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Existing theoretical analyses of Faraday waves in Hele-Shaw cells rely on the Darcy
approximation and assume a parabolic flow profile in the narrow direction. However,
Darcy’s model is known to be inaccurate when convective or unsteady inertial effects
are important. In this work, we propose a gap-averaged Floquet theory accounting
for inertial effects induced by the unsteady terms in the Navier–Stokes equations, a
scenario that corresponds to a pulsatile flow where the fluid motion reduces to a
two-dimensional oscillating Poiseuille flow, similarly to the Womersley flow in arteries.
When gap-averaging the linearised Navier–Stokes equation, this results in a modified
damping coefficient, which is a function of the ratio between the Stokes boundary
layer thickness and the cell’s gap, and whose complex value depends on the frequency
of the wave response specific to each unstable parametric region. We first revisit the
standard case of horizontally infinite rectangular Hele-Shaw cells by also accounting
for a dynamic contact angle model. A comparison with existing experiments shows the
predictive improvement brought by the present theory and points out how the standard
gap-averaged model often underestimates the Faraday threshold. The analysis is then
extended to the less conventional case of thin annuli. A series of dedicated experiments for
this configuration highlights how Darcy’s thin-gap approximation overlooks a frequency
detuning that is essential to correctly predict the locations of the Faraday tongues in the
frequency–amplitude parameter plane. These findings are well rationalised and captured
by the present model.
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1. Introduction

Recent Hele-Shaw cell experiments have enriched the knowledge of Faraday waves
(Faraday 1831). Researchers have uncovered a new type of highly localised standing waves,
referred to as oscillons, that are both steep and solitary-like in nature (Rajchenbach,
Leroux & Clamond 2011). These findings have spurred further experimentations with
Hele-Shaw cells filled with one or more liquid layers, using a variety of fluids, ranging
from silicone oil and water–ethanol mixtures to pure ethanol (Li et al. 2018b). Through
these experiments, new combined patterns produced by triadic interactions of oscillons
were discovered by Li, Xu & Liao (2014). Additionally, another new family of waves was
observed in a cell filled solely with pure ethanol and at extremely shallow liquid depths
(Li, Yu & Liao 2015; Li, Li & Liao 2016).

All these findings contribute to the understanding of the wave behaviour in Hele-Shaw
configurations and call for a reliable stability theory that can explain and predict the
instability onset for the emergence of initial wave patterns.

Notwithstanding two-dimensional direct numerical simulations, Ubal, Giavedoni &
Saita (2003) and Périnet et al. (2016) have been able to qualitatively replicate standing
wave patterns reminiscent of those observed in experiments (Li et al. 2014), these
simulations overlook the impact of wall attenuation, hence resulting in a simplified model
that cannot accurately predict the instability regions (Benjamin & Ursell 1954; Kumar
& Tuckerman 1994) and is therefore not suitable for modelling Hele-Shaw flows. On the
other hand, attempting to conduct three-dimensional simulations of fluid motions in a
Hele-Shaw cell poses a major challenge due to the high computational cost associated
with the narrow dimension of the cell, which requires a smaller grid cell size to capture
the shear dissipation accurately. Consequently, the cost of performing such simulations
increases rapidly as the cell gap narrows.

In order to tackle the challenges associated with resolving fluid dynamics within such
systems, researchers have utilised Darcy’s law as an approach to treating the confined fluid
between two vertical walls. This approximation, also used in the context of porous media,
considers the fluid to be flowing through a porous medium, resulting in a steady parabolic
flow in the short dimension. When gap-averaging the linearised Navier–Stokes equation,
this approximation translates into a damping coefficient σ that scales as 12ν/b2, with ν

the fluid kinematic viscosity and b the cell’s gap size, which represents the boundary
layer dissipation at the lateral walls. However, Darcy’s model is known to be inaccurate
when convective and unsteady inertial effects are not negligible, such as in waves
(Kalogirou, Moulopoulou & Bokhove 2016). It is challenging to reintroduce convective
terms consistently into the gap-averaged Hele-Shaw equations from a mathematical
standpoint (Ruyer-Quil 2001; Plouraboué & Hinch 2002; Luchini & Charru 2010).

In their research, Li et al. (2018a) applied the Kelvin–Helmholtz–Darcy theory
proposed by Gondret & Rabaud (1997) to reintroduce advection and derive the nonlinear
gap-averaged Navier–Stokes equations. These equations were then implemented in the
open-source code Gerris developed by Popinet (2003, 2009) to simulate Faraday waves
in a Hele-Shaw cell. Although this gap-averaged model was compared with several
experiments and demonstrated fairly good agreement, it should be noted that the surface
tension term remains two-dimensional, as the out-of-plane interface shape is not directly
taken into account. Recently, Rachik & Aniss (2023) have studied the effects of finite
depth and surface tension on the linear and weakly nonlinear stability of the Faraday
waves in Hele-Shaw cells, but the out-of-plane curvature was not retained. This simplified
treatment neglects the contact line dynamics and may lead to miscalculations in certain
situations. Advances in this direction were made by Li, Li & Liao (2019), who found
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that the out-of-plane capillary forces associated with the meniscus curvature across the
thin-gap direction should be retained in order to improve the description of the wave
dynamics, as experimental evidence suggests. By employing a more sophisticated model,
coming from molecular kinetics theory (Blake 1993; Hamraoui et al. 2000; Blake 2006)
and similar to the macroscopic model introduced by Hocking (1987), they included the
capillary contact line motion arising from the small scale of the gap size between the two
walls of a Hele-Shaw cell and they derived a novel dispersion relation, which indeed better
predicts the observed instability onset.

However, discrepancies in the instability thresholds were still found. This mismatch
was tentatively attributed to factors that are not accounted for in the gap-averaged
model, such as the extra dissipation on the lateral walls in the elongated direction. Of
course, a laboratory-scale experiment using a rectangular cell cannot entirely replace
an infinite-length model. Still, if the container is sufficiently long, this extra dissipation
should be negligible. Other candidates for the mismatch between theory and experiments
were identified in the phenomenological contact line model or free surface contaminations.

If these factors can certainly be sources of discrepancies, we believe that a pure
hydrodynamic effect could be at the origin of the discordance between theory and
experiments in the first place.

Despite that the use of the Darcy approximation is well-assessed in the literature,
the choice of a steady Poiseuille flow profile as an ansatz to build the gap-averaged
model appears in fundamental contrast with the unsteady nature of oscillatory Hele-Shaw
flows, such as Faraday waves. At low enough oscillation frequencies or for sufficiently
viscous fluids, the thickness of the oscillating Stokes boundary layer becomes comparable
to the cell gap: the Stokes layers over the lateral solid faces of the cell merge and
eventually invade the entire fluid bulk. The Poiseuille profile gives an adequate flow
description in such scenarios, but this prerequisite is rarely met in the above-cited
experimental campaigns. It appears, thus, very natural to ask oneself whether a more
appropriate description of the oscillating boundary layer impacts the prediction of stability
boundaries. This study is precisely devoted to answering this question by proposing a
revised gap-averaged Floquet analysis based on the classical Womersley-like solution for
the pulsating flow in a channel (Womersley 1955; San & Staples 2012).

Following the approach taken by Viola, Gallaire & Dollet (2017), we examine the impact
of inertial effects on the instability threshold of Faraday waves in Hele-Shaw cells, with a
focus on the unsteady term of the Navier–Stokes equations. This scenario corresponds to
a pulsatile flow where the fluid’s motion reduces to a two-dimensional oscillating channel
flow, which seems better suited than the steady Poiseuille profile to investigate the stability
properties of the system. When gap-averaging the linearised Navier–Stokes equation, this
results in a modified damping coefficient becoming a function of the ratio between the
Stokes boundary layer thickness and the cell’s gap, and whose complex value will depend
on the frequency of the wave response specific to each unstable parametric region.

First, we consider the case of horizontally infinite rectangular Hele-Shaw cells by also
accounting for the same dynamic contact angle model employed by Li et al. (2019) so as to
quantify the predictive improvement brought by the present theory. A vis-à-vis comparison
with experiments by Li et al. (2019) points out how the standard Darcy model often
underestimates the Faraday threshold. In contrast, the present theory can explain and close
the gap with these experiments.

The analysis is then extended to the case of thin annuli. This less common configuration
has already been used to investigate oscillatory phase modulation of parametrically
forced surface waves (Douady, Fauve & Thual 1989) and drift instability of cellular
patterns (Fauve, Douady & Thual 1991). For our interest, an annular cell is convenient
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as it naturally filters out the extra dissipation that could take place on the lateral
boundary layer in the elongated direction, hence allowing us to reduce the sources of
extra uncontrolled dissipation and perform a cleaner comparison with experiments. Our
homemade experiments for this configuration highlight how Darcy’s theory overlooks
a frequency detuning that is essential to correctly predict the locations of the Faraday
tongues in the frequency spectrum. These findings are well rationalised and captured by
the present model.

