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The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-
number limit involves seeking solutions that have (i) an oscillatory exponential with a phase term
that is linear in the wave-number and (ii) has an amplitude profile expressed in terms of inverse pow-
ers of that wave-number. The Friedlander–Keller modification includes an additional power of this
wave-number in the phase of the wave structure, and this additional term is crucial when analysing
certain wave phenomena such as creeping and whispering gallery wave propagation. However, other
wave phenomena necessitate a generalisation of this theory. The purposes of this paper are to provide
a ‘generalised’ Friedlander–Keller ray ansatz for Maxwell’s equations to obtain a new set of field
equations for the various phase terms and amplitude of the wave structure; these are then solved sub-
ject to boundary data conforming to wave-fronts that are either specified or general. These examples
specifically require this generalisation as they are not amenable to classic ray theory.

Keywords: Ray theory, WKBJ method, electromagnetic radiation

2020 Mathematics Subject Classification: 37A14 (Primary); 37A15 (Secondary)

1 Introduction and motivations

The interaction between monochromatic, propagating, linear electromagnetic waves with
obstructing boundaries is key to many topical scattering problems which arise in modern
applications of wave theory. In order to understand these phenomena, entire theories such as
Keller’s geometric theory of diffraction [7, 8], relevant in the high-frequency domain, have been
developed and applied with success (by James [6], for example).

Friedlander & Keller [5] extended the idea of using ray theory to solve the scalar Helmholtz
equation. One aim of this paper is to develop an equivalent method for Maxwell’s equations of
electromagnetism for time-harmonic waves in the high-frequency limit. As per Friedlander &
Keller, there are specific applications for which classic ray theory must be amended in order
to accommodate them; this amendment comes in the Wentzel Kramers Brillouin-Jeffreys
(WKBJ)-type expansion of the assumed solutions.
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The second aim of this paper is to provide, in full detail, a set of canonical applications of
waves radiating from boundaries that conform to a wave-front. The theory presented in this paper
will then be used to determine the phase structure and the leading-order amplitude solutions to
these specific problems.

As Maxwell’s equations can, in certain circumstances, be reduced to satisfy two decoupled
vectorial Helmholtz equations (one each for the electric and magnetic fields), it makes sense that
motivation for the studies conducted here is rooted in the literature of the study of the scalar
Helmholtz equation. In fact, Keller [10] even considered the individual components of the elec-
tric vector and said they must each satisfy their own Helmholtz equation. This idea was later
used by Radjen et al. [15].

The scalar Helmholtz equation is (∇2 + k2
)
φ = 0. (1.1)

Many authors attempted to solve this in the high-frequency limit k → ∞. Keller [10] gave an
explanation of the method used and then provided some practical applications for it. Similarly,
Luneburg [12] considered an identical asymptotic expansion for components of Maxwell’s
equations. The idea is to take the asymptotic solution

φ(x) ∼ eikv1(x)
∞∑

n=0

An(x)

(ik)n
, (1.2)

in order to derive field equations for the exponential ‘phase’ term, the leading-order amplitude
function A0, as well as higher-order corrections. Substitution of ansatz (1.2) into the Helmholtz
equation (1.1) and comparing the different values of k gives

∇v1 · ∇v1 = 1, (1.3)

2(∇An · ∇v1)+ An∇2v1 + ∇2An−1 = 0, (1.4)

in which A−1 ≡ 0 is understood, allowing the transport equation for the leading-order term to be
incorporated with those for the higher-order corrections. Equation (1.3) is the eikonal equation
of geometric optics. At leading order, this completely decouples from the amplitude functions.
Equation (1.4) is a recursive set of equations for the amplitude functions. In order to provide
solutions to these equations, Keller et al. adopted a curvilinear ‘ray’ coordinate system, which
used parameters s to describe a wave-front, and a parameter τ to denote length along an individ-
ual ray emitting from that wave-front. Solutions were then found for the amplitude functions in
terms of integrals

An(s, τ) = an(s)

√
G (τ )

G (0)
− G1/2 (τ )

2

∫ τ

τ=0
G−1/2 (τ )∇2An−1 (τ ) dτ , (1.5)

where an is the value of An along the wave-front and G (τ ) denoting the Gaussian curvature of the
wave-front. These geometric results will be significant in the derivation of the electromagnetic
equivalent. Keller et al. then went on to analyse these equations for specified wave-fronts and
then to use these to determine the dynamics of the scattered field when incident rays encountered
certain geometries.

Levy & Keller [11] took this further and found a ‘ray solution’ to the eikonal equation (1.3)

v1 = V1(s) + τ , (1.6)
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where V1(s) is the imposed boundary data (i.e. V1(s) = v1(s, 0)). The important result here was
that the rays are, in fact, straight lines. By using an energy conservation principle, they examined
the flux through a cross-sectional area of a tube of rays (which they note as being simple owing
to the rays being straight lines), and they found that the solution to the Helmholtz equation (1.1),
correct to leading order, is

φ(s, τ) ∼ a0(s)

√
ρ1ρ2

(ρ1 + τ) (ρ2 + τ)
eik(V1(s)+τ), (1.7)

where ρ1 and ρ2 are the radii of curvature of the wave-front in the two principal directions.
Later in that paper, the authors used this result to obtain solutions to electromagnetic problems
by compartmentalising the electric field vector into three individual scalar components, each of
which satisfies their own (scalar) Helmholtz equation. Of course, this is an argument which only
holds true in a Cartesian frame and is not true generally.

The vectorial form of ansatz (1.2) for the electric and magnetic fields was taken and applied
by Keller & Lewis [9] to obtain field equations for the exponent term and the amplitudes of
the two electromagnetic fields. They did not solve these equations (or even decouple the two
fields). Later, Molinet et al. [13] used Keller’s geometric theory of diffraction to provide the
leading-order solution to the electric field.

It quickly became apparent that modifications to this ‘classical’ approach were required.
Friedlander & Keller [5] mentioned several diffraction problems which have additional expo-
nent terms proportional to a power of the wave-number k. Although some specific research had
been conducted on some of these problems ([2] and [4]), there was not any widely available
theory. Therefore, they sought to modify this ray ansatz to accommodate a broader range of
these problems and took the solution to the Helmholtz equation as

φ(x) ∼ eikv1+ikαv2

∞∑
n=0

An(x)

kλn
, (1.8)

in which λ1 <λ2 < · · · were to be determined. Their analysis showed that if α >
1

2
, then the

additional exponent term v2 was necessarily constant. In that case, the exp (ikαv2) term was
amalgamable into the amplitude profile, essentially reducing ansatz (1.8) to a slightly altered but
fundamentally unchanged form of ansatz (1.2). If α � 0, then the expansion of the exp (ikαv2)

term proceeds in decreasing powers of k. Again, those terms are amalgamable into the ampli-
tude profile, so a choice of α in that range would also reduce ansatz (1.8) to a fundamentally
unchanged form of ansatz (1.2). Therefore, the authors demonstrated that the additional expo-

nent term at O(kα) is variable if and only if α has a value in the range 0<α � 1

2
. With this range

fixed, they found that v1 still obeyed the eikonal equation (1.3) . They also found that the field
equation for v2 is

