.

Introduction

The cessation of mass community testing has hampered the ability to understand contemporary
estimates of localised COVID-19 growth. Epidemiological prevalence surveillance studies such as
the Office of National Statistics (ONS) COVID-19 Infection Survey (CIS) were produced with
inconsistent spatial sampling and significant reporting lags for real-time public health policy.
Therefore, the surveillance of hospital admissions and bed occupancy may more reliably capture
the true growth of COVID-19 in the community in addition to the current pressures on health
services. Understanding leading indicators of hospital admissions, with improved spatial preci-
sion, allows the National Health Service (NHS) to appropriately prepare, and policymakers to
plan interventions. Hospital admissions are less influenced by testing ascertainment rates than by
community testing; however, they are more impacted by the age composition of incidence due to
the age severity gradient and are therefore less able to detect early growth in younger ages.

A variety of model structures have been employed to predict COVID-19 admission dynamics.
For example, incorporating local testing has been shown to improve admission forecasting at fine
spatial scales over autoregressive models [1]. More complex Bayesian structural time series
modelling techniques have been developed across several countries to forecast dynamics nation-
ally [2]; however, these univariate time series models struggle at epidemic turning points. In
addition, causal approaches aimed at capturing herd immunity effects have been employed [3],
though these methods rely on assumption-driven scenarios. Transmission modelling has been
used throughout the pandemic; however, these models are fit to coarse spatial scales to reduce
model uncertainty [4], which limits their operational utility.

There has been work exploring indirect surveillance approaches for disease incidence. For
example, perturbations in Google Trend’s search terms have been shown to precede cases and
deaths at a national level [5] and incorporated in neural network architectures to forecast clinical
risk in the UK [6]. These Google Trend search queries also work with other epidemic metrics of
interest by improving model predictive performance of case rates, hotspot detection [7], and
deaths at a US state level [8]. However, the surveillance data sources are not limited to search
engine records; during the COVID-19 pandemic mobility measurements, social media and
wearable technology have been explored to forecast healthcare pressures [9–12]. These applica-
tions are broader than just COVID-19 – digitised syndromic surveillance (including search
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engines, news reports, social media, clinician search queries, and
crowdsourcing apps) has been used effectively to monitor other
disease pressures including influenza and Zika [13–17].

Indicator–admissions temporal relationships are not consist-
ent due to changes in behaviour, population immunological
response, testing coverage, and antigenic drift/shift. Novel vari-
ants of COVID-19 have had distinct epidemiological characteris-
tics affecting this temporal relationship. The extent of a variant’s
immunological evasion to prior immunity impacts the incidence
growth rate and the rate of spatial dispersion [18]. Novel variants
have unique severity profiles [19], for instance, relative to wild
type, the Alpha variant was estimated to have a 62% (HR – 1.62
(95% CI: 1.48, 1.78)) increased risk of hospitalisation [20]. This
evolving relationship between infection and hospitalisation
impacts the temporal relationship between indicators and admis-
sions. The COVID-19 vaccination campaign began in the UK in
December 2020, reaching 150 million total doses across the first,
second, spring, and autumn booster doses [21, 22]. The vaccin-
ation, in combination with high population infection attack rates
over successive waves of SARS-CoV-2 incidence, has led to an
increasingly complex picture of immunity, at individual and
population levels, against SARS-CoV-2 infection [23, 24], which
impacts syndromic surveillance efforts to understand the spatio-
temporal infection burden.

We have evaluated leading indicators of COVID-19 hospitalisa-
tions during the Omicron BA.1, BA.2, and BA.4/5 variant waves of
2021/2022. This analysis has been conducted at a National Health
Service (NHS) Trust geographic scale (local groups of secondary
care providers) [25].We use a variety of methods to assess temporal
relationships between the indicator andCOVID-19 hospital admis-
sion at a high spatial resolution, including Granger causality, cross-
correlation analysis, and dynamic time warping.

Methodology

The data assessed were available at different geographic designa-
tions and with varying quality. Hospital admission counts by date
are provided by the NHS England (NHSE) daily COVID-19 hos-
pital situational report [26]. This contains Trust-level hospital
admissions stratified by age, with bed occupancy and staff absence
counts. Google Trends [27] was curated to capture search query
trends relevant to syndromic surveillance of COVID-19. NHS
111 calls and online pathways [28] were provided by the NHS, with
COVID-19-relevant treatment pathways extracted. ZOE Health
[29] provided counts of crowdsourced self-reported symptoms
from the ZOE app. Lateral flow device (LFD) testing data were
accessed from theUKCOVID-19 dashboard [30]. AggregatedNHS
COVID-19 app [31] metrics were extracted from data made avail-
able by the UKHSA.