The paper is organised as follows. In § 2, we revisit the classical case of horizontally
infinite rectangular Hele-Shaw cells. The present model is compared with theoretical
predictions from the standard Darcy theory and existing experiments. The case of thin
annuli is then considered. The model for the latter unusual configuration is formulated
in § 3 and compared with homemade experiments in § 4. Conclusions are outlined in § 5.

2. Horizontally infinite Hele-Shaw cells

Let us begin by considering the case of a horizontally infinite Hele-Shaw cell of width
b filled to a depth h with an incompressible fluid of density ρ, dynamic viscosity μ

(kinematic viscosity ν = μ/ρ) and liquid–air surface tension γ (see also the sketch
in figure 1a). The vessel undergoes a vertical sinusoidal oscillation of amplitude a
and angular frequency Ω . In a frame of reference which moves with the oscillating
container, the free liquid interface is flat and stationary for small forcing amplitudes,
and the oscillation is equivalent to a temporally modulated gravitational acceleration,
G(t′) = g − aΩ2 cos Ωt′. The equations of motion for the fluid bulk are

ρ

(
∂U ′

∂t′
+ U ′ · ∇′U ′

)
= −∇′P′ + μ∇′2U ′ − ρG (t) ez, ∇′ · U ′ = 0. (2.1)

Linearising about the rest state U ′ = 0 and P′(z′, t′) = −ρG(t′)z′, the equations for the
perturbation velocity, u′(x′, y′, z′, t′) = {u′, v′, w′}T, and pressure, p′(x′, y′, z′, t′), fields,
associated with a certain perturbation’s wavelength l = 2π/k (k, wavenumber), read

ρ
∂u′

∂t′
= −∇′p′ + μ∇′2u′, ∇′ · u′ = 0. (2.2)

Assuming that bk � 1, then the velocity along the narrow y′-dimension v′ � u′, w′ and,
by employing the Hele-Shaw approximation as in, for instance, Viola et al. (2017), one can
simplify the linearised Navier–Stokes equations as follows:

∂u′

∂x′ + ∂v′

∂y′ + ∂w′

∂z′ = 0, (2.3a)

ρ
∂u′

∂t′
= −∂p′

∂x′ + μ
∂2u′

∂y′2 , ρ
∂w′

∂t′
= −∂p′

∂z′ + μ
∂2w′

∂y′2 ,
∂p′

∂y′ = 0. (2.3b)

Equations (2.3a)–(2.3b) are made dimensionless using k−1 for the directions x′ and
z′, and b for y′. The forcing amplitude and frequency provide a scale aΩ for the
in-plane xz-velocity components, whereas the continuity equation imposes the transverse
component v′ to scale as v′ ∼ bkaΩ � aΩ ∼ u′, due to the strong confinement in
the y-direction (bk � 1). With these choices, dimensionless spatial scales, velocity
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z′ = η′

(a) (b)

R – b/2

R + b/2

b/l � 1 b/R � 1

h

z′

G(t′ ) = g – aΩ2cos(Ωt′)

θ

h

x′
z′

y′

b

G(t′) = g – aΩ2cos(Ωt′)

l = 2π/k

φ′
r′

Figure 1. (a) Sketch of Faraday waves in a rectangular Hele-Shaw cell of width b and length l filled to a depth h
with a liquid. Here b denotes the gap size of the Hele-Shaw cell, l is the wavelength of a certain wave, such that
b/l � 1, and θ is the dynamic contact angle of the liquid on the lateral walls. The vessel undergoes a vertical
sinusoidal oscillation of amplitude a and angular frequency Ω . The free surface elevation is denoted by η′(x′).
(b) Same as (a), but in an annular Hele-Shaw cell with internal and external radii, respectively, R − b/2 and
R + b/2. Here, b/R � 1 and the free surface elevation is a function of the azimuthal coordinate ϕ′, i.e. η′(ϕ′).

components and pressure write

x = x′k, y = y′

b
, z = z′k, u = u′

aΩ
, v = v′

bkaΩ
, w = w′

aΩ
,

p = kp′

ρaΩ2 , t = Ωt′.
(2.4a–h)

The first two equations in (2.3b) in non-dimensional form are

∂u
∂t

= −∂p
∂x

+ δ2
St
2

∂2u
∂y2 ,

∂w
∂t

= −∂p
∂z

+ δ2
St
2

∂2w
∂y2 , (2.5a,b)

where δSt = δ′
St/b and with δ′

St = √
2ν/Ω denoting the thickness of the oscillating Stokes

boundary layer. The ratio
√

2/δSt is also commonly referred to as the Womersley number,
Wo = b

√
Ω/ν (Womersley 1955; San & Staples 2012).

2.1. Floquet analysis of the gap-averaged equations
Given its periodic nature, the stability of the base flow, represented by a time-periodic
modulation of the hydrostatic pressure, can be investigated via Floquet analysis. We,
therefore, introduce the following Floquet ansatz (Kumar & Tuckerman 1994):

u (x, y, z, t) = eμFt
+∞∑

n=−∞
ũn (x, y, z) ei(n+α/Ω)t = eμFt

+∞∑
n=−∞

ũn (x, y, z) eiξnt, (2.6a)

p (x, z, t) = eμFt
+∞∑

n=−∞
p̃n (x, z) ei(n+α/Ω)t = eμFt

+∞∑
n=−∞

p̃n (x, z) eiξnt, (2.6b)
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Figure 2. (a) Real and imaginary (Imag) parts of the complex auxiliary coefficient χ = χr + iχi versus twice
the non-dimensional Stokes boundary layer thickness δ. The horizontal black dotted line indicates the constant
value 12 given by the Darcy approximation. (b) Normalised profile F( y) (Womersley profile) for different
δ = b−1√2ν/ξΩ , whose values are specified by the filled circles in (a) with matching colours. The Poiseuille
profile is also reported for completeness. In drawing these figures, we let the oscillation frequency of the wave,
ξΩ , be free to assume any value, but we recall that the parameter ξ can only assume discrete values, and so do
χ and F( y).

where μF is the real part of the non-dimensional Floquet exponent and represents the
growth rate of the perturbation. We have rewritten (n + α/Ω) = ξn to better demonstrate
the parametric nature of the oscillation frequency of the wave response. In the following,
we will focus on the condition for marginal stability (boundaries of the Faraday tongues),
which requires a growth rate μF = 0. In addition, values of α = 0 and Ω/2 correspond,
respectively, to harmonic and subharmonic parametric resonances (Kumar & Tuckerman
1994). This implies that ξn is a parameter whose value is either n, for harmonics, or
n + 1/2, for subharmonics, with n an integer n = 0, 1, 2, . . . specific to each Fourier
component in (2.6a)–(2.6b).

By substituting the ansatzes (2.6a)–(2.6b) in (2.4a–h), we find that each component of
the Fourier series must satisfy

∀n : iξnũn = −∂ p̃n

∂x
+ δ2

St
2

∂2ũn

∂y2 , iξnw̃n = −∂ p̃n

∂z
+ δ2

St
2

∂2w̃n

∂y2 , (2.7a,b)

which, along with the no-slip condition at y = ±1/2, correspond to a two-dimensional
pulsatile Poiseuille flow with solution

ũn = i
ξn

∂ p̃n

∂x
Fn ( y) , w̃n = i

ξn

∂ p̃n

∂z
Fn ( y) , Fn ( y) =

(
1 − cosh ((1 + i) y/δn)

cosh ((1 + i) /2δn)

)
,

(2.8a–c)

and where δn = δSt/
√

ξn is a rescaled Stokes boundary layer thickness specific to the nth
Fourier component. The function Fn( y) is displayed in figure 2(b), which depicts how
a decrease in the value of δn starting from large values corresponds to a progressive
transition from a fully developed flow profile to a plug flow connected to thin boundary
layers.

The gap-averaged velocity along the y-direction satisfies a Darcy-like equation,

〈ũn〉 =
∫ 1/2

−1/2
ũn dy = iβn

ξn
∇p̃n, βn = 1 − 2δn

1 + i
tanh

1 + i
2δn

. (2.9a,b)
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To obtain a governing equation for the pressure p̃n, we average the continuity equation and
we impose the impermeability condition for the spanwise velocity, v = 0 at y = ±1/2,

∂〈ũn〉
∂x

+
∫ 1/2

−1/2

∂ṽn

∂y
dy︸ ︷︷ ︸

ṽn(1/2)−ṽn(−1/2)=0

+ ∂〈w̃n〉
∂z

= ∇ · 〈ũn〉 = 0. (2.10)

Since 〈ũn〉 = i(βn/ξn)∇p̃n, the pressure field p̃n must obey the Laplace equation

∇2p̃n = ∂2p̃n

∂x2 + ∂2p̃n

∂z2 = 0. (2.11)

It is now useful to expand each Fourier component p̃n(x, z) in the infinite x-direction as
sin x such that the y-average implies

p̃n (x, z) = p̂n (z) sin x, (2.12a)

〈ũn〉 = iβn

ξn
p̂n cos x = ûn cos x, 〈w̃n〉 = iβn

ξn

∂ p̂n

∂z
sin x = ŵn sin x. (2.12b)

Replacing (2.12a) in (2.11) leads to(
∂2

∂z2 − 1
)

p̂n = 0, (2.13)

which admits the solution form

p̂n = c1 cosh z + c2 sinh z. (2.14)

The presence of a solid bottom imposes that ŵn = 0 and, therefore, that ∂ p̂n/∂z = 0, at a
non-dimensional fluid depth z = −hk, hence giving

p̂n = c1 [cosh z + tanh kh sinh z] . (2.15)

Let us now invoke the kinematic boundary condition linearised around a flat static interface

∂η

∂t
= w. (2.16)

Note that the free surface elevation, η′(x′, y′, t′), has been rescaled by the forcing amplitude
a, i.e. η′/a = η, and represents the projection of the bottom of the transverse concave
meniscus on the xz-plane of figure 1(a).