∇v1 · ∇v2 = 0. (1.9)

A little further into their investigation, they determined that there were two field equations for
the leading-order amplitude:

2(∇A0 · ∇v1)+ A0∇2v1 = 0, for 0<α <
1

2
, (1.10)
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2(∇A0 · ∇v1)+ A0
(∇2v1 + i (∇v2 · ∇v2)

) = 0, for α = 1

2
. (1.11)

Equation (1.10) is exactly the same as equation (1.4) . However, if α= 1

2
, then there is an

additional term in the transport equation, and it is this change that they originally sought.
Additionally, Engineer et al. [3] also showed, by presenting geometric arguments, that k1/2 is

an isolated case of exceptional importance. Thus, the value of α = 1

2
is canonical as it is the

only value of α for which precisely one additional exponent term leads to a modified transport
equation at leading order.

Tew [17] aimed to solve a new class of two-dimensional scattering problems which were the
scattering of an acoustic wave upon a ‘perturbed’ boundary. These perturbed boundaries were
acoustically soft and of the form x0(s) + k−1/2x̂0(s), where x0 was a boundary of arbitrary O(1)
curvature parametrised by arc-length s and on which small scale undulations were imposed and
given by x̂0. It followed that when a ‘classic’ wave (i.e. one exponent term) appearing at O(k)
encountered this boundary, then there would be an additional term appearing at O

(
k1/2

)
in the

exponent. Therefore, the scattered field must then take the form of a Friedlander–Keller ray

expansion (with α = 1

2
). Through this research, Tew obtained the solutions to equations (1.9)

and (1.11):

v2(s, τ ) = V2(s), (1.12)

A0(s, τ ) = a0(s)

√
a2(s)

a(s) + τ
exp

(
− ib2(s)τ

2a2(a2(s) + τ)

)
, (1.13)

where a2 and b2 are known functions which are specific to the two-dimensional boundaries (hence
the subscription ‘2’) and are defined as

a2(s) = q0(s)x′
0(s) − p0(s)y′

0(s)

q0(s)p′
0(s) − p0(s)q′

0(s)

b2(s) =
(

V ′
2(s)

q0(s)p′
0(s) − p0(s)q′

0(s)

)2

, (1.14)

in which p0 and q0 specify the ray directions, and their ratio
q0

p0
describes the gradient of the asso-

ciated ray. The boundary x0(s) has components x0(s) and y0(s); these are relative to a traditional
Cartesian frame.

Many topical areas of diffraction theory relate to creeping waves which include additional
exponent terms proportional to k1/3 and are discussed at length by various authors ([3], [13], and

[19], for example). This particular exponent term correlates to assigning the value α= 1

3
in the

Friedlander–Keller ansatz (1.8). Andronov & Bouche [13], for example, aimed to provide the
leading-order and first-order correction solutions to the creeping rays arising from the diffraction
of an electromagnetic wave incident upon a smooth convex object. Keller [7, 8] demonstrated
that diffracted rays act as ordinary rays when far enough away from the diffracting object.
Thus, Andronov & Bouche [13] assumed a solution for the electric and magnetic fields in the
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form of Friedlander–Keller ansatz (1.8) with α = 1

3
for the far-field solution and matched this

asymptotically to the solution in the boundary layer.

In general, the value of α = 1

3
in ansatz (1.8) does not lead to a different transport equation than

the classic case, as demonstrated by Friedlander & Keller [5]. The value of α = 1

2
is canonical

for the reasons cited above. However, this value of α is a direct consequence of including only
one additional term in the exponent (that appearing at O(kα)). It is possible to include a further
exponent term in ansatz (1.8), say at O

(
kβ
)
, and proceeding in a derivation akin to that performed

by Friedlander & Keller [5]. Doing so yields that the two canonical values of α and β would be

α = 1

3
and β = 2

3
(without loss of generality). This approach was generalised by Tew [18], who

developed the generalised Friedlander–Keller ray expansion of fractional order. The idea is to
assume an arbitrary number of exponent terms in decreasing fractional powers of k and include
a suitably altered WKBJ expansion of the amplitude. Thus, the solution of Helmholtz equation
(1.1) φ has the expansion

φ(x) ∼ exp

(
i

N∑
m=1

k(N+1−m)/Nvm(x)

) ∞∑
n=0

An(x)

kn/N
, (1.15)

for an arbitrary positive integer N (setting N = 2 essentially repeating the work of Friedlander &
Keller [5]).

Without repeating the derivation performed by Tew [18] in full, the main results were that v1

(which appears at leading-order k in the exponent) still obeys the eikonal equation (1.3), and the
remaining phase terms v2, · · · , vN obey the system of partial differential equations

n∑
j=0

(∇vn+1−j · ∇vj+1
) = 0, for n = 1, 2, · · · , N − 1. (1.16)

The additional N − 1 exponent terms in Tew’s ansatz (1.15) gave rise to a further set of terms
appearing in the transport equation, all of which have an i coefficient (which is expected as they
come from the exponent). The modified transport equation being

N∑
n=1

[
2
(∇vN+1−n · ∇An+q

)+ ∇2vN+1−nAn+q

]

+ iAN+q

N∑
n=2

(∇vN+2−n · ∇vn)+ i
N∑

n=3

⎡
⎣AN+2+q−n

N∑
j=n

(∇vN+m−j · ∇vj

)⎤⎦
− i∇2Aq = 0, (1.17)

where A−i ≡ 0 (i = 1, 2, · · · , N) is understood.
Radjen et al. [15] extended the work of Tew [17] by considering boundaries of the same profile

but were penetrable rather than acoustically soft. Beyond that boundary was a different homoge-
neous medium supporting Helmholtz equation (1.1) with k → kγ−1, where γ−1 (the refractive
index in optical terms) is an O(1) constant describing the ratio of the wave-speeds of the two
media. Those conditions for γ did not significantly change the theory used. One main point in
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that paper was the attempt to obtain asymptotic solutions to Maxwell’s equations when an elec-
tric field was incident upon this class of boundary. However, as those were two-dimensional
problems, an argument was made that the electric field could be scalarised by using the Maxwell
equation (∇ · E)= 0, in standard notation, which, to leading order, gives that

E ∼ E0

[
−∂v1

∂y
,
∂v1

∂x

]
+ O

(
k−1/2

)
, (1.18)

for a single scalar unknown variable E0, which satisfies the Helmholtz equation (1.1) inside the
boundary (and another Helmholtz equation outside).