Several other data sources were explored for feasibility but were
excluded from this study as they were determined to be of limited
utility in an operational context. Data sources with a transfer/
access latency of greater than one week were excluded, as were
data sources that lagged admissions. Primary care and general
practitioner calls were excluded due to incompleteness of their
national spatial coverage. School attendance reports were not
evaluated due to the substantial reporting lag and data availability,
which hampers utility in operational settings. PCR testing data
were excluded due to changes in mass testing policies, which
impacted eligibility and spatial coverage. Care home data were

excluded due to highly heterogeneous spatial coverage and a
lagging relationship with community transmission. The Office
for National Statistics Covid Infection Survey of community
positivity was explored, and we estimated a high correlation with
hospital admission, see Supplementary Section A, Figure S1.
However, further analysis of these data was not conducted as
the quantity of sampled tests in this infection study was not
informative at smaller geographic levels (like NHS Trust) nor is
it released in a timeframe useful for real-time analysis. Data
availability is given in Supplementary Table S1. We analysed the
data sources in real time; however, for lateral flow device data, the
analysis was conducted using specimen date, which is impacted by
data correction over time.

Data

Admissions

English hospital admissions, provided by NHS England [29], are
reported at a Trust level - a collection of secondary care providers.
A COVID-19 admission is defined as a patient who had a positive
test upon arrival to hospital, or within the past 24 hours while an
inpatient. These counts therefore include admissions for COVID-
19, incidental presentations, and hospital acquired infection.
NHSE data are provided daily, with each individual Trust sub-
mitting the web form by 11 am for the preceding 24 hours. Due to
the fast operational turnaround and considerable number of
hospitals, there are some missing entries per day and occasional
inaccurate values reported. The admissions data were recon-
structed to provide one record per Trust per day, with resulting
missing data being imputed using the last observation carried
forward. Organisational mergers were coded manually ensuring
records were accurate to the end of the study date. Hospitals with
fewer than 10 admissions in 2022 or clear non-acute specialisa-
tions were removed from the analysis as they represented misre-
porting, non-COVID specialisations, or purely incidental
admissions, leaving 121 acute Trusts. Admissions are presented
from 01 October 2021 to the 29 August 2022, covering the end of
the Delta plateau and the BA.1, BA.2, and BA.4/5 Omicron waves
in 2021/2022.

Surveillance data

Google Trends
A large set of potentially predictive Google Trends search terms
were analysed in previous research to determine which terms
should be evaluated [6]. Initially, over 1,000 terms were captured
from the most common phrases used within NHS Pathway
111 telephonic COVID-19 triages, COVID-19 symptoms, over-
the-counter medicine, and natural language variations on
requests for tests. These terms were screened for relevance and
relative occurrence at a national level within the Google Trends
web interface. Analysis at a national level using generalised addi-
tive models with a negative binomial error structure and dynamic
time warping were used to assess each term’s relevance for
COVID-19 incidence.

From the wide range of potential terms, 84 COVID-19-relevant
Google Trends search term volume scores were collected hourly
and aggregated to daily scores per lower tier local authorities
(LTLAs) across the UK [6]. An LTLA is an administrative
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geography within the UK, capturing a district of local government,
smaller than a county. The Google Trends scores relate to a ranked
relative search volume in a city. We transform the city-level data to
LTLA using a coordinate mapping. The LTLA granularity for the
London region is limited as Google defines London as central
London, and then outer London areas, reducing precision when
mapping to London LTLAs. Due to the considerable number of
Google Search Terms collected, similar terms were grouped
together with the aim of increasing the signal-to-noise ratio.
COVID-19 symptom search terms were grouped into ‘common’,
‘rare’, and ‘severe’ terms. Terms relating to general symptoms and
tests were combined. General COVID-19 terms such as ‘corona-
virus’ were grouped, and terms such as ‘tier system’ relating to
policies no longer in effect were combined. The terms and process-
ing logic used are outlined in Supplementary Section B.

NHS 111 pathways
NHS 111 provides non-emergency health advice based on an
individual’s symptoms [30]. A user follows the triage process,
inputs symptoms and receives healthcare advice (treatment), either
through the online or telephone service. Data are presented as
counts by day for given pathway outcomes, stratified by age, gender,
and Lower Super Output Area (LSOA), an area more granular than
LTLA. COVID-19 treatments are aggregated together into clinical
assessment, ambulance, or self-care – stratified by age. The ages
were binned into three groups to increase the counts per group.
These age groups were 0–19, 20–59, and 60 and over.