Moreover, by recalling the Floquet ansatzes (2.6a)–(2.6b) (with μF = 0), here specified
for the interface, we get an equation for each Fourier component n,

η =
+∞∑

n=−∞
η̃neiξnt. (2.17)

Expanding η̃n in the x-direction as sin x and averaging in y, i.e. 〈η̃n〉 = η̂n, leads to

∀n : iξnη̂n = ŵn = iβn

ξn

∂ p̂n

∂z

∣∣∣∣
z=0

= iβn

ξn
c1 tanh kh −→ c1 = ξ2

n

βn

η̂n

tanh kh
. (2.18)
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Lastly, we consider the dynamic equation (normal stress) linearised around a flat nominal
interface and evaluated at z′ = 0,

− p′ + ρG
(
t′
)
η′ + 2μ

∂w′

∂z′ − γ

(
∂2η′

∂x′2 + ∂2η′

∂y′2

)
= 0, (2.19)

with the term in brackets representing the first-order variation of the interface curvature.
After turning to non-dimensional quantities using the scaling in (2.4a–h), (2.19) reads

− Ω2p + gkη − γ

ρ
k
∂2η

∂x2 − γ

ρb2 k
∂2η

∂y2 = aΩ2

g
gkη cos t, (2.20)

where the viscous stress term has been neglected by analogy with Viola et al. (2017), Li
et al. (2018a) and Li et al. (2019). Indeed, dimensional analysis suggests that such a term
scales as δ2

Stk
2b2 (with kb � 1), which is therefore negligible compared with the others as

soon as δSt is of order ∼ O(1) or smaller.
The capillary force in the x-direction becomes important only at large enough

wavenumbers, although the associated term can be retained in the analysis so as to retrieve
the well-known dispersion relation (Saffman & Taylor 1958; Chuoke, van Meurs & van
der Poel 1959; McLean & Saffman 1981; Park & Homsy 1984; Schwartz 1986; Afkhami &
Renardy 2013; Li et al. 2019). With the introduction of the Floquet ansatzes (2.6b)–(2.17)
and by recalling the x-expansion of the interface and pressure as sin x, the averaged normal
stress equation becomes

∀n : −Ω2p̂n +
(

1 + γ

ρg
k2
)

gkη̂n − γ

ρb2 k
∫ 1/2

−1/2

∂2η̃n

∂y2 dy = aΩ2

2g
gk

(
η̂n−1 + η̂n+1

)
,

(2.21)

where the decomposition cos Ωt′ = (eiΩt′ + e−iΩt′)/2 = (eit + e−it)/2 has also been used
to decompose the right-hand side into the (n − 1)th and (n + 1)th harmonics.

2.1.1. Treatment of the integral contact line term
The treatment of the integral term hides several subtleties. Owing to the antisymmetry of
the first derivative of the interface at the two sidewalls, this term can be rewritten as∫ 1/2

−1/2

∂2η̃n

∂y2 dy =
[
∂η̃n

∂y

]y=1/2

y=−1/2
= 2

∂η̃n

∂y

∣∣∣∣
y=1/2

. (2.22)

Linking the interface position η̃n( y) to the vertical velocity w̃n( y) given by (2.7a,b)
through the kinematic equation (2.16), and then taking their y-derivative in y = 1/2 to
express ∂η̃n/∂y|y=1/2 seems the natural choice. However, this means assuming that the
contact line remains pinned during the motion as w̃n satisfies the no-slip wall condition
at y = ±1/2. Although the scenario of a pinned contact line dynamics (Benjamin &
Scott 1979; Graham-Eagle 1983) is experimentally reproducible under controlled edge
conditions (Henderson & Miles 1994; Bechhoefer et al. 1995; Howell et al. 2000;
Shao et al. 2021a,b; Wilson et al. 2022), the most common experimental condition
is that of a moving contact line (Benjamin & Ursell 1954; Henderson & Miles 1990;
Batson, Zoueshtiagh & Narayanan 2013; Li et al. 2015, 2016, 2019; Ward, Zoueshtiagh &
Narayanan 2019; Wilson et al. 2022), which is not compatible with the no-slip condition
satisfied by w̃n. One natural option would be to relax this no-slip condition by introducing

977 A45-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

98
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.986


A gap-averaged analysis of Faraday waves in Hele-Shaw cells

a small slip region in the vicinity of the contact line, within which the flow quickly adapts
from a no-slip to a slip condition (Miles 1990; Ting & Perlin 1995). Accounting for this
slip region, where the fluid speed relative to the solid is proportional to the viscous stress
through a spatially varying slip length, is hardly compatible with the presently proposed
depth-averaged modelling.

However, following Li et al. (2019) and Hamraoui et al. (2000), it is possible
to get inspiration from the contact line literature and relate the slope ∂η̃n/∂y|y=1/2
to the gap-averaged contact line velocity 〈w̃n〉 in the averaged sense, drawing a
phenomenological analogy with the contact line law referred to as the linear Hocking’s
model (Hocking 1987). To that purpose, the slope ∂η̃n/∂y|y=1/2 is first related to the
dynamic contact angle θ(t) through the geometrical relation

∂η′

∂y′

∣∣∣∣
y′=b/2

= cot θ. (2.23)

Assuming the static interface to be flat means taking the static contact angle θs equal to
π/2. Linearisation of (2.23) around θs = π/2 and substitution of the Floquet ansatz lead,
in non-dimensional form, to

∀n :
∂η̃n

∂y

∣∣∣∣
y=1/2

= −b
a
θn, (2.24)

with θn representing a small angle variation around θs associated with the nth harmonic.
Defining 〈Ca〉 = (μ/γ )〈w′〉, we prescribe

∀n : θn = M
γ

aΩ〈w̃n〉 = a
M
γ

i (ξnΩ) η̂n. (2.25)

The friction coefficient M, sometimes referred to as mobility parameter M (Xia & Steen
2018), is here not interpreted in the framework of molecular kinetics theory (Voinov 1976;
Hocking 1987; Blake 1993, 2006; Johansson & Hess 2018) but rather viewed as a constant
phenomenological parameter that defines the energy dissipation rate per unit length of the
contact line and, as in Li et al. (2019), we use the values proposed by Hamraoui et al.
(2000).

In Hocking’s model (Hocking 1987), adopting a value of M = 0 naturally means
considering a contact line freely oscillating with a constant slope, while taking M = +∞
simulates the case of a pinned contact line with fixed elevation. In contrast, in the present
Hele-Shaw framework, the capillary number can only be defined in terms of averaged
interface velocity, so one cannot distinguish the contact line motion from the averaged
interface evolution. As a result, the averaged model overlooks the free-to-pinned transition
described by Hocking (1987) at large M, and somewhat paradoxically, the pinned regime
cannot be described with this law.

2.1.2. Modified damping coefficient
Equations (2.15) and (2.18) are finally used to express the dynamic equation as a function
of the non-dimensional averaged interface only,

− (ξnΩ)2

βn
η̂n + i (ξnΩ)

2M
ρb

k tanh khη̂n + (1 + Γ ) gk tanh kh η̂n

= gk tanh kh
2

f
(
η̂n−1 + η̂n+1

)
, (2.26)

977 A45-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

98
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.986


A. Bongarzone, B. Jouron, F. Viola and F. Gallaire

with the auxiliary variables f = aΩ2/g and Γ = γ k2/ρg, such that (1 + Γ )gk tanh kh =
ω2

0, the well-known dispersion relation for capillary-gravity waves (Lamb 1993).
As in the present form, the interpretation of coefficient βn does not appear

straightforward, it is useful to define the damping coefficients

σn = σBL + σCL, σBL = χn
ν

b2 , σCL = 2M
ρb

k tanh kh, (2.27a)

where χn is used to help rewriting 1/βn = 1 − i(δ2
n/2)χn,

χn = i
2
δ2

n

(
1 − βn

βn

)
= 12

⎡
⎢⎢⎣ i

6δ2
n

⎛
⎜⎜⎝

2δn

1 + i
tanh

1 + i
2δn

1 − 2δn

1 + i
tanh

1 + i
2δn

⎞
⎟⎟⎠
⎤
⎥⎥⎦ . (2.27b)

These auxiliary definitions allow one to express (2.26) as

−(ξnΩ)2 η̂n + i (ξnΩ) σnη̂n + ω2
0η̂n = ω2

0
2 (1 + Γ )

f
[
η̂n+1 + η̂n−1

)
], (2.28)

or, equivalently,

2 (1 + Γ )

ω2
0

[
− (nΩ + α)2 + i (nΩ + α) σn + ω2

0

]
η̂n = f

[
η̂n+1 + η̂n−1

]
. (2.29)

Subscripts BL and CL in (2.27a) denote, respectively, the boundary layers and contact line
contributions to the total damping coefficient σn.