As stated at the outset, this paper aims to derive a generalised Friedlander–Keller ray expan-
sion for Maxwell’s equations of electromagnetism, in the style of Friedlander & Keller [5]
and Tew [18]. This derivation considers Maxwell’s equations in complete vectorial form.
Furthermore, it does not assign an initial coordinate system, allowing the results to have free-
dom of generality. This work complements Radjen et al. [15], who restricted their attention to
a two-dimensional Cartesian frame, allowing them to reduce Maxwell’s equations to a scalar
Helmholtz equation. Although many authors have studied the scalar and vectorial Helmholtz
equations geometrically by wave-front data ([3, 9, 10, 11, 13], and others), this investigation will
adopt a partial differential equation approach. The key benefit of doing so is to obtain solutions
that are widely applicable to modern wave scattering problems, such as the diffraction theory
cited above.

2 Generalised Friedlander–Keller ray expansions of Maxwell’s equations

As mentioned from the outset, the aim here is to determine asymptotic solutions to Maxwell’s
equations. As presented in standard by form by many authors ([6, 9, 13, 16], for examples), an
electric field E and a magnetic field H in a charge-free vacuum satisfy

(∇×E)= ik

√
μ

ε
H and (∇×H)= −ik

√
ε

μ
E, (2.1)

∇ · E = 0 and ∇ · H = 0, (2.2)

in which k is the large wave-number. Here, a time-harmonic, e−iωt, form is assumed yet sup-
pressed and is related to the wave-number by k =ω

√
εμ. The scalar quantities ε and μ represent

the permittivity and permeability of the medium and are both O(1) constants – they relate to the

speed of light by c = 1√
εμ

, but they will be kept separate here for the sake of generalisation.

Although it is possible to consider a pair of decoupled vectorial forms of Helmholtz equation
(1.1), the two fields will deliberately remain coupled until the end of the derivation, which is
merely for computational convenience.

The classical approach, as presented by Keller & Lewis [9] and Molinet et al. [13], seeks
solutions to Maxwell’s equations (2.1) and (2.2) in the singularly perturbed, high-frequency limit
k → ∞ with the WKBJ form

E(x) ∼ eikv1(x)
∞∑

n=0

En(x)

(ik)n
and H(x) ∼ eikv1(x)

∞∑
n=0

Hn(x)

(ik)n
. (2.3)
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Without diving too deep into the details of the derivation (as this is given below), substituting
these ansätze into Maxwell’s equations (2.1) and (2.2) quickly gives that v1 obeys the eikonal
equation (1.3) and, after a little algebraic patience, the transport equations for the En and Hn

fields decouple and are given as

2(∇v1 · ∇)En + ∇2v1En = −∇2En−1, (2.4)

2(∇v1 · ∇)Hn + ∇2v1Hn = −∇2Hn−1. (2.5)

Note how the eikonal equation (1.3) decouples entirely from the electric and magnetic fields
and then feeds into those latter equations. Therefore, the eikonal equation needs solving first
by using Charpit’s method of characteristics as presented by Zauderer [20] and Ockendon et al.
[14]. Detailed solutions are presented elsewhere by Tew [17, 18] and Radjen et al. [15]; those are
directly relevant to the purposes of this paper. Introducing characteristic curves �(τ) as the rays

and defined as
dx

dτ
= ∇v1 which emanate from a generic boundary x0 then, along the ray �, sev-

eral results hold. Firstly, the eikonal equation (1.3) becomes
dx

dτ
· dx

dτ
= 1, so that τ measures the

arc-length of the rays. Second, ∇(∇v1 · ∇v1)= 0, which implies that (∇v1 · ∇)∇v1 = 0, in turn

implying that
d∇v1

dτ
= 0. Thus, the ray � is a straight line. Third, the eikonal equation is equiv-

alent to
dx

dτ
· ∇v1 = 1. Therefore, solution (1.6) holds, and V1 is some given data on τ = 0 along

the ray �. This location lies on a hyper-surface (curve in two dimensions, surface in three dimen-
sions) which is described as x0. As a result of all of this, the equation describing the ray � is

x = x0(s) + τp0(s), (2.6)

where p0(s) is a constant vector describing the direction of the rays and is the value of ∇v1 on
the boundary x0, that is, p0 = [∇v1]x=x0

.
Parametrising the generic surface x0 by s1 and s2 which are orthogonal coordinates and with si

measuring the arc-length of that curve in the ith principal direction allows local two independent
tangential, ti (with i = 1, 2), and normal, n, vectors to be introduced and defined as

∂x0

∂si
= ti, n = t1×t2, and ti · tj = δij, (2.7)

with δ acting as the Kronecker delta. With this boundary described, the value of p0 appearing
the ray equation (2.6) can be expressed in terms of the geometry of x0 by differentiating the
boundary data of V1 (which would either be known or calculable) and considering the eikonal
equation (1.3) itself:

p0 = ∂V1

∂s1
t1 + ∂V1

∂s2
t2 ± n

√
1 −

(
∂V1

∂s1

)2

−
(
∂V1

∂s2

)2

, (2.8)

where the ambiguity in sign arises from the eikonal equation (1.3) being second degree. This
ambiguity is resolved in the applications of this paper by fixing a ray direction (either incoming
or outgoing, depending on the particular problem). Also, the ray equations (2.6) can be used to
obtain the useful derivative relationships
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∇F =
[

p0 ·
(
∂p0

∂s1
× ∂p0

∂s2

) (
τ 2 + b3 (s1, s2) τ + a3 (s1, s2)

)]−1

×
[
∂F

∂s2
p0 ×

(
t1 + τ

∂p0

∂s1

)
− ∂F

∂s1
p0 ×

(
t2 + τ

∂p0

∂s2

)

+∂F

∂τ

(
t1 + τ

∂p0

∂s1

)
×
(

t2 + τ
∂p0

∂s2

)]
(2.9)

for any scalar function F and a3(s) and b3(s) are known functions that are specific to this three-
dimensional analysis (hence the subscription of ‘3’). These functions are

a3(s) = p0 · n

p0 ·
(
∂p0

∂s1
×∂p0

∂s2

) and b3(s) =
p0 ·

[(
t1×∂p0

∂s2

)
−
(

t2×∂p0

∂s1

)]
p0 ·

(
∂p0

∂s1
×∂p0

∂s2

) . (2.10)

As noted above, the differential operator ∇v1 · ∇ is equivalent to
d

dτ
. Therefore, the leading-

order transport equation (2.4) (with n = 0) reduces to a first-order ordinary differential equation
along each ray

dE0

dτ
+ (2τ + b3(s))E0

2
(
τ 2 + b3(s)τ + a3(s)

) = 0. (2.11)

Equation (2.11) can easily be solved to give the general solution

E0 (s, τ) = e0(s)

√
a3

τ 2 + b3τ + a3
, (2.12)

where e0(s) is some given data for E0 at the point τ = 0. This process may be repeated to obtain
an equivalent solution for H0. The leading-order solution is now determined; in principle, it
is possible to obtain higher-order corrections in a recursive manner by using equations (2.4)
and (2.5) .