LFD tests
Lateral flow devices (LFDs) are self-administered rapid tests allow-
ing for real-time detection of COVID-19 by an individual. The tests
were provided free universally until 01 April 2022, with the data
obtained from the UK COVID-19 Dashboard [31]. An aggregation
of positive and total test counts was made available daily at the
LTLA level. There can be latency in this dataset due to upload delays
for the specimen date of test; however, we did not have access to the
historical real-time data, and therefore, analysis included the com-
plete backfilled data. From the LFD data, a positivity rate for tests
was calculated using positive and total test counts. A metric of test
counts per capita was calculated using the associated population
size of an NHS Trust.

NHS COVID-19 app
TheNHSCOVID-19 app [32] produces daily aggregatedmetrics of
app events for analysis. These events covered both app-specific
metrics, such as downloads, app store ratings, and users, as well
as contact tracing-relevant processes such as notifications of expos-
ure. The data were provided at an LTLA level, with a weekly release
schedule within the UKHSA, with epidemiologically relevant
events – contact exposure notifications of users and reported
positive tests via the app interface.

ZOE COVID-19 study app
The ZOE app allows users to self-report COVID-19 relevant symp-
toms daily with the aim of capturing an up-to-date picture of the
pandemic [33]. The data are stratified by age, ethnicity, sex, health-
care worker status, and LTLA. Due to the sparsity of counts at this
high resolution, the counts were aggregated as total symptom
counts per LTLA per day. The different symptom counts were

combined into categories, ‘common’, ‘severe’, ‘rare’, and ‘irrele-
vant’. Groupings for all variables are further described in Supple-
mentary Section C, Table S2.

Processing

Spatial mapping
NHS 111, ZOE app, LFD tests, and NHS COVID app leading
indicators are reported in LTLA geographies (or geographies that
are strict subregions of LTLAs) and therefore cannot be aggre-
gated directly to hospital admissions at a Trust level. Amapping is
therefore required to relate LTLA-level data sources to NHS Trust
admissions. Using themethodology based on the covid19.nhs.data
R package [33], we produced a more contemporary probabilistic
mapping using count data from the SUS APC (Secondary Use
Service, All Patient Care) hospitals’ admitted patient database.
The data extracted were from the 6 months preceding the study
and contain test-confirmed admissions (at a Trust level) and
discharge locations (the associated LTLA). From these records,
we calculate a proportion of people from a local area (LTLA) who
were admitted to a specified Trust. Using the proportion of people
from an LTLA who attend a Trust, we use the residential popu-
lation size of that LTLA to calculate the weighted population size
for a Trust, referred to as population size in this study. The LTLA
residential population counts were obtained from the 2019 mid-
year population estimates of each LTLA from the Office for
National Statistics. The same mapping between LTLA and Trust
allows us to convert LTLA indicator data sources to the hospital
Trust level. The distribution of populations across NHS Trusts is
shown in Supplementary Figure S2, compared to counties and
LTLAs, showing they are of a comparable scale. For the Google
Trends data, a mapping was used, which combines London geog-
raphies. Leading indicator sources are first aggregated to the
LTLA level and then transformed with the Trust–LTLA mapping
with a weighted sum to determine the effective impact of an
indicator on a Trust.

Scaling and smoothing
All indicators were smoothed using a locally estimated scatterplot
smoothing (LOESS) method to reduce noise and scaled between
0 and 1 by Trust to allow comparison between hospitals. For
dynamic time warping, the variables were z-score normalised.

Evaluation

Data sources were evaluated against present admissions and admis-
sions in 14 days.We looked at present admissions to understand the
use of the indicator as a real-time proxy for admissions. Following
discussion with public health practitioners, 14 days was determined
as a meaningful time window to act upon leading indicator insight.
Consultation on the time length included those creating situational
awareness products, senior public health leaders, and colleagues
within the NHS. Leading relationships less than 14 days are still of
interest for surveillance.