2.1.3. Results
At the end of this mathematical derivation, a useful result is the modified damping
coefficient σn. Since the boundary layer contribution, σBL depends on the nth Fourier
component, the overall damping, σn, is mode dependent and its value is different for
each specific nth parametric resonant tongue considered. This starkly contrasts with the
standard Darcy approximation, where σBL is the same for each resonance and amounts
to 12ν/b2. In our model, the case of α = 0 with n = 0 constitutes a peculiar case, as
ξn = ξ0 = 0 and δ0 → +∞. In such a situation, F0( y) tends to the steady Poiseuille profile
so that we take χ0 = 12.

Similarly to Kumar & Tuckerman (1994), (2.29) is rewritten as

Anη̂n = f
[
η̂n+1 + η̂n−1

]
, (2.30)

with

An = 2 (1 + Γ )

ω2
0

(
− (nΩ + α)2 + i (nΩ + α) σn + ω2

0

)
= Ar

n + iAi
n ∈ C. (2.31)

The non-dimensional amplitude of the external forcing, f = aΩ2/g appears linearly,
therefore (2.30) can be considered to be a generalised eigenvalue problem

Aη̂ = f Bη̂, (2.32)

with eigenvalues f and eigenvectors whose components are the real and imaginary parts
of η̂n (see Kumar & Tuckerman (1994) for the structure of matrices A and B).

977 A45-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

98
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.986


A gap-averaged analysis of Faraday waves in Hele-Shaw cells

(a)

SH1
H1

SH2
H2

SH3
H3

SH4

H4

4 (Hz)
(b)

5 (Hz)
(c)

6 (Hz)

(d )

kb/2π

f=
aΩ

2
/g

f=
aΩ

2
/g

7 (Hz)
(e)

kb/2π

8 (Hz)
( f )

kb/2π

9 (Hz)

0

0.5

1.0

1.5

2.0

2.5

0

0.5

1.0

1.5

2.0

2.5

0

0.5

1.0

1.5

2.0

2.5

0.05 0.10 0.15 0.200

0.5

1.0

1.5

2.0

2.5

0.05 0.10 0.15 0.200

0.5

1.0

1.5

2.0

2.5

0.05 0.10 0.15 0.20

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

0

0.5

1.0

1.5

2.0

2.5

Figure 3. Faraday tongues computed via Floquet analysis at different fixed driving frequencies (reported above
each panel). Black regions correspond to the unstable Faraday tongues computed using σBL = 12ν/b2 as in
the standard Darcy approximation, whereas red regions are the unstable tongues computed with the present
modified σBL = χnν/b2. For this example, we consider ethanol 99.7 % (see table 1) in a Hele-Shaw cell of
gap size b = 2 mm filled to a depth h = 60 mm. Here f denotes the non-dimensional forcing acceleration,
f = aΩ2/g, with dimensional forcing amplitude a and angular frequency Ω . For plotting, we define a
small scale-separation parameter ε = kb/2π and arbitrarily set its maximum acceptable value to 0.2. Contact
line dissipation is not included, i.e. M = σCL = 0. The tongues are labelled as follows: SH, subharmonic;
H, harmonic.

For one frequency forcing we use a truncation number N = 10, which produces 2(N +
1) × 2(N + 1) = 22 × 22 matrices. Eigenproblem (2.32) is then solved in MATLAB
using the built-in function eigs and selecting several smallest, real positive values of f .
For a fixed forcing frequency Ω and wavenumber k, the eigenvalue with the smallest real
part will define the instability threshold. Further details about the numerical convergence
as the truncation number N varies are given in Appendix A.

Figure 3 shows the results of this procedure for one of the configurations considered
by Li et al. (2019) and neglecting the dissipation associated with the contact line motion,
i.e. M = 0. In each panel, associated with a fixed forcing frequency, the black regions
correspond to the unstable Faraday tongues computed using σBL = 12ν/b2 as given
by Darcy’s approximation, whereas the red regions are the unstable tongues computed
with the modified σBL = χnν/b2. At a forcing frequency 4 Hz, the first subharmonic
tongues computed using the two models essentially overlap. Yet, successive resonances
display an increasing departure from Darcy’s model due to the newly introduced complex
coefficient σn. Particularly, the real part of χn is responsible for the higher onset
acceleration, while the imaginary part is expected to act as a detuning term, which shifts
the resonant wavenumbers k.
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2.2. Asymptotic approximations
The main result of this analysis consists of the derivation of the modified damping
coefficient σn = σn,r + iσn,i associated with each parametric resonance. Aiming at better
elucidating how this modified complex damping influences the stability properties of the
system, we would like to derive in this section an asymptotic approximation, valid in the
limit of small forcing amplitudes, damping and detuning, of the first subharmonic (SH1)
and harmonic (H1) Faraday tongues.

Unfortunately, the dependence of σn on the parametric resonance considered and, more
specifically, on the nth Fourier component, does not allow one to directly convert the
governing equations (2.28), expressed in a discrete frequency domain, back into the
continuous temporal domain. By keeping this in mind, we can still imagine fixing the value
of σn to that corresponding to the parametric resonance of interest, e.g. σ0 (with n = 0 and
ξ0Ω = Ω/2) for SH1 or σ1 (with n = 1 and ξ1Ω = Ω) for H1. By considering then that
for the SH1 and H1 tongues, the system responds in time as exp(iΩt/2) and exp(iΩt),
respectively, we can recast, for these two specific cases, (2.28) into a damped Mathieu
equation (Benjamin & Ursell 1954; Kumar & Tuckerman 1994; Müller et al. 1997)

∂2η̂

∂t′2
+ σ̂n

∂η̂

∂t′
+ ω2

0

(
1 − f

1 + Γ
cos Ωt′

)
η̂ = 0, (2.33)

with either σ̂n = σ0 (SH1) or σ̂n = σ1 (H1) and where one can recognise that
−(ξnΩ)2η̂ ↔ ∂2η̂/∂t′2 and i(ξnΩ)η̂ ↔ ∂η̂/∂t′. Asymptotic approximations can be then
computed by expanding asymptotically the interface as η̂ = η̂0 + εη̂1 + ε2η̂2 + · · · , with
ε a small parameter � 1.

2.2.1. First subharmonic tongue
As anticipated above, when looking at the first or fundamental subharmonic tongue (SH1),
one should take σ̂n → σ0 (with ξ0Ω = Ω/2), which is assumed small of order ε. The
forcing amplitude f is also assumed of order ε. Furthermore, a small detuning ∼ ε, such
that Ω = 2ω0 + ελ, is also considered, and, in the spirit of the multiple time scale analysis,
a slow time scale τ ′ = εt′ (Nayfeh 2008) is introduced. At leading order, the solution reads
η̂0 = A(τ ′)eiω0t′ + c.c., with c.c. denoting the complex conjugate part. At the second order
in ε, the imposition of a solvability condition necessary to avoid secular terms prescribes
the amplitude B(τ ′) = A(τ ′)e−iλτ ′/2 to obey the following amplitude equation:

dB
dτ ′ = −σ0

2
B − i

λ

2
B − i

ω0

4 (1 + Γ )
f B̄. (2.34)

Turning to polar coordinates, i.e. B = |B|eiΦ , keeping in mind that σ0 = σ0,r + iσ0,i and
looking for stationary solutions with |B| /= 0 (we skip the straightforward mathematical
steps), one ends up with the following approximation for the marginal stability boundaries
associated with the first subharmonic Faraday tongue:

(
Ω + σ0,i

2ω0
− 1

)
= ± 1

4 (1 + Γ )

√√√√f 2 − 4σ 2
0,r (1 + Γ )2

ω2
0

, (2.35)

whose onset acceleration value, min f1SH , for a fixed driving frequency Ω/2π, amounts to

min fSH1 = 2σ0,r

√
1 + Γ

gk tanh kh
≈ 2σ0,r

√
1
g

(
1
k

+ γ

ρg
k
)

. (2.36)
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kb/2π
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18 (Hz)

0.05 0.10 0.15 0.20 0.25
0

0.5

1.0

1.5

2.0

2.5

SH1 H1

Figure 4. First subharmonic and harmonic Faraday tongues at a driving frequency 1/T = 18 Hz (where T
is the forcing period) for the same configuration of figure 3. Black and red regions show unstable tongues
computed via Floquet analysis by using, respectively, σBL = 12ν/b2 and the modified σBL = χ1ν/b2 from the
present model. Dashed and solid light-blue lines correspond to the asymptotic approximations according to
(2.35)–(2.38).