Modifications are required to ansätze (2.3) when, for instance, the rays associated with the
incoming field contain additional terms in the exponent (for example, Tew’s work [17, 18] on
perturbed boundaries). It is possible to modify ansätze to include one additional term in the
exponent proportional to kα akin to the Friedlander–Keller ansatz (1.8). Doing so, however,
quickly leads to the same conclusions that Friedlander & Keller [5] and Tew [17] came to – that

power of α must be
1

2
in order to produce a leading-order change and the same arguments about

the term appearing at O(kα) being constant if α >
1

2
. It is clear from the work by Tew [18] that

the Friedlander–Keller ansatz (1.8) must be generalised to accommodate a broader range of wave
phenomena. Therefore, if N terms are present in the exponent (ranging from O(k), O

(
k(N−1)/N

)
,

· · · O
(
k1/N

)
), then Maxwell’s equations (2.1) and (2.2) will also contain terms starting at O(k)

and decreasing in powers of k1/N . This motivates the ansätze

E ∼ exp

(
i

N∑
m=1

k(N+1−m)/Nvm(x)

) ∞∑
n=0

En(x)

kn/N
, and

H ∼ exp

(
i

N∑
m=1

k(N+1−m)/Nvm(x)

) ∞∑
n=0

Hn(x)

kn/N
. (2.13)
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Substitution of ansätze (2.13) into Maxwell’s equations (2.2) yields the following set of
relations, which will be called upon regularly throughout the derivation. These relations are

ik (∇v1 · E0)+ i
N−1∑
m=1

k(N−m)/N
m∑

n=0

(∇vm+1−n · En)

+
∞∑

p=0

k−p/N

[(∇ · Ep

)+ i
N∑

n=1

(∇vN+1−n · En+p

)] = 0, (2.14)

which have been deliberately expressed in this way so that the first term appears is at O(k), the
second term contains all terms between O

(
k(N−1)/N

)
and O

(
k1/N

)
, and the final term contains all

terms appearing at O(1) and lower. A similar set of equations appear for the magnetic field.
It is Maxwell’s equations (2.1) that will give the sought after field equations for the exponent

terms and the transport equations. Applying the ansätze gives

ik

[
(∇v1×E0)−

√
μ

ε
H0

]
+ i

N−1∑
m=1

k(N−m)/N

[
m∑

n=0

(∇vm+1−n×En)−
√
μ

ε
Hm

]

+
∞∑

p=0

k−p/N

[
N∑

n=1

i
(∇vN+1−p×En+p

)+ (∇×Ep

)− i

√
μ

ε
HN+p

]
= 0, (2.15)

ik

[
(∇v1×H0)+

√
ε

μ
E0

]
+ i

N−1∑
m=1

k(N−m)/N

[
m∑

n=0

(∇vm+1−n×Hn)+
√
ε

μ
Em

]

+
∞∑

p=0

k−p/N

[
N∑

n=1

i
(∇vN+1−p×Hn+p

)+ (∇×Hp

)+ i

√
ε

μ
EN+p

]
= 0. (2.16)

Again, these have been expressed so that the first term appears is at O(k), the second term con-
tains all terms between O

(
k(N−1)/N

)
and O

(
k1/N

)
, and the final term contains all terms appearing

at O(1) and lower. Comparing the terms at O(k) in equations (2.15) and (2.16) gives that

(∇v1×H0)+
√
ε

μ
E0 = 0, (2.17)

(∇v1×E0)−
√
μ

ε
H0 = 0. (2.18)

Taking scalar products of ∇v1 with either of equations (2.17) or (2.18) quickly gives that
[E0, H0, ∇v1] for an orthogonal set. Moreover, eliminating H0 in these equations reveals that v1

still satisfies the eikonal equation (1.3) . Therefore, solution (1.6) and the arguments surrounding
it are still valid.

The following derivations are highly non-trivial and, as such, are provided in full detail in the
Appendix to this paper. The main idea is to use equation (2.15) to express the various magnetic
vectors as products of electric vectors and the gradient of the various exponent terms. Equation
(2.16) then gives sets of equations involving only ∇v and E functions. It is the second set of
terms in equations (2.15) and (2.16) (i.e. all terms appearing between O

(
k(N−1)/N

)
and O

(
k1/N

)
)
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that yield the field partial differential equations for the exponent terms; these are

n∑
j=0

(∇vn+1−j · ∇vj+1
) = 0, for n = 1, 2, · · · , N − 1. (2.19)

Combining equations (1.3) and (2.19) yields a single recursive system of partial differential
equations for all N exponent terms.

n∑
p=1

(∇vn+1−p · ∇vp

) = δ1,n, for n = 1, 2, · · · N , (2.20)

with δ acting as the Kronecker delta.
Following a similar methodology, it is the final group of terms in equations (2.15) and (2.16)

that will provide the transport equations for the electric E vectors. The transport equation for a
single electric vector Eq is

N∑
n=1

[
2(∇vN+1−n · ∇)En+q + ∇2vN+1−nEn+q

]

+iEN+q

N∑
n=2

(∇vN+2−n · ∇vn)+ i
N∑

n=3

⎡
⎣EN+2+q−n

N∑
j=n

(∇vN+m−j · ∇vj

)⎤⎦
−i∇2Eq = 0. (2.21)

This is a generic transport equation for q �−N , as long as the vectors E−i (i = 1, · · · , N) are
interpreted as null vectors. This is a recursive set of equations that is kick-started by the leading-
order transport equation, which is

dE0

dτ
+ 1

2

[
∇2v1 + i

N∑
n=2

(∇vN+2−n · ∇vn)

]
E0 = 0, (2.22)

where the ray derivative relation ∇v1 · ∇ = d

dτ
has been used. This is a simple, first-order

ordinary differential equation along a ray � and has the integral solution

E0(s, τ) = e0(s)

√
a3

τ 2 + b3τ + a3
exp

(
− i

2

∫ τ

τ=0

N∑
n=2

(∇vN+2−n · ∇vn) dτ

)
. (2.23)

It is possible to start from the beginning and repeat the procedure by eliminating the electric field
to obtain a transport equation for each magnetic vector. Alternatively, as equations (2.15) and
(2.16) are symmetric under the replacement of [E, H , ε,μ] with [H , E, −μ, −ε], the magnetic
transport equation to be written directly as

N∑
n=1

[
2(∇vN+1−n · ∇)Hn+q + ∇2vN+1−nHn+q

]

+iHN+q

N∑
n=2

(∇vN+2−n · ∇vn)+ i
N∑

n=3

⎡
⎣HN+2+q−n

N∑
j=n

(∇vN+m−j · ∇vj

)⎤⎦
−i∇2Hq = 0. (2.24)
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Similarly, H0 has an identical leading-order transport equation and solution to that for the
leading-order electric vector E0:

H0(s, τ) = h0(s)

√
a3

τ 2 + b3τ + a3
exp

(
− i

2

∫ τ

τ=0

N∑
n=2

(∇vN+2−n · ∇vn) dτ

)
. (2.25)

Here, h0 is some given/calculable boundary data on τ = 0 and is related to e0 by equation (2.18),
and the integral is solved by using identity (2.9). Note that the ‘square-root’ pre-factor is iden-
tical to the classical case appearing in solution (2.12). In the context of waves, this shows that
the presence of additional exponent terms in the original ansätze does not change the leading-
order amplitude, but it is now accompanied by an O(1) phase correction. Naturally, fixing
v2, · · · , vN ≡ 0 reduces solution (2.23) to the classic solution (2.12), and similarly for H0.