To understand how the leading relationships have changed over
time, the data are analysed across the recent Omicron epidemic
waves, with each wave being evaluated independently for the
Granger causality and cross-correlation approaches. The timings
defined for these waves are given in Supplementary Table S3.
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Granger causality
The Granger causality test estimates if a time series (indicator) can
linearly forecast another time series (admissions), not whether
there is a causal relationship [34]. The test uses lagged time series
and a combination of t-tests and f-tests to determine if the indicator
meaningfully adds explanatory power for predicting admissions.
Two regressionmodels were constructed, one contains the explana-
tory time series (indicator) and the other does not. The comparison
between the two models tells us whether the explanatory time
series adds useful information in predicting the response. We
have two time series xt and yt , the indicator and admissions,
respectively, at time t. We then construct two regression equations,
giving yt explained firstly by lags of yt and lags of xt and secondly
by lags of yt alone

yt ¼ α0 +
Xm

j¼1
αjyt�j +

Xm

j¼1
βjxt�j + ϵt , (1)

yt ¼ α0 +
Xm

j¼1
αjyt�j + ϵt , (2)

where αj and βj are the regression coefficients for lag j. The null
hypothesis is that

H0 : β1 ¼ β2 ¼…¼ βm ¼ 0,

and an f-test is performed on the two models (1) and (2) to
determine the effect of x

F¼
RSS1�RSS2ð Þ

p2�p1

� �
RSS2
n�p2

� � ,

where n is the number of data points, p1 and p2 are the number of
parameters in (1) and (2), and RSS is the residual sum of squares.
We take the maximum as lag m¼ 3; therefore, lags 1, 2, and 3 days
are used, with larger numbers of lags reducing the power of the tests.
Due to the spatial variation in trends and behaviours at the hospital
level, Granger causality tests were performed per Trust, rather than
at higher aggregations. A test is performed between an indicator
and current hospital admissions, as well as between the indicator
and hospital admissions in 14 days, to test the relationship within a
practically useful temporal distance. Using both times, we can
understand whether an indicator leads admissions and if the indi-
cator leads admissions enough to be useful.

Cross-correlation
A linear time delay analysis using cross-correlation functions
(CCFs) allows us to calculate the cross-correlation between indica-
tors and admissions, producing scores over different lead times
[35].

Given two times xt and yt where t¼ 0,1,2…N�1and that mx

and my are the respective means, then the cross-correlation Rxy at
delay d is

Rxy ¼

P
i

xt �mxð½ Þ× yt�d�my
� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

xt �mxð Þ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
yt�d�my
� �2r :

We define an ‘optimal lead time’ as the lead day d, fewer than
30 days, with maximum CCF between indicator and admissions.
Within 30 days was selected to avoid detecting periodic effects in
the growth–peak–decline–plateau cycle of admissions.

Dynamic time warping
Dynamic time warping (DTW) calculates the non-linear alignment
between two sequences of values. The algorithm creates a mapping
(warping curve) between the sequences, which we analyse to under-
stand how indicators and admissions relate over time. The algo-
rithm aims to find the minimal path along the warping curve which
aligns the two time series, applied using the R dtw package [36]. Fur-
ther details on how the method works are provided in [37].

We aim to find the optimal warping curve ϕ between xi and yj.
For DTW, each index in time series ximust match at least one time
index yj , and the subsequent matches from one index to the next
must be monotonically increasing. The algorithm finds the best
index matching, which minimises the size of ϕ, the sum of absolute
differences in value for each matched pair of indexes.

D x,yð Þ¼ min
ϕ

dϕ x,yð Þ:

The warping between time series can be calculated in a multivariate
context (multiple pairs of time series) by minimising the joint
distance across the indexes of x and y, i and j along the column
C.

d i, jð Þ2 ¼
XC

c¼1
xic�xjc
� �2

:

To produce sensible results, we place restrictions on the warping
curve. Firstly, a 35-day window is used (specifically a Sakoechiba
window) to avoid unrealistically long lead times. An asymmetric
step pattern with a P2 slope constraint was chosen to allow for a
leading alignment between the time series. The specifics of these
parameters are addressed in further detail within the DTW lit-
erature [37, 38]. From theDTW, we can understand the alignment
and lead/lag relationship between the time series in a non-linear
fashion, identifying leads at different points in time and epidemic
phases by analysing which index pairs are matched. Open start
and end conditions were chosen to best capture the leading
relationships as not all sequence points of the time series are
available, which can cause a beginning or end ‘bunching’ effect,
distorting calculated lead times [39]. We analyse the alignments
by calculating the difference between the index of the indicator
with its matched index in the admissions series, which tells us how
far the indicator is ahead of the admissions – a lead time. Add-
itionally, as part of the DTW algorithm, we can extract the
cumulative warping ϕ between the indicator and admissions,
which is a measure of how much manipulation is needed (how
different the time series are) to map between the sequences – the
warping distance. As time series can be different lengths, or have
partial matches, we use the normalised distance to compare how
well the indicators match admissions – with greater distances
corresponding to larger leads.