Note that the final approximation on the right-hand side of (2.36) only holds if kh � 1,
so that tanh kh ≈ 1 (deep-water regime). Given that χ0,r > 12 and χ0,i > 0 always, the
asymptotic approximation (2.36), in its range of validity, suggests that Darcy’s model
underestimates the subharmonic stability threshold. Moreover, from (2.35), the critical
wavenumber k, associated with min fSH1, would correspond to that prescribed by the
Darcy approximation but at an effective forcing frequency Ω + σ0,i = 2ω0 instead of at
Ω = 2ω0. This explains why the modified tongues appear to be shifted towards higher
wavenumbers. These observations are clearly visible in figure 4.

2.2.2. First harmonic tongue
By analogy with § 2.2.1, an analytical approximation of the first harmonic tongue (H1) can
be provided. In the same spirit of Rajchenbach & Clamond (2015), we adapt the asymptotic
scaling such that f is still of order ε, but τ ′ = ε2t′, σ̂n = σ1 ∼ ε2 (with ξ1Ω = Ω) and
Ω = ω0 + ε2λ. Pursuing the expansion up to ε2-order, with η̂0 = A(τ ′)eiω0t′ + c.c. and
B(τ ′) = A(τ ′)e−iλτ ′

, will provide the amplitude equation

dB
dτ ′ = −σ1

2
B − iλB − i

ω0

8 (1 + Γ )2 f 2B̄ + i
ω0

12 (1 + Γ )2 f 2B. (2.37)

The approximation for the marginal stability boundaries derived from (2.37) takes the form

(
Ω + σ1,i/2

ω0
− 1

)
= f 2

12 (1 + Γ )2 ± 1

8 (1 + Γ )2

√√√√f 4 −
(

4σ1,r (1 + Γ )2

ω0

)2

(2.38)

with a minimum onset acceleration, min f1H

min fH = 2
√

σ1,r

(
(1 + Γ )3

gk tanh kh

)1/4

≈ 2
√

σ1,r
1

g1/4

(
1

k1/3 + γ

ρg
k5/3

)3/4

, (2.39)

and where, as before, the final approximation on the right-hand side is only valid in
the deep-water regime. Similarly to the subharmonic case, the critical wavenumber k
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Figure 5. Subharmonic instability onset, min f , versus driving frequency, 1/T (where T is the forcing
period). Comparison between theoretical data (empty squares, standard Darcy model, σBL = 12ν/b2; coloured
triangles, present model, σBL = χnν/b2) and experimental measurements (Exp.) by Li et al. (2019). The values
of the mobility parameter M here employed are reported in the figure.

corresponds to that prescribed by the Darcy approximation but at an effective forcing
frequency Ω + σ1,i/2 = ω0 instead of at Ω = ω0 and the onset acceleration is larger than
that predicted from the Darcy approximation (as χ1,r > 12).

2.3. Comparison with experiments by Li et al. (2019)
Results presented so far were produced by assuming the absence of contact line
dissipation, i.e. coefficient M was set to M = 0 so that σCL = 0. In this section, we
reintroduce such a dissipative contribution and we compare our theoretical predictions
with a set of experimental measurements reported by Li et al. (2019), using the
values they have proposed for M. This comparison, shown in figure 5, is outlined in
terms of non-dimensional minimum onset acceleration, min f = min fSH1, versus driving
frequency. These authors performed experiments in two different Hele-Shaw cells of
length l = 300 mm, fluid depth h = 60 mm and gap size b = 2 mm or b = 5 mm.
Two fluids, whose properties are reported in table 1, were used: ethanol 99.7 % and
ethanol 50 %. The empty squares in figure 5 are computed via Floquet stability analysis
(2.32) using the Darcy approximation for σBL = 12ν/b2 and correspond to the theoretical
prediction by Li et al. (2019), while the coloured triangles are computed using the present
theory, with the corrected σBL = χnν/b2. Although the trend is approximately the same,
the Darcy approximation underestimates the onset acceleration with respect to the present
model, which overall compares better with the experimental measurements (black-filled
circles). Some disagreement still exists, especially at smaller cell gaps, i.e. b = 2 mm,
where surface tension effects are even more prominent. This is likely attributable to an
imperfect phenomenological contact line model (Bongarzone, Viola & Gallaire 2021;
Bongarzone et al. 2022b), whose definition falls beyond the scope of this work. Yet, this
comparison shows how the modifications introduced by the present model contribute to
closing the gap between theoretical Faraday onset estimates and these experiments.

3. The case of thin annuli

We now consider the case of a thin annular container, whose nominal radius is R and
the actual inner and outer radii are R − b/2 and R + b/2, respectively (see the sketch
in figure 1b). In the limit of b/R � 1, the wall curvature is negligible and the annular
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Liquid μ (mPa s) ρ (kg m−3) γ (N m−1) M (Pa s)

ethanol 99.7 % 1.096 785 0.0218 0.04
ethanol 70.0 % 2.159 835 0.0234 0.0485
ethanol 50.0 % 2.362 926 0.0296 0.07

Table 1. Characteristic fluid parameters for the three ethanol–water mixtures considered in this study. Data for
the pure ethanol and ethanol–water mixture (50 %) are taken from Li et al. (2019). The value of the friction
parameter M for ethanol 70 % is fitted from the experimental measurements reported in § 4, but lies well within
the range of values used by Li et al. (2019) and agrees with the linear trend displayed in figure 5 of Hamraoui
et al. (2000).

container can be considered a Hele-Shaw cell. The following change of variable for the
radial coordinate, r′ = R + y′ = R(1 + y′/R) with y′ ∈ [−b/2, b/2], will be useful in the
rest of the analysis. As in § 2, we first linearise around the rest state. Successively, we
introduce the following non-dimensional quantities:

r = r′

R
, y = y′

b
, z = z′

R
, u = u′

ϕ

aΩ
, v = u′

r

aΩ (b/R)
, w = u′

z

aΩ
, p = p′

ρRaΩ2 .

(3.1a–g)

It follows that, at leading order, r = 1 + yb/R ∼ 1 −→ 1/r = 1/(1 + yb/R) ∼ 1 but
∂/∂r = (R/b)∂/∂y ∼ (b/R)−1 � 1. With this scaling and introducing the Floquet ansatzes
(2.6a)–(2.6b), one obtains the following simplified governing equations:

∂ ũn

∂ϕ
+ ∂ṽn

∂y
+ ∂w̃n

∂z
= 0, (3.2a)

iũn = − 1
ξn

∂ p̃n

∂ϕ
+ δ2

n

2
∂2ũn

∂y2 , iw̃n = − 1
ξn

∂ p̃n

∂z
+ δ2

n

2
∂2w̃n

∂y2 or ũn = i
ξn

∇p̃nFn ( y) ,

(3.2b)

which are fully equivalent to those for the case of conventional rectangular cells if
the transformation ϕ → x is introduced. Averaging the continuity equation with the
imposition of the no-penetration condition at y = ∓1/2, v(∓1/2), eventually leads to

∇2p̃n = ∂2p̃n

∂z2 + ∂2p̃n

∂ϕ2 , (3.3)

identically to (2.11). Expanding p̃n in the azimuthal direction as p̃n = p̂n sin mϕ, with m
the azimuthal wavenumber, provides(

∂2

∂z2 − m2
)

p̂n = 0 −→ p̂n = c1 cosh mz + c2 sinh mz, (3.4)

and the no-penetration condition at the solid bottom located at z = −h/R, ŵn = ∂zp̂n = 0,
prescribes

p̂n = c1 (cosh mz + tanh mh/R sinh mz) . (3.5)

Although so far the theory for the rectangular and the annular cases is the same, here it is
crucial to observe that the axisymmetric container geometry translates into a periodicity
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condition,
sin (−mπ) = sin (mπ) −→ sin mπ = 0, (3.6)

which always imposes the azimuthal wavenumber to be an integer. In other words, in
contradistinction with the case of § 2, where the absence of a lateral wall ideally allows for
any wavenumber k, here we have m = 0, 1, 2, 3, . . . ∈ N.

By repeating the calculations outlined in § 2, one ends up with the same (2.29) (and
subsequent (2.30)–(2.32)), but where ω0 obeys the quantised dispersion relation

ω2
0 =

(
g
R

m + γ

ρR3 m3
)

tanh m
h
R

= (1 + Γ )
g
R

m tanh m
h
R

, (3.7)

with Γ = γ m2/ρgR2. In this context, a representation of Faraday tongues in the
forcing frequency–amplitude plane appears most natural, as each parametric tongue will
correspond to a fixed wavenumber m. Consequently, instead of fixing Ω and varying the
wavenumber, here we solve (2.32) by fixing m and varying Ω .