Although it is possible to continue developing the ‘general N’ method and find generic appli-
cations for this theory, it is more illustrative to specify the value of N in a variety of problems
and then demonstrate the method surrounding these problems. Two distinct situations are of nat-
ural importance. The first is to have the geometry of the wave-front prescribed with ‘natural’
wave-fronts (planar or spherical, for instance), which is mathematically similar to prescribing
the value of v1. The other situation is when data are imposed on a generic surface that may or
may not conform to a wave-front. The theory presented above will now be used to address both
of these sets of problems.

3 Solutions to prescribed wave-front problems

Fixing the value of v1(x) is equivalent to having the geometry of the wave-front prescribed, so
this will now be done for (i) spherical wave-fronts, (ii) planar wave-fronts, and (iii) arbitrary
wave-fronts, each for a different arbitrarily chosen value of N to illustrate the diversity of the
above theory.

3.1 Spherical wave-fronts

Starting with an N = 2 problem, equations (2.20) and (2.21) give three equations:

∇v1 · ∇v1 = 1, (3.1)

∇v1 · ∇v2 = 0, (3.2)

2(∇v1 · ∇)E0 + E0
[∇2v1 + i (∇v2 · ∇v2)

] = 0. (3.3)

Working with radially symmetric wave-fronts, which have an initial wave-front on r = a, the
leading-order exponent term is set to

v1(r, θ ,ψ) = r, (3.4)

which satisfies the eikonal equation (3.1) . The aim now is to construct expressions for v2 and E0

in conjunction with this fixed value of v1. Continuing with spherical-polar coordinates, equation
(3.2) becomes

∂v2

∂r
= 0, (3.5)
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which easily shows that v2 depends only on θ and ψ and so has the general form

v2(r, θ ,ψ) = V2(θ ,ψ) , (3.6)

for some arbitrary function V2. Equation (3.3) now yields the leading-order amplitude equation
for E0:

∂E0

∂r
+ E0

[
2

r
+ i (∇V2 · ∇V2)

]
= 0, (3.7)

which is easily solved by introducing an integrating factor, and the solution is

E0(r, θ ,ψ) = a

r
e0 (θ ,ψ) exp

(
ir (a − r)

2a
(∇V2 · ∇V2)

)
. (3.8)

This completely solves, to leading order, the N = 2 problem for spherical wave-front initially
valid on r = a. The e0 appearing in solution (3.8) is the same as that which would appear in the
application of standard ray theory (in which v2 ≡ 0).

3.2 Planar wave-fronts

Focusing now on an N = 3 problem and fixing this value in equations (2.20) and (2.21) gives
four field equations to consider, which are

∇v1 · ∇v1 = 1, (3.9)

∇v1 · ∇v2 = 0, (3.10)

2(∇v1 · ∇v3)+ (∇v2 · ∇v2) = 0, (3.11)

2(∇v1∇)E0 + E0
[∇2v1 + 2i (∇v2 · ∇v3)

] = 0. (3.12)

Working with planar wave-fronts, which are initially on the surface z = 0, the leading-order
phase term is fixed to

v1(x, y, z) = z, (3.13)

which satisfies eikonal equation (3.9) automatically. Similarly to before, the aim is to construct
expressions for the additional exponent terms v2, v3, and E0 in conjunction with this prescribed
value of v1. Equation (3.10) now becomes

∂v2

∂z
= 0; (3.14)

it is easily observed that v2 is independent of z and so has the solution

v2(x, y, z) = V2(x, y) , (3.15)

for an arbitrary function V2. Equation (3.11) then simplifies to

2
∂v3

∂z
+ (∇V2 · ∇V2) = 0, (3.16)
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which is easily solved by direct integration as V2 is independent of z. Thus,

v3 (x, y, z) = V3 (x, y)− z

2
(∇V2 · ∇V2) , (3.17)

for some arbitrary function V3. Turning now to the leading-order transport equation (3.12), which
simplifies as ∇2v1 = 0, E0 satisfies the field partial differential equation

∂E0

∂z
+ i

[
(∇V2 · ∇V3)− zH2,2

]
E0 = 0, (3.18)

where H2,2 is given as

H2,2 =
(
∂V2

∂x

)2
∂2V2

∂x2
+ 2

∂V2

∂x

∂V2

∂y

∂2V2

∂x∂y
+
(
∂V2

∂y

)2
∂2V2

∂y2
. (3.19)

Equation (3.18) is easily solved with an integrating factor; the solution is

E0 (x, y, z) = e0 (x, y) exp
(

iz
[ z

2
H2,2 − (∇V2 · ∇V3)

])
. (3.20)

This solution of the N = 3 for planar wave-fronts is now fully constructed, and the e0 appearing
in the solution (3.20) is the same that would appear in the application of classic ray theory in
which v2 ≡ 0 and v3 ≡ 0.

3.3 Arbitrary wave-fronts

Unlike those wave-fronts considered before, which were simple geometries (a regular sphere and
a flat plane), this particular investigation focuses on any initial surface that conforms to a wave-
front. This particular surface is described parametrically as that considered in Section 2, so the
geometric equations (2.7) hold. The content there specified rays �, along which solutions were
constructed. However, as rays are everywhere normal to wave-fronts, many simplifications can
be made. Firstly, the ray direction p0 is now normal. Hence, solution (2.8) now reduces to

p0 = n. (3.21)

This is an extremely useful result as the derivatives of p0 appearing in, for example, identity
(2.9), will become derivatives of the normal vector. Defining the parameters s1 and s2 as arc-
length along their respective curves (leading to the arguments surrounding equations (2.7) ) will
now allow a set of Frenet–Serret formulae to be used, which relate the normal vector n to the
two independent tangential vectors ti (for i = 1, 2) by

∂ti

∂sj
= −δijκin, and

∂n

∂si
= κiti, (3.22)

for j = 1, 2 and in which κi denotes the curvature of a curve in the ith principle direction. With
this frame now fully established, identity (2.9) now reduces to

∇F =
∂F

∂s1
(κ2τ + 1) t1 + ∂F

∂s2
(κ1τ + 1) t2 + ∂F

∂τ
(κ1τ + 1) (κ2τ + 1) n

κ1κ2τ 2 + (κ1 + κ2) τ + 1
. (3.23)
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The scalar products of the gradients of the various exponent terms appearing in equation (2.20),
for example, are now given simply as