Data operations
To be a useful indicator, a data source must be available in near-
real-time to capitalise on leading information detected and make
decisions before the associated admissions occur. Data sources with
substantial reporting latency are not viable candidates for oper-
ational indicators. Such a ‘leading indicator’ may have led the
measurement in question, but if they are not available to analyse
in real time, they cannot have an impact on real-time decisions and
were therefore not assessed. Additionally, completion lags, or back-
filling, were considered as a major limitation for some data sources
as they are unreliable in the near term.
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Results

The indicators in this study vary in their magnitude and timing
relative to the successive Omicron admission waves – examples of
this effect are shown in Figure 1.

Granger causality

With the assumption of linearity, the Granger tests are used to
examine the utility of an indicator in predicting future hospital
admissions. A low centred distribution of p-values corresponds to
an indicator with a strong leading relationship across many Trusts.

Figure 2 describes the p-value of the leading relationship of an
indicator. The NHS 111 and Google Trends indicators show con-
sistent leading relationships across waves, for some variables. For
other indicators such as LFD tests and the NHS COVID app, there
is a high variation in relationship strength across waves. Each wave
has unique spatio-temporal indicator relationships; for example,
the LFD tests were estimated to have the most robust leading
association with hospital admissions during the BA.2 period of
growth, whereas the strength of association with NHS 111 variables
reduced during this wave.

Figure 3 shows whether an indicator has a lead at 14 days or
greater, which is indicative of whether actionable insight can be

Figure 1. A time series plot of example variables from each data source’s indicators, aggregated nationally, with reference to national admissions (red dashed line). Indicators that
lead admissions well should appear shifted leftward of the admissions line. Indicators and admissions are scaled between 0 and 1 to allow for easy visual comparison of temporal
offsets.
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derived for real-world applications. Lower distributed p-values
indicate a leading relationship at 14 days. Again, there are a
majority of Trusts with low p-values for the Google and NHS
111 variables, though for the waves available, the ZOE symptom
data does lead well. However, as the ZOE data are truncated for
BA.2, the Granger causality is potentially just capturing the growth
phase, which will be easier to linearly predict using Granger caus-
ality. Even the strongest indicators have multiple Trusts with high
p-values, highlighting the spatial variation in relationship.

Cross-correlation

We used cross-correlation analysis to assess each indicator at a
range of temporal offsets with admissions. We extracted optimal
lead times and CCF values across Trusts and waves. By calculating
the cross-correlation between the indicator and admission under
linear relationship assumptions at each time offset, we approxi-
mated the optimal lead time, Figure 4, and quantify how strong the
relationship at 14 days is, Figure 5. It is important that we both
look at ‘best lead time’ (optimal lead) and the strength at 14 days to

understand the nuances of the relationship. Though we are inter-
ested operationally in the correlation at 14 days, a given indicator
may, in fact, have a stronger relationship at greater than 14 days,
which could be more useful. An indicator may have a large
optimal lead time, but that large lead is not useful if the correlation
for the indicator is small. Conversely, theremay be a small optimal
lead, with a highly correlated tracking time series but high CCF at
14 days, due to a wide peak in CCF values across temporal offsets.

The calculation of optimal lead time is sensitive to its definition
and to perturbation, if CCF peaks are wide across lead times. As
some proportion of Trusts will not have a leading relationship for
an indicator, we expect there to be optimal leads that are either
negative (lags) or noisy across waves. An example cross-correlation
function visualisation is provided in Supplementary Figure S3,
showing the correlation between NHS 111 self-care for ages 0–
19 years and hospital admissions.

An optimal lead time does not necessarily imply a strong leading
relationship, it indicates that the specific time offset is the lead of
highest correlation. For example, as the maximum window is
30 days, maximum correlations at 30 days may indicate a poor

Figure 2. The distribution of p-values across Trusts from Granger causality tests. The tests are performed at the Trust level for each separate wave between indicator and
admissions. Low p-values tell us the indicator leads admissions well, given the conditions of the test.
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signal or out-of-phase relationship. From an analysis of the distri-
bution of optimal lead times in Figure 4, we can see there is
substantial variation across the waves for individual indicators.
For Google Trends and NHS 111, there is a wide range in optimal
lead times for the BA.1 wave, whereas for the LFD variables, there
are instead lagged relationships, centred below zero. For a given
indicator, the sign of the lead can vary substantially across Trusts.
While there is a median lead of >10 days for the ZOE symptom
variables, the lead reduces in the truncated BA.2 wave, as shown
in Figure 1.