3.1. Floquet analysis and asymptotic approximation
The results from this procedure are reported in figure 6, where, as in figure 3, the
black regions correspond to the unstable tongues obtained according to the standard
gap-averaged Darcy model, while the red ones are computed using the present theory
with the corrected gap-averaged σBL = χnν/b2. The regions with the lowest thresholds
in each panel are subharmonic tongues associated with modes from m = 1 to 14. In
figure 6(a), no contact line model is included, i.e. M = 0, whereas in figure 6(b) a mobility
parameter M = 0.0485 is accounted for. Figure 6(b) shows how the additional contact line
dissipation, introduced by σCL ∝ m (see (2.27a)), dictates the linear-like trend followed
by the minimum onset acceleration at larger azimuthal wavenumbers. The use of this
specific value for M will be clarified in the next section when comparing the theory with
dedicated experiments, but a thorough sensitivity analysis to variations of M is carried out
in Appendix B.

In general, the present model gives a higher instability threshold, consistent with the
results reported in the previous section. However, the tongues are here shifted to the left.

The asymptotic approximation for the subharmonic onset acceleration, adapted to this
case from (2.35) yields

fSH1 = 2

√
(1 + Γ )

σ 2
0,r

(g/R) m tanh mh/R
+ 4 (1 + Γ )2

(
Ω + σ0,i

2ω0
− 1

)2

, (3.8)

with

min fSH1 = 2σ0,r
1 + Γ

ω0
= 2σ0,r

√
1 + Γ

(g/R) m tanh mh/R
≈ 2σ0,r

√
R
g

(
1
m

+ γ

ρgR2 m
)

,

(3.9)

helps us in rationalising the influence of the modified complex damping coefficient.
This apparent opposite correction is a natural consequence of the different

representations: varying wavenumber at a fixed forcing frequency (as in figure 3) versus
varying forcing frequency at a fixed wavenumber (figure 6). Such a behaviour is clarified
by the asymptotic relation (3.8) and, particularly by the term ((Ω + σ0,i)/(2ω0) − 1). In
§ 2, the analysis is based on a fixed forcing frequency, while the wavenumber k and, hence,
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f=
aΩ

2
/
g

f=
aΩ

2
/
g

M = 0

Driving frequency (Hz)

M = 0.0485

4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

m = 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(b)

(a)

Figure 6. Faraday tongues computed via Floquet analysis (2.32) at different fixed azimuthal wavenumber m
and varying the driving frequency, Ω/2/π. Black regions correspond to the unstable Faraday tongues computed
using σBL = 12ν/b2, whereas red regions are the unstable tongues computed with the present modified σBL =
χnν/b2. The fluid parameters used here correspond to those given in table 1 for ethanol 70 %. The gap size is
set to b = 7 mm, the fluid depth to h = 65 mm and the nominal radius to R = 44 mm. Contact line dissipation
is included in (b) by accounting for a mobility coefficient M = 0.0485. The regions with the lowest thresholds
in each panel are subharmonic tongues associated with modes from m = 1 to 14.

the natural frequency ω0, are free to vary. The first subharmonic Faraday tongue occurs
when Ω + σ0,i ≈ 2ω0. Since Ω is fixed and σ0,i > 0, Ω + σ0,i > Ω such that ω0 and
therefore k have to increase in order to satisfy the relation. On the other hand, if the
wavenumber m and, hence, ω0 are fixed as in this section, then 2ω0 − σ0,i < 2ω0 and
the forcing frequency around which the subharmonic resonance is centred, decreases by
a contribution σ0,i, which introduces a frequency detuning responsible for the negative
frequency shift displayed in figure 6.

3.2. Discussion on the system’s spatial quantisation
The frequency-dependence of the damping coefficient σn associated with each Faraday
tongue is one of the first aspects that needs to be better discussed. In the case of
horizontally infinite cells, the most natural description for investigating the system’s
stability properties is in the (k, f ) plane for a fixed forcing angular frequency Ω

(Kumar & Tuckerman 1994). According to our model, the oscillating system’s response
occurring within each tongue is characterised by a Stokes boundary layer thickness δn =√

2ν/(nΩ + α)/b. For instance, let us consider subharmonic resonances with α = Ω/2.
As Ω is fixed (see any subpanel of figure 3), each unstable region sees a constant δn (with
n = 0, 1, 2, . . .) and hence a constant damping σn.

On the other hand, in the case of quantised wavenumber as for the annular cell of § 3,
the most suitable description is in the driving frequency-driving amplitude plane at fixed
wavenumber m (see figure 6) (Batson et al. 2013). In this description, each subharmonic
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(α = Ω/2) or harmonic (α = Ω) nth tongue associated with a wavenumber m, sees a δn,
and thus a σn, changing with Ω along the tongue itself.

4. Experiments

In a real laboratory-scale experiment, the horizontal size of the rectangular cells is
never infinite due to the presence of lateral walls in the elongated direction. In such a
case, however, the solution form (2.7a,b) prevents the no-slip condition for the in-plane
xz-velocity components to be imposed (Viola et al. 2017). This always translates into a
theoretical underestimation of the overall damping of the system in rectangular Hele-Shaw
cells, although the sidewall contribution is expected to be negligible for sufficiently long
cells.

On the other hand, the case of a thin annulus, by naturally filtering out this extra
dissipation owing to the periodicity condition, offers a prototype configuration that
can potentially allow one to quantify better the correction introduced by the present
gap-averaged model when compared with dedicated experiments.

4.1. Set-up
The experimental apparatus, shown in figure 7, consists of a Plexiglas annular container
of height 100 mm, nominal radius R = 44 mm and gap size b = 7 mm. The container is
then filled to a depth h = 65 mm with ethanol 70 % (see table 1 for the fluid properties).
An air-conditioning system helps in maintaining the temperature of the room at around
22◦. The container is mounted on a loudspeaker (VISATON TIW 360 8�) placed on a flat
table and connected to a wave generator (TEKTRONIX AFG 1022), whose output signal
is amplified using a wideband amplifier (THURKBY THANDER WA301). The motion of
the free surface is recorded with a digital camera (NIKON D850) coupled with a 60 mm
f/2.8D lens and operated in slow-motion mode, allowing for an acquisition frequency of
120 frames per second. A light-emitting diode (LED) panel placed behind the apparatus
provides back illumination of the fluid interface for better optimal contrast. The wave
generator imposes a sinusoidal alternating voltage, v = (Vpp/2) cos (Ωt′), with Ω the
angular frequency and Vpp the full peak-to-peak voltage. The response of the loudspeaker
to this input translates into a vertical harmonic motion of the container, a cos (Ωt′),
whose amplitude, a [mm], is measured with a chromatic confocal displacement sensor
(STI CCS PRIMA/CLS-MG20). This optical pen, which is placed around 2 cm (within
the admissible working range of 2.5 cm) above the container and points at the top flat
surface of the outer container’s wall, can detect the time-varying distance between the
fixed sensor and the oscillating container’s surface with a sampling rate of the order of
kilohertz and a precision of ±1 μm. Thus, the pen can be used to obtain a very precise
real-time value of a as the voltage amplitude Vpp and the frequency Ω are adjusted.

4.2. Identification of the accessible experimental range
Such a simple set-up, however, put some constraints on the explorable experimental
frequency range.

(i) First, we must ensure that the loudspeaker’s output translates into a vertical
container’s displacement following a sinusoidal time signal. To this end, the optical
sensor is used to measure the container motion at different driving frequencies.
These time signals are then fitted with a sinusoidal law. Figure 8 shows how,
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h

Chromatic

confocal sensor

STI CCS PRIMA R + b

LED panel

a cos(Ωt’)

Shaker

VISATON TIW 360 8Ω

Wave generator

TEKTRONIX AFG 1022

R – b

Figure 7. Photograph of the experimental set-up.

below a forcing frequency of 8 Hz, the loudspeaker’s output begins to depart
from a sinusoidal signal. This check imposes a first lower bound on the explorable
frequency range.

(ii) In addition, as Faraday waves only appear above a threshold amplitude, it is
convenient to measure a priori the maximal vertical displacement a achievable.
The loudspeaker response curve is reported in figure 8(b). A superposition of this
curve with the predicted Faraday tongues immediately identifies the experimental
frequency range within which the maximal achievable a is larger than the predicted
Faraday threshold so that standing waves are expected to emerge in our experiments.
Assuming the herein proposed gap-averaged model (red regions) to give a good
prediction of the actual instability onset, the experimental range explored in the next
section is limited to approximately ∈ [10.2, 15.6] Hz.

4.3. Procedure
Given the constraints discussed in § 4.2, experiments have been carried out in a frequency
range between 10.2 Hz and 15.6 Hz with a frequency step of 0.1 Hz. For each fixed forcing
frequency, the Faraday threshold is determined as follows: the forcing amplitude a is set
to the maximal value achievable by the loudspeaker so as to trigger the emergence of the
unstable Faraday wave quickly. The amplitude is then progressively decreased until the
wave disappears and the surface becomes flat again.