∇vp · ∇vj = [
κ1κ2τ

2 + (κ1 + κ2) τ + 1
]−2

(
∂vp

∂τ

∂vj

∂τ
(κ1τ + 1)2(κ2τ + 1)2

+∂vp

∂s1

∂vj

∂s1
(κ2τ + 1)2 + ∂vp

∂s2

∂vj

∂s2
(κ1τ + 1)2

)
. (3.24)

As the leading-order phase term, v1 still satisfies the eikonal equation (1.3), then v1 is still sat-
isfied by solution (1.6); the argument surrounding it also applies. Therefore, the differential
operator (∇v1 · ∇) is the ordinary derivative along any ray � (τ). Hence, the solution to the
remaining exponent terms is expressed as the integral equation

vn(s, τ) = Vn(s) − 1

2

∫ τ

τ=0

n−1∑
p=2

(∇vn+1−p · ∇vp

)
dτ , (3.25)

for n = 2, · · · , N and where Vn(s) is the value of vn at the point τ = 0, which is on the initial
wave-front x0.

As a direct result of this Frenet–Serret frame, the known surface functions a3 and b3 in equation
(2.10) reduce to the simple expressions

a3 = 1

κ1κ2
, and b3 = κ1 + κ2

κ1κ2
, (3.26)

so that a3 is the inverse of the Gaussian curvature of x0 and b3 is twice the ratio of the mean and
Gaussian curvatures of x0. Hence, the leading-order solution (2.23) now becomes

E0 (s, τ) = e0(s)√
(κ1τ + 1) (κ2τ + 1)

exp

(
− i

2

∫ τ

τ=0

N∑
n=2

(∇vN+2−n · ∇vn)

)
. (3.27)

Fixing vi ≡ 0 (i = 2, 3, · · · , N), to conform with the classical theory and using the fact that curva-
ture is related to the radius of curvature by κi = ρ−1

i , solution (3.27) reduces to the vectorial form
of Levy & Keller’s solution (1.7) [11] and also conforms to the wave-front solutions obtained by
Molinet et al. [13].

This solution method will be illustrated by picking a specific value of N = 3. In this case, the
equations to solve are identical to those appearing in equations (3.9)–(3.12) . As this is now a
generic wave-front, there is no specified form of v1, so the general solution for this term is given
by solution (1.6). Owing to the differential operator (∇v1 · ∇) being the ordinary derivative along
any ray, equation (3.10) gives that v2 is constant along each ray and depends solely on the point
from which that ray emanates. Thus,

v2(s, τ) = V2(s). (3.28)

Given this solution, equation (3.11) becomes

2
dv3

dτ
+
(

1

1 + κ1τ

)2(
∂V2

∂s1

)2

+
(

1

1 + κ2τ

)2(
∂V2

∂s2

)2

= 0. (3.29)
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This can be solved by directly integrating along the rays to give the solution

v3(s, τ) = V3(s) − τ

2

[
1

1 + κ1τ

(
∂V2

∂s1

)2

+ 1

1 + κ2τ

(
∂V2

∂s2

)2
]

. (3.30)

With these solutions known, attention now is on the transport equation (3.12) for E0; this
becomes

2
dE0

dτ
+ E0

[
2τ + b3

τ 2 + b3τ + a3
+ 2i

2∑
i=1

[
∂V2

∂si

∂V3

∂si
(1 + κiτ)

−2

−τ
((

∂V2

∂si

)2
∂2V2

∂s2
i

(1 + κiτ)
−3

+∂V2

∂si

∂V2

∂s3−i

∂2V2

∂si∂s3−i
(1 + κiτ)

2(1 + κ3−iτ)

)]]
= 0. (3.31)

This can be solved by introducing an integrating factor, and the solution can be expressed in the
compact form

E0(s, τ) = e0(s)√
(κ1τ + 1) (κ2τ + 1)

exp

(
iτ

2

[
τH2,2 − 2H1,3

])
, (3.32)

in which

H1,3 = 1

κ1τ + 1

∂V2

∂s1

∂V3

∂s1
+ 1

κ2τ + 1

∂V2

∂s2

∂V3

∂s2
, (3.33)

H2,2 = 1

(κ1τ + 1)2

(
∂V2

∂s1

)2
∂2V2

∂s2
1

+ 1

(κ2τ + 1)2

(
∂V2

∂s2

)2
∂2V2

∂s2
2

+ 2

(κ1τ + 1) (κ2τ + 1)

∂V2

∂s1

∂V2

∂s2

∂2V2

∂s1∂s2
. (3.34)

This completes the example of the arbitrary wave-front N = 3 problem to leading order.
One specific example here is to assign the wave-front the parametrisation x0 = [s1, s2, 0], that

is, a flat plane, so that the two curvatures κ1 and κ2 are both equal to zero. The associated waves
are, therefore, planar. In this case, V1 is simply 0, so that v1 = τ . Moreover, the gradient operator
(3.23) becomes

∇F =
[
∂F

∂s1
,
∂F

∂s2
,
∂F

∂τ

]
. (3.35)

The second exponent term v2 is given by solution (3.28), and the final exponent term v3 now
reduces to

v3 (s, τ) = V3(s) − τ

2

[(
∂V2

∂s1

)2

+
(
∂V2

∂s2

)2
]

. (3.36)
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Finally, the leading-order amplitude becomes

E0 (s, τ) = e0(s) exp

(
iτ 2

2

[(
∂V2

∂s1

)2
∂2V2

∂s2
1

+
(
∂V2

∂s2

)2
∂2V2

∂s2
2

+ 2
∂V2

∂s1

∂V2

∂s2

∂2V2

∂s1∂s2

]

−iτ

[
∂V2

∂s1

∂V3

∂s1
+ ∂V2

∂s2

∂V3

∂s2

])
. (3.37)

As a result of this parametrisation and operator (3.35), ray equations (2.6) now become
x = [s1, s2, 0] + τ [0, 0, 1], which allow the obtained results to be transformed back into Cartesian
variables. Doing so returns the results obtained in subsection (3.2), as expected.

4 Summary, conclusions, and discussion

This paper has focused on generalised Friedlander–Keller ray expansions in which the exponent
terms of the ray ansatz contain all terms proportional to k1/N between k1/N and k, for a posi-
tive integer N . This follows on from the work of Tew [18], who considered an equivalent ray
ansatz for scalar waves. Tew’s work is a generalisation of the original Friedlander–Keller ray
expansion, which contained only one additional term in the exponent (a term in addition to that
appearing at O(k)) proportional to kα . Although their analysis showed that a non-constant addi-

tional exponent term requires α to have a specific value in the range 0<α � 1

2
, there were no

restrictions on what value α could be in that range (rational or otherwise). Both the work here

and that of Tew specified α to be a rational number of the form α= n

N
, for a particular integer n

in the range 1 � n � N − 1.
Although the examples presented here specify the values N = 2 and 3, the theory and methods

apply to any value of N . However, it seems there is no generic solution for the exponent terms
for an arbitrary value of N , beyond those given by integral solutions (3.25), and each value of
N requires individual consideration. Nevertheless, when comparing the cases of N = N0 and
N = N0 + m (for arbitrary positive integers N0 and m), equation (2.20) and solution (3.25)
demonstrate that the first N0 exponent terms would be identical in both cases.