By looking at the cross-correlation offset at 14 days, we can see
how related the indicators are with admissions 14 days in the future.
A high CCF value indicates a strong relationship at a fixed temporal
offset, though variables are likely to have stronger relationships
(peak CCFs) at different offsets. We can see the CCF values for
the indicators in Figure 5, where there is a high variation between
Trusts and variant waves. Some of the indicators are much more
highly correlated than others, though which are the strongest varies
wave on wave. Most LFD indicators show stronger relationships in
the later waves, for example. There are some negative CCF values,

such as NHS 111 Clinical 0–19, which may mean the signal lags
admissions – though itmay also indicate the signals are out of phase
at this specific time offset. The NHS COVID app has consistently
strong cross-correlation across indicators and waves.

Dynamic time warping

We first explore an example dynamic time warping (DTW) for a
single Trust with a single indicator to demonstrate the concept,
Figure 6. There is a clear leading relationship between the indicator
and admissions, shown by the diagonal index matches, though the
effect decreases in the successive waves. For BA.2, there is a clearer
tracking alignment displayed with vertical matches, with peaks at
the same indexes for indicator and admission.

For this analysis, we focus on the multivariate case of the DTW
algorithm, with all Trusts analysed simultaneously for a given
indicator, with an example shown in Supplementary Figure S4.
An initial period of the Delta plateau sequence is included to avoid
boundary effects at the start of the series in the DTW algorithm;
however, the sequence values are excluded from the reported

Figure 3. The distribution of p-values across Trusts from Granger causality tests. The tests are performed at the Trust level for each separate wave between indicators and
admissions in 14 days. Low p-values tell us the indicator leads admissions in 14 days well given the conditions of the test.
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results. Due to the study time period, an end period following the
BA.4/5 wave was not available; therefore, we expect boundary
effects to be present in this wave, particularly for the Google Trends,
where the time series is further truncated.

In Figure 7, we show how the alignment lead times are distrib-
uted within a wave. Indicators such as Google Trends (Common,
Rare, Entity, Symptom + Test) and NHS 111 (Clinical 0–19,
Ambulance 0–19, 20–59) had leads of greater than 10 days for
the BA.1 and BA.2 waves. Using the linear cross-correlation
method however, the Google Rare indicator had a smaller lead in
BA.2, highlighting how the results are sensitive to approach. For
some LFD variables, the performance increased over successive
waves. For variables with strong leads, the increase was not neces-
sarily replicated for successive waves.

The normalised distance is a measure of misalignment
between the indicator and admissions produced from the
dynamic time warping. While the step pattern chosen does not
strictly produce a lead alignment for all types of signals, other
analysis in this manuscript has shown linear lead times >0; we
therefore assume that the normalised distances produced can be
treated as a proxy for lead time length. A smaller normalised
distance corresponds to a small warp required to align the indi-

cator and admission, whichmeans the indicator tracks the admis-
sions well. Poorly aligned indicators therefore have greater
normalised distances and high corresponding lead. Using a nor-
malised distance allows comparison of timeseries of different
lengths, such as the ZOE app data and Google Trends, which
are truncated. Within Figure 8, we see the NHS 111 and Google
Trends have larger normalised distances than other indicators –
they are not as aligned. The result may be because they have a
large lead/lag, which requires a large warping, or due to having a
relationship that is not consistent through time and location. The
COVID app, LFD tests, and ZOE app have smaller normalised
distances, indicating a smaller lead/lag or more consistent time
shifts across geographies.

Data operations
To be a useful indicator, data must be available in a timely and
complete manner. While leading relationships can be evaluated
statistically for historical data, how useful an indicator is in a
practical setting is a result of how quickly analysis can be made
available. If there are significant reporting/completeness lags in
data being presented, then it will erode any actionable lead times.
The different release frequencies and reporting/completeness

Figure 4. The distribution, via boxplot, of optimal lead times between the indicator and admissions across all Trusts for each wave. Optimal lead is defined as the lead time with the
maximum non-negative CCF value within a 30-day forward and backward window. Larger optimal leads will be most useful for forecasting, wide ranges in optimal lead correspond
to high variation spatially, and smaller variation indicates a more consistent lead. The indicators with higher average (across waves) optimal leads are sorted to the left.
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lags are given in Table 1 for those indicators explored in this
study.