More precisely, a first quick pass across the threshold is made to determine an estimate
of the sought amplitude. A second pass is then made by starting again from the maximum
amplitude and decreasing it. When we approach the value determined during the first
pass, we perform finer amplitude decrements, and we wait several minutes between each
amplitude change to ensure that the wave stably persists. We eventually identify two values:
the last amplitude where the instabilities were present (see figure 9a) and the first one
where the surface becomes flat again (see figure 9b). Two more runs following an identical
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Experimental range

Figure 8. (a) Vertical container displacement a versus time at different forcing frequencies. The black curves
are the measured signal, while the green dash–dotted curves are sinusoidal fitting. Below a forcing frequency
of 8 Hz, the loudspeaker’s output begins to depart from a sinusoidal signal. (b) Subharmonic Faraday tongues
computed by accounting for contact line dissipation with a mobility parameter M = 0.0485. The light blue
curve here superposed corresponds to the maximal vertical displacement a achievable with our set-up. With
this constraint, Faraday waves are expected to be observable only in the frequency range highlighted in blue.

(a) (b)

Figure 9. Free surface shape at a forcing frequency 1/T = 11.7 Hz (here T is the forcing period) and
corresponding to: (a) the lowest forcing amplitude value, a = 0.4693 mm, for which the m = 6 standing wave
is present (the figure shows a temporal snapshot); (b) the largest forcing amplitude value, a = 0.4158 mm, for
which the surface becomes flat and stable again. Despite the small forcing amplitude variation, the change in
amplitude is large enough to allow for a visual inspection of the instability threshold with sufficient accuracy.

procedure are then performed to verify previously found values. Lastly, an average between
the smallest unstable amplitude and the largest stable one gives us the desired threshold.

Once the threshold amplitude value is found for the considered frequency, the output of
the wave generator is switched off, the frequency is changed and the steps presented above
are repeated for the new frequency. In this way, we always start from a stable configuration,
limiting the possibility of nonlinear interaction between different modes.

For each forcing frequency, the two limiting amplitude values, identified as described
above, are used to define the error bars reported in figure 10. Those error bars must also
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Figure 10. Experiments (empty circles) are compared with the theoretically predicted subharmonic Faraday
threshold computed via Floquet analysis (2.32) for different fixed azimuthal wavenumber m and according to
the standard (black solid lines) and revised (red regions) gap-averaged models. The tongues are computed by
including contact line dissipation with a value of M equal to 0.0485 as in figures 6(b) and 8. As explained
in § 4.3, the vertical error bars indicate the amplitude range between the smallest measured forcing amplitude
at which the instability was detected and the largest one at which the surface remains stable and flat. These
two limiting values are successively corrected by accounting for the optical pen’s measurement error and the
non-uniformity of the output signal of the loudspeaker.

account for the optical pen’s measurement error (0.1 μm), as well as the non-uniformity
of the output signal. By looking at the measured average, minimum and maximum
amplitude values in the temporal output signal, it is noteworthy that the average value
typically deviates from the minimum and maximum by around 10 μm. Consequently, we
incorporate in the error bars this additional 10 μm of uncertainty in the value of a. The
uncertainty in the frequency of the output signal is not included in the definition of the
error bars, as it is tiny, of the order of 0.001 Hz.

4.4. Instability onset and wave patterns
The experimentally detected threshold at each measured frequency is reported in figure 10
in terms of forcing acceleration f and amplitude a. Once again, the black unstable regions
are calculated according to the standard gap-averaged model with σBL = 12ν/b2, whereas
red regions are the unstable tongues computed using the modified damping σBL = χnν/b2.
Both scenarios include contact line dissipation σCL = (2M/ρb)(m/R) tanh (mh/R), with a
value of M equal to 0.0485 for ethanol 70 %. Although, at first, this value has been selected
in order to fit our experimental measurements, it is in perfect agreement with the linear
relation linking M to the liquid’s surface tension reported in figure 5 of Hamraoui et al.
(2000) and used by Li et al. (2019) (see table 1).

As figure 10 strikingly shows, the present theoretical thresholds match well our
experimental measurements. On the contrary, the poor description of the oscillating
boundary layer in the classical Darcy model translates into a lack of viscous dissipation.
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The arbitrary choice of a higher fitting parameter M value, e.g. M ≈ 0.09 would increase
contact line dissipation and compensate for the underestimated Stokes boundary layer one,
hence bringing these predictions much closer to experiments; however, such a value would
lie well beyond the typical values reported in the literature. Furthermore, the real damping
coefficient σBL = 12ν/b2 given by the Darcy theory does not account for the frequency
detuning displayed by experiments. This frequency shift is instead well captured by the
imaginary part of the new damping σBL = χnν/b2 (with χn = χn,r + iχn,i).

Within the experimental frequency range considered, five different standing waves,
corresponding to m = 5, 6, 7, 8 and 9, have emerged. The identification of the
wavenumber m has been performed by visual inspection of the free surface patterns
reported in figure 11. Indeed, by looking at a time snapshot, it is possible to count the
various wave peaks along the azimuthal direction.

When looking at figure 10, it is worth commenting that on the left-hand sides of the
marginal stability boundaries associated with modes m = 5 and 6 we still have a little
discrepancy between experiments and the model. Particularly, the experimental thresholds
are slightly lower than the predicted ones. A possible explanation can be given by noticing
that our experimental protocol cannot detect subcritical bifurcations and hysteresis, while
such behaviour has been predicted by Douady (1990).

As a side comment, one must keep in mind that the Hele-Shaw approximation remains
good only if the wavelength, 2πR/m does not become too small, i.e. comparable to the
cell’s gap, b. In other words, one must check that the ratio mb/2πR is of the order of
the small separation-of-scale parameter, ε. For the largest wavenumber observed in our
experiments, m = 9, the ratio mb/2πR amounts to 0.23, which is not exactly small. Yet,
the Hele-Shaw approximation is seen to remain fairly good.

The frequency detuning of the Faraday tongues is one of the main results of the
present modified gap-averaged analysis. Although experiments match well the predicted
subharmonic tongues reported in figure 10, other concomitant effects, such as a non-flat
out-of-plane capillary meniscus, can contribute to shifting the natural frequencies and,
consequently, the Faraday tongues, towards lower values (Douady 1990; Shao et al. 2021b).
The present Floquet analysis assumes the static interface to be flat, although figure 9(b)
shows that the stable free surface is not flat, but rather curved in the vicinity of the
wall, where the meniscus height is approximately 1.5 mm. Bongarzone et al. (2022b)
highlighted how a curved static interface can lower the natural frequencies. Since this
effect has been ignored in the theoretical modelling, it is important to quantify such a
frequency correction in relation to the one captured by the modified complex damping
coefficient. This point is carefully addressed in Appendix C, where we demonstrate how
the influence of a static capillary meniscus does not significantly modify the natural
frequencies of standing waves developing in the elongated (or azimuthal) direction.

4.5. Contact angle variation and thin film deposition
Before concluding, it is worth commenting on why the use of the dynamic contact angle
model (2.25) is justifiable and seen to give good estimates of the Faraday thresholds.

Existing laboratory experiments have revealed that liquid oscillations in Hele-Shaw
cells constantly experience an up-and-down driving force with an apparent contact angle
θ constantly changing (Jiang, Perlin & Schultz 2004). Our experiments are consistent
with such evidence. In figure 12, we report seven snapshots, (figure 12a–g), covering
one oscillation period, T , for the container motion. These snapshots illustrate a zoom
of the dynamic meniscus profile and show how the macroscopic contact angle changes
in time during the second half of the advancing cycle (figure 12a–e) and the first
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t = 0 and 2T(a) (b)

(c) (d )

(g) (h)

(i) ( j)

(e) ( f )

t = T
m

 =
 5

m
 =

 6
m

 =
 7

m
 =

 8
m

 =
 9

Figure 11. Snapshots of the wave patterns experimentally observed within the subharmonic Faraday tongues
associated with the azimuthal wavenumbers m = 5, 6, 7, 8 and 9. Here T is the forcing period, which is
approximately half the oscillation period of the wave response. These patterns appear for: (m = 5) 1/T =
10.6 Hz, a = 0.8 mm; (m = 6) 1/T = 11.6 Hz, a = 1.1 mm; (m = 7) 1/T = 12.7 Hz, a = 0.9 mm; (m = 8),
1/T = 13.7 Hz, a = 0.6 mm; (m = 9) 1/T = 14.8 Hz, a = 0.4 mm. These forcing amplitudes are the maximal
achievable at their corresponding frequencies (see figure 8 for the associated operating points). The number
of peaks is easily countable by visual inspection of two time-snapshots of the oscillating pattern extracted at
t = 0, T and T/2. This provides a simple criterion for the identification of the resonant wavenumber m. See
also supplementary movies 1–5 available at https://doi.org/10.1017/jfm.2023.986.

half of the receding cycle (figure 12f –j), hence highlighting the importance of the
out-of-plane meniscus curvature variations. Thus, on the basis of our observations,
it seemed appropriate to introduce a contact angle model in the theory to justify
this associated additional dissipation, which would be neglected by assuming M = 0.
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(a) (b) (c) (d ) (e)

( j) (i) (h) (g) ( f )

Figure 12. Close up of the meniscus dynamics recorded at a driving frequency 1/11.6 Hz and amplitude
a = 1.2 mm for m = 6. (a–g) Seven snapshots covering one oscillation period, T , for the container motion are
illustrated. These snapshots show how the meniscus profile and the macroscopic contact angle change in time
during the second half of the advancing cycle and the first half of the receding cycle, hence highlighting the
importance of the out-of-plane curvature or capillary effects. See also supplementary movie 6.