One application of the findings in this paper is the scattering of an electric field which is
incident upon a conducting surface. One of the many scattering examples which have been con-
sidered in the literature (Keller [10], for example) is a point source located at the focal point of a
paraboloid. Suppose the point source is disturbed by k−1/N displacement, then the incident field
will necessarily be of the generalised Friedlander–Keller form, which necessitates the scattered
field also be of that form. If the surface is not a perfect conductor and is penetrable, then an exten-
sion to the theory contained in this paper is to boundaries that do not prevent the incident field
from transmitting through, that is, a boundary which separates two distinct wave-bearing media
which would give rise to refracted rays which would also be amenable to the theory presented
here. This was briefly considered by Radjen et al. [15], where the incident electric field encoun-
tered a ‘perturbed’ boundary (in the style of the language used there) which was penetrable and
so resulted in a newly formed electric field outside of that boundary. This problem would involve
two wave-numbers (one for each media); both total fields would each satisfy their own Maxwell’s
equations (2.1) and (2.2) . The difference in wave-number would result in fundamental changes
to, for example, the key eikonal equation, which would now have the solution
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v1 (s, τ) = V1(s) +
∫ τ

τ=0
n2 dτ , (4.1)

with n describing the relation between the two wave-numbers.
The study of two wave-bearing media gives rise to an entirely new application to the vectorial

theory presented here – Navier’s equations of elasticity. It is well known that a wave travelling
through an elastic medium and incident upon a boundary gives rise to two types of reflected wave
motion – ‘longitudinal’ and ‘shear’, each of which would have their own wave-speed, so each of
these would require a generalised Friedlander–Keller ray ansatz of their own. Of course, this is
different to the two fields considered in this paper as both electric and magnetic fields have the
same wave-speed (the speed of light).

Returning to the electromagnetic case, Maxwell’s equations (2.1) and (2.2) are only valid
in a homogeneous media, that is, for constant, O(1) scalar quantities ε and μ (describing the
permittivity and permeability of the medium). If the medium is no longer homogeneous, then
equations (2.2) become

∇ · (εE)= 0, and ∇ · (μH)= 0, (4.2)

and the subsequent theory would be different from the start. As the medium is no longer homoge-
neous, this would change the form of the leading-order exponent term, and this would be another
example of solution (4.1) being relevant. In addition to this, and the following exponent terms
being different, there would be differences in the subsequent transport equations also, as the var-
ious ε and μ terms can no longer be cancelled like they were in the derivations in Section 2. In
turn, this motivates the study of generalised Friedlander–Keller ray expansions in which there
are corrections to the scalar quantities, for example, if ε ∼ ε0 + k−1/Nε1, and similarly for μ.
Such examples may arise in the ‘perturbed’ boundary cases considered by Tew [17, 18]. This
particular analysis is well underway and will be reported on shortly.

One final extension worthy of mention pertains to the case of waves that do not conform
to a time-harmonic form. It was stated that the electric and magnetic fields here assumed (and
suppressed) a time-harmonic dependency, e−iωt. If this assumption were to be removed, so the
electric and magnetic fields now take the generic form E (x, t) and H (x, t), respectively, then
the leading-order exponent term, v1, would no longer satisfy eikonal equation (1.3) . Instead, it
would become the time-dependent version:

∇v1 · ∇v1 =
(
∂v1

∂t

)2

. (4.3)

This aspect would result in a fundamental change to the geometry of the solutions – the first
comment on this is that the rays would no longer necessarily be straight lines. This difference
(along with any others which may arise) would propagate through and fundamentally change
the solution types to vi (for i = 2, 3, · · · , N) and the transport equations for the electric/magnetic
fields. This example, together with all of those mentioned in this section, is currently under
investigation and will be reported on separately.
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Appendix A Derivation of Field Equations

Here, a full derivation of the equations (2.19)–(2.24) is given. It has already been noted that v1

satisfies the eikonal equation (1.3), so the first aim is to determine the field partial differential
equations for the remaining N − 1 exponent terms. This is done by focusing on the second
set of terms in equations (2.15) and (2.16) . The idea is to manipulate these terms so that they
appear as a summation of scalars multiplying the electric vectors. For now, the two equations to
consider are

m∑
n=0

(∇vm+1−n×En)−
√
μ

ε
Hm = 0, (A1)
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m∑
n=0

(∇vm+1−n×Hn)+
√
ε

μ
Em = 0, (A2)

where the m summation limit is valid for m = 1, 2, · · · N − 1. The magnetic fields need to
be eliminated between these equations. Firstly, equation (2.18) gives H0 in terms of E0 and
∇v1, and expressions for H1, H2, · · · , HN−1 can be obtained from equation (A2). As the m in
equation (A1) is valid for m = 1, 2, · · · , N − 1, this can be used to express H1, H2, · · · , HN−1

in terms of ∇v1, ∇v2, · · · , ∇vN and E1, E2, · · · , EN1 . Doing so, then taking the product

∇v1×(A1)+
√
μ

ε
(A2) gives the one equation

m∑
n=0

[∇v1× (∇vm+1−n×En)] + Em

+
m∑

n=0

n∑
j=0

[∇vm+1−n×
(∇vn+1−j×Ej

)] = 0. (A3)

This has entirely decoupled the magnetic field, leaving one equation containing the electric field.
Expanding out the various triple vector products in equation (A3) gives

m∑
n=0

n∑
j=0

(∇vm+1−n · Ej

)∇vn+1−j

︸ ︷︷ ︸
=

m∑
n=0

∇vm+1−n

n∑
j=0

(∇vn+1−j · Ej

)
+ (1 − ∇v1 · ∇v1)︸ ︷︷ ︸

= 0

Em

−
m−1∑
n=0

⎡
⎣(∇v1 · ∇vm+1−n)En +

n∑
j=0

(∇vm+1−n · ∇vn+1−j

)
Ej

⎤
⎦

︸ ︷︷ ︸
=

m∑
n=1

Em−n

n∑
j=0

(∇vn+1−j · ∇vj+1
)

= 0. (A4)

The first comment to make here is that the lowest-order electric field Em has now vanished as a
result of the eikonal equation (1.3) . Moreover, the two double summations can be combined to
give the result

m∑
n=0

∇vm+1−n

n∑
j=0

(∇vn+1−j · Ej

)
︸ ︷︷ ︸

= 0

−
m∑

n=1

⎡
⎣Em−n

n∑
j=0

(∇vn+1−j · ∇vj+1
)⎤⎦ = 0. (A5)

Equation (A5) can be simplified further – the first term contains an inner summation which is
scalar and is identical to the second term in divergence equation (2.14) . As a result, the ∇vm+1−n

https://doi.org/10.1017/S0956792522000249 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000249


1206 A. M. R. Radjen et al.

vector is always multiplied by a zero coefficient. Thus, as the various Ei vectors are taken to be
non-zero, it follows that the scalar inner summation of the second term of equation (A5) must
be zero. Hence, v2, · · · , vN satisfy the recursive system of partial differential equations given
by equation (2.19) .