Google Trends is gathered in real time via an API, therefore
available without latency, which allows for daily analysis. The NHS
111 data are provided via egress from the NHS, which introduces a
day lag. The LFD testing and NHS COVID-19 app’s weekly release
schedule reduce the operational effectiveness of their use as an
analysis or model may be needed for policymaking at different
points in the week relative to when the data are released. The one-
off provision of ZOE data makes the operational effectiveness and
limitations unknown without further exploration. How quickly
data can be collected and transferred to analysts directly impacts
its utility for decision making.

Discussion

Using a variety of statistical approaches, we highlight the potential
utility of novel surveillance data, displaying their strengths and
limitations for use as leading indicators of hospital admissions with
COVID-19 at a high spatial resolution. The strength of the leading
indicator relationship changes temporally and spatially across
resurgent waves of COVID-19 incidence, and the implications of
our results show a range of indicators should be used to accurately
capture epidemic trends.

Consistent with the start of the pandemic [11], we show that
Google Trends is an effective leading indicator of the healthcare
burden associated with SARS-CoV-2 transmission when extended
to fine spatial resolutions. Existing work on COVID indicator
analysis at fine spatial scales explores cases [1], which we expand
upon to show that there are other novel, viable indicators at these
scales. Building on the data collection approach used to determine
clinical risk at low spatial geographies [6], this analysis shows the
Google Trends data’s utility can be extended to hospital admissions
at a hospital Trust, rather than administrative geography. While
also analysing leading indicators of hospital admissions, we extend
the work of forecastingUS hospital admissions in 2021 [40] to show
effectiveness of Google Trends as a leading indicator within the
Omicron waves.

The ZOE app was created to measure current COVID-19 symp-
tomatic prevalence [32]. We found that there was a temporal lead
during the BA.1 wave that degrades by the BA.2 wave – likely due to
declining usership. We introduce the NHS COVID-19 app, which
as well as reducing COVID-19 incidence [41] could have utility as a
forecasting data source. Though the NHS COVID-19 app’s useful-
ness will depend on continued widespread usage and user notifi-
cations [42]. Previous literature shows that univariate epidemic
signals have limited reliability across waves [43], which corrobor-
ates our findings that there will be differences between waves,

Figure 5. The distribution of CCF values for the indicator and admissions at 14 days lead across Trusts for eachwave. High CCF values correspond to a high correlation between time
series, and CCF values centred around zero would show that an indicator does not have ameaningful temporal lead against admissions. High variation in the CCF values show how
consistent leading relationships are across the different Trusts. The indicators with higher average (across wave) CCF values are sorted to the left.
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admissions, and indicators. This analysis shows thatNHS 111 Path-
ways are a valuable leading indicator of COVID-19 hospital admis-
sions, in agreement with work done within a single NHS Trust
[44]. We extend these findings across England, beyond the first
COVID-19 wave, and further enrich the data using the 111 Online
Pathway.

There is large spatial variation in indicators’ relationships with
Trust-level admissions. At higher level geographical scales and in
aggregate, there are trends, but these trends are not always
reliable at a local level – with changing lead times in different
waves and locations. The explanation for the change will depend
on the indicator (such as testing policy for LFDs, media interest
for Google Trends, and app use uptake for ZOE and NHS
COVID-19 app), which implies the indicators’ useful in the most
recent wave are not guaranteed to work in the next wave –

requiring active monitoring. Even within wave, there is a high
variation, as shown by the variety in DTW lead times, which
implies that leading indicators may be more performant at dif-
ferent epidemic phases. As the public conscious and government
policies shift away from COVID-19, and other respiratory patho-
gens resume circulation, we would expect a degradation in the
strength of some of these signals.

These findings have implications for developing forecasting
models using these indicators. The large spatial variation implies
that relying onTrust level-indicators alonewill performpoorly for a
proportion of Trusts. By using pooling techniques via hierarchical

modelling, the Trusts with stronger leading indicators could inform
those with weaker relationships. The temporal variation shows that
we cannot assume a single fixed temporal relationship between
indicators and admissions. Therefore, to account for the variation, a
range of temporal offsets should be considered by amodel for use in
prediction. The changing relationship between epidemic waves has
multiple implications – primarily that no single indicator signal
should be considered entirely temporally and spatially reliable for
use in a forecasting model fit to historic data. As the relationships
over time change substantially, the effect should either be corrected
for, or ad hoc signal exclusions applied. By using a range of
indicators, rather than single variables, there is more likely to be a
leading relationship in the set of variables chosen. Since individual
indicators can be impacted by external events (policy changes, data
collection, etc.), multiple different sources of indicators should be
utilised.