The next group of terms to consider is the final set summations equations (2.15) and (2.16)
(i.e. the terms appearing at O(1) and lower). The idea is to decouple these two equations and
obtain an equation for one single electric vector Eq (q � 0). This is done by setting the p index
in equations (2.15) and (2.16) to p = N + q to ensure that all terms appearing in those equations
contribute to the sought after transport equation. With this value of p, equations (2.15) and (2.16)
become

i
N∑

n=1

(∇vN+1−n×EN+n+q

)+ (∇×EN+q

)− i

√
μ

ε
H2N+q = 0, (A6)

i
N∑

n=1

(∇vN+1−n×HN+n+q

)+ (∇×HN+q

)+ i

√
ε

μ
E2N+q = 0. (A7)

To decouple these two equations, the magnetic field needs to be removed. Fortunately, the third
terms in equation (2.15) give a relation between HN+p in terms of higher-order E terms and the
gradients of the various v functions:

HN+p =
√
ε

μ

N∑
j=1

(∇vN+1−j×Ej+p

)− i

√
ε

μ

(∇×Ep

)
, (A8)

which equation (2.16) guarantees is valid for p � 0. Inserting equation (A8) into the first and
second terms in equation (A7) (once with p = n + q and once with p = q, respectively) yields
an equation containing only electric vectors EN , EN+1, · · · , EN+q and gradients of the exponent

terms. Taking the vector product ∇v1×(A6)+
√
μ

ε
(A7) then gives the following single equation:

i
N−1∑
n=1

[∇v1×
(∇vN+1−n×EN+n+q

)]+ i
[∇v1×

(∇v1×E2N+q

)]

+ [∇v1×
(∇×EN+q

)]+ i
N−1∑
n=1

N∑
j=1

[∇vN+1−n×
(∇vN+1−j×Ej+n+q

)]

+
N∑

j=1

[∇× (∇vN+1−j×Ej+q

)]− i
[∇× (∇×Eq

)]

+
N−1∑
n=1

[∇vN+1−n×
(∇×En+q

)]+ iE2N+q = 0. (A9)

Expanding out the various vector triple products and double summations then gives, in full

N∑
n=1

⎡
⎢⎣[∇× (∇vN+1−n×En+q

)]+ [∇vN+1−n×
(∇×En+q

)]+ [
En+q× (∇×∇vN+1−n)

]︸ ︷︷ ︸
= 0

⎤
⎥⎦
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+i
N−1∑
n=1

⎡
⎣(∇v1 · EN+n+q

)∇vN+1−n +
N∑

j=1

(∇vN+1−n · Ej+n+q

)∇vN+1−j +
(∇v1 · E2N+q

)∇v1

⎤
⎦

︸ ︷︷ ︸
=

N∑
n=1

[
∇vN+1−n

N∑
m=1

(∇vN+1−m · Em+n+q

)]

−i
N−1∑
n=1

⎡
⎣(∇v1 · ∇vN+1−n)EN+n+q +

N∑
j=1

(∇vN+1−n · ∇vN+1−j

)
En+j+q

⎤
⎦

︸ ︷︷ ︸
=

N−1∑
n=1

⎡
⎣E2N+q−n

n∑
j=0

(∇vn+1−j · ∇vj+1
)⎤⎦+ EN+q

N∑
n=2

(∇vN+2−n · ∇vn)

+
N∑

N=3

EN+2+q−n

N∑
j=n

(∇vN+q−j · ∇vn

)
−i

[∇× (∇×Eq

)]︸ ︷︷ ︸
∇ (∇ · Eq

)− ∇2Eq

−i (1 − ∇v1 · ∇v1)︸ ︷︷ ︸
= 0

E2N+q = 0. (A10)

The first comment to make here is that an additional set of terms has been added here. As
the exponent terms are scalar, it follows by vector calculus that ∇×∇vn = 0 is always true.
This means that the vector triple-product En+q×

(∇×∇vN+q−n

)
can be added N times without

invalidating the equality. The purpose of doing so is to allow the vector identity

[∇× (a×b)] + [a× (∇×b)] + [b× (∇×a)]

= −2(a · ∇) b − (∇ · a) b + (∇ · b) a + ∇ (a · b) , (A11)

valid for any vectors a and b to be used. Also, the expanded summations appearing in equation
(A10) can be regrouped, so they appear as a single inner summation of scalars multiplying an
outer summation of vectors.

−2
N∑

n=1

(∇vN+1−n · ∇)En+q −
N∑

n=1

[(∇2vN+1−n

)
En+q

]

+
N∑

n=1

(∇ · En+q

)∇vN+1−n︸ ︷︷ ︸
= −i

N∑
n=1

∇vN+1−n

N∑
m=1

(∇vN+1−m · ∇Em+n+q

)
+

N∑
n=1

∇ (∇vN+1−n · En+q

)
︸ ︷︷ ︸

= i∇ (∇ · Eq

)

+i
N∑

n=1

∇vN+1−n

N∑
m=1

(∇vN+1−m · Em+n+q

)− iEN+q

N∑
n=2

(∇vN+2−n · ∇vn)

−i
N−1∑
n=1

E2N+q−n

n∑
m=0

(∇vn+1−m · ∇vm+1)︸ ︷︷ ︸
= 0

−i
N∑

n=3

EN+2+q−n

N∑
m=n

(∇vN+n−m · ∇vm)

−i∇ (∇ · Eq

)+ i∇2Eq = 0. (A12)

https://doi.org/10.1017/S0956792522000249 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000249


1208 A. M. R. Radjen et al.

Note that the single scalar summation
n∑

m=0

(∇vn+1−m · ∇vm+1) immediately vanishes as a direct

consequence of the ‘exponent’ equations (2.19) (as the upper limit in the summation is n =
1, 2, · · · , N − 1). Moreover, the final term in divergence equation (2.14) can be used to replace
the ∇ · Ep term, allowing the third summation in equation (A12) to be simplified. Next, the fourth
summation in equation (A12) can be simplified by taking the gradient of divergence equation
(2.14) . Finally, applying the vector identity

[∇× (∇×Eq

)]= ∇ (∇ · Eq

)− ∇2Eq all yields the
sought-after transport equation for each electric vector. The result being equation (2.21) .
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