Limitations and further study

There are several limitations to this analysis which reflect either
data availability or further research required. The Google Trends
and ZOE app data were not available, or changed collection format
from the start to the end of the period of study, which reduces the
reliability of the conclusions drawn from these data and prevents
direct comparison with other indicators. The analysis of leading
relationships included techniques that assume linear relationships

Figure 6. Dynamic time warping mapping between indicators and admissions used to generate lead times. The DTW is shown for a single indicator and Trust. The solid time series
represents the variable being evaluated, the indicator, the dashed are admissions, and the lines between are the aligned sequence pairs. Vertical lines indicate no temporal offset
between time series.

10 Jonathon Mellor et al.

https://doi.org/10.1017/S0950268823001449 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268823001449


(Granger causality and cross-correlation). If non-linearity is pre-
sent, this assumption could provide a partial picture as to whether
there is a leading relationship. Further research should employ
more complex methods such as kernel approaches to Granger
causality [45].

The addition of dynamic time warping to this analysis sheds
light on the potential non-linear relationships between indicator
and admissions. The dynamic time warping showed a positive
lead for the indicators with complete data, which supports this
study’s aim. The scaling and smoothing of the different indicators
and admissions will impact the results of the different analysis
substantially since the low-level indicator trends are noisy. The
scaling of signals across the whole study period will decrease the
accuracy of individual Trust-level analysis since the magnitude of
the measured indicator changes over time. To further understand
the relationships between indicators and admissions, the signals
should be modelled directly and compared; however, modelling
was considered beyond the scope of the study and will be explored
in future work. In addition, further work should explore factors
such as Trust catchment size, acuteness, specialisations, and
demographics, which impact the strength of temporal and spatial
relationship.

Work in this area should focus on how to forecast using spatially
and temporally granular data streams for potentially large numbers
of indicators. Further utilisation of time series methods would help

support the understanding of indicator–outcome relationships and
how to best harness them. Substantial amounts of work has looked
at leading indicators of healthcare pressures at national or regional
levels, but understanding how to best use indicators at a finer spatial
scale increases the value of these indicators to inform public health
systems.

Conclusion

This work shows that novel surveillance data sources can be used to
reliably understand the expected hospital burden from SARS-CoV-
2 transmission. Modelling at a hospital Trust level requires an
understanding of the variation across space between the indicators
and admissions, as well as the drift of the indicator–admissions
temporal leads.We show that clinical, crowdsourced, andhealthcare
seeking behaviour data at a fine spatial level have positive correl-
ations at lead times, but these relationships are not stable between
epidemic waves or constant across England. The different variables
selected for analysis were chosen to be as disaggregated as possible
while maintaining sufficient counts, which allowed us to see indi-
cators at low geographies with strong relationships, rather than
aggregated signals at higher geographies. This approach was shown
to be valuable in understanding the heterogeneity in fine spatial
scales. While some data sources and indicators perform better
overall, our analysis did not identify an indicator that had no

Figure 7. The distribution of lead times calculated from sequence index matching between indicators and admissions across the different epidemic waves of study. The lead times
correspond to the optimal time warping between indicator and admissions, with a higher value indicating a larger temporal lead.
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substantial variability. Therefore, in practical public health oper-
ations, spatial and temporal heterogeneity should be considered in a
modelling context, avoiding a reliance on single signals, which can
diverge or degrade from the quantity that is being forecast.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0950268823001449.
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Figure 8. The normalised path distance produced by warping the space between the indicator and admissions across all three waves. Produced using multivariate DTW across
Trusts. The normalised path distance indicates howmuch total warping is needed between indicators and admissions, a proxy for how big a lead time there is between time series.

Table 1. The operational considerations at time of investigation

Indicator Release frequency Reporting/completeness lag

Google Trends Daily 1 days

NHS 111 Pathways Daily 2 days

LFD Tests Weekly 1 days

NHS COVID-19 app Weekly 2–3 days

ZOE app Ad hoc 1 day estimated

Note: A 1-day reporting/completeness lag corresponds to yesterdays’ collected data being
available today. More frequent releases allow formore flexibility in times of increased demand
for analysis, particularly in a fast-changing epidemic. The reporting/completeness lag ‘eats
into’ lead times, reducing how useful a leading indicator is in practice.
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