The model used in this study, and already implemented by Li et al. (2019), is very simple;
it assumes the cosine of the dynamic contact angle to linearly depend on the capillary
number Ca (Hamraoui et al. 2000). Accounting for such a model is shown, both in Li
et al. (2019) and in this study, to supplement the theoretical predictions by a sufficient
extra dissipation suitable to match experimental measurements.

This dissipation eventually reduces to a simple damping coefficient σCL as it is of
linear nature. A unique constant value of the mobility parameter M is sufficient to fit
all our experimental measurements at once, suggesting that the meniscus dynamics is not
significantly affected by the evolution of the wave in the azimuthal direction, i.e. by the
wavenumber, and M can be seen as an intrinsic property of the liquid–substrate interface.

Several studies have discussed the dependence of the system’s dissipation on the
substrate material (Huh & Scriven 1971; Dussan 1979; Cocciaro, Faetti & Festa 1993; Ting
& Perlin 1995; Eral, ’t Mannetje & Oh 2013; Viola, Brun & Gallaire 2018; Viola & Gallaire
2018; Xia & Steen 2018). These authors, among others, have unveiled and rationalised
interesting features such as solid-like friction induced by contact angle hysteresis. This
strongly nonlinear contact line behaviour does not seem to be present in our experiments.
This can be tentatively explained by looking at figure 13. These snapshots illustrate how
the contact line constantly flows over a wetted substrate due to the presence of a stable
thin film deposited and alimented at each oscillation cycle. This feature has also been
recently described by Dollet, Lorenceau & Gallaire (2020), who showed that the relaxation
dynamics of liquid oscillation in a U-shaped tube filled with ethanol, due to the presence
of a similar thin film, obey an exponential law that can be well-fitted by introducing a
simple linear damping, as done in this work.

5. Conclusions

Previous theoretical analyses for Faraday waves in Hele-Shaw cells have so far relied on
the Darcy approximation, which is based on the parabolic flow profile assumption in the
narrow direction and that translates into a real-valued damping coefficient σBL = 12ν/b2,
with ν the fluid kinematic viscosity and b the cell’s gap size, that englobes the dissipation
originated from the Stokes boundary layers over the two lateral walls. However, Darcy’s
model is known to be inaccurate whenever inertia is not negligible, e.g. in unsteady flows
such as oscillating standing or travelling waves.
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(a) (b) (c)

Figure 13. These three snapshots correspond to snapshots (b–d) of figure 12 and show, using a different light
contrast, how the contact line constantly moves over a wetted substrate due to the presence of a stable thin film
deposited and alimented at each cycle.

In this work, we have proposed a gap-averaged linear model that accounts for inertial
effects induced by the unsteady terms in the Navier–Stokes equations, amounting to
a pulsatile flow where the fluid motion reduces to a two-dimensional oscillating flow,
reminiscent of the Womersley flow in cylindrical pipes. When gap-averaging the linearised
Navier–Stokes equation, this results in a modified damping coefficient, σBL = χnν/b2,
with χn = χn,r + iχn,i complex-valued, which is a function of the ratio between the
Stokes boundary layer thickness and the cell’s gap size, and whose value depends on the
frequency of the system’s response specific to each unstable parametric Faraday tongue.

After having revisited the ideal case of infinitely long rectangular Hele-Shaw cells, for
which we have found a good agreement with the experiments by Li et al. (2019), we have
considered the case of Faraday waves in thin annuli. Due to the periodicity condition, this
annular geometry naturally filters out the additional, although small, dissipation coming
from the lateral wall in the elongated direction of finite-size laboratory-scale Hele-Shaw
cells. Hence, a thin annulus offers a prototype configuration that can allow one to quantify
better the correction introduced by the present gap-averaged theory when compared with
dedicated experiments and to the standard gap-averaged Darcy model.

A series of homemade experiments for the latter configuration has proven that Darcy’s
model typically underestimates the Faraday threshold, as χn,r > 12, and overlooks a
frequency detuning introduced by χn,i > 0, which appears essential to correctly predict
the location of the Faraday tongue in the frequency spectrum. The frequency-dependent
gap-averaged model proposed here successfully predicts these features and brings the
Faraday thresholds estimated theoretically closer to the ones measured.

Furthermore, a close look at the experimentally observed meniscus and contact angle
dynamics highlighted the importance of the out-of-plane curvature, whose contribution
has been neglected so far in the literature, with the exception of Li et al. (2019). This
evidence justifies the employment of a dynamical contact angle model to recover the extra
contact line dissipation and close the gap with experimental measurements.

A natural extension of this work is to examine the existence of a drift instability at higher
forcing amplitudes.

Supplementary movies. Supplementary movies 1–5 show the time evolution of the free surface associated
with the snapshots reported in figure 11. Supplementary movie 6 provides instead a better visualisation of the
meniscus and the thin film dynamics as illustrated in figures 12 and 13 of this paper.

Supplementary movies are available at https://doi.org/10.1017/jfm.2023.986.
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in the Hele-Shaw limit.
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Figure 14. Same Faraday tongues of figure 3 by solving the eigenvalue problem (2.32) with N = 10 for three
different fixed driving angular frequencies (reported above each panel) and using the modified σBL = χnν/b2.
Contact line dissipation is not included, i.e. M = σCL = 0. A much wider range of forcing acceleration, f ≤ 50,
is shown so as to give a more comprehensive view of the linear stability map. The convergence analysis outlined
in table 2 is performed for the value of kb/2π indicated by the vertical white dashed line, i.e. 0.178.
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Appendix A. Convergence analysis as the truncation number N varies

In § 2.1, we have briefly described the procedure employed for solving the eigenvalue
problem (2.32), where the structure of matrices A and B in the two cases of subharmonic
and harmonic parametric resonances are given in Kumar & Tuckerman (1994). For each
driving frequency and wavenumber, the eigenvalue problem is solved in MATLAB using
the built-in function eigs. Successively, by selecting one or several smallest, real positive
values of f , one can draw the marginal stability boundaries of the various parametric
tongues. For instance, those boundaries are indicated in figure 14 by the black dots, each
of which corresponds to an eigenvalue f for a fixed combination (k, Ω).

In order to ensure the numerical convergence of the results, the dependency of the
eigenvalues on the truncation number N must be checked. Throughout the paper, we
have used a truncation number N = 10, which produces 2(N + 1) × 2(N + 1) = 22 × 22
matrices. For their purposes, Kumar & Tuckerman (1994) used N = 5 or N = 10, which
were sufficient to guarantee a good convergence. However, as the problem presented here
differs from that tackled in Kumar & Tuckerman (1994), whether a similar truncation
number, e.g. N = 10, is still sufficient needs to be verified.

A convergence analysis as N varies is reported in table 2. The analysis is carried out
with respect to the results already discussed in figure 3, but for a much wider range of
forcing acceleration, f = aΩ2/g, which represents the eigenvalue of problem (2.32). The
values of f reported in table 2 are computed for a driving frequency of 4 Hz and for
kb/2π = 0.1783, as indicated by the white dashed line in figure 14(a). Table 2 shows
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that a truncation number N = 5 is not sufficient to achieve convergence of the eigenvalues
f ≤ 50. Particularly, the algorithm does not succeed in finding many eigenvalues of interest
as N is too small to describe all the subharmonic and harmonic boundaries encountered at
this value of kb/2π for f ≤ 50. Yet, N = 5 already provides a very high resolution of the
first two or three eigenvalues for both subharmonic (SH) and harmonic tongues (H), which
are sufficient to obtain the results discussed throughout the manuscript. The accuracy
increases from N = 5 to N = 9 and the results for N = 15 or 20 confirm that a satisfactory
convergence of all eigenvalues f ≤ 50 is achieved for N = 10, with a maximum relative
error < 0.6 % .

Appendix B. Sensitivity analysis to variations of the contact line parameter M

Although the introduction of the mobility parameter M is not the central point of this paper,
the effect of this parameter on the stability properties of Faraday waves in Hele-Shaw cells
has not been fully elucidated yet. With regards to the subharmonic Faraday threshold in
thin annuli discussed in §§ 3 and 4, in this appendix, we carry out a sensitivity analysis of
the instability onset to variations of M.

The asymptotic approximation (3.9)

min fSH1 ≈ 2σ0,r

√
R
g

(
1
m

+ γ

ρgR2 m
)

, (B1)

gives us a simple analytical formula for the minimum onset acceleration fSH1 associated
with the first subharmonic parametric instability of a generic azimuthal mode m.
Specifically, (B1) helps us to rationalise the effect of interplaying restoring forces, i.e.
gravity and capillarity, and dissipation sources, i.e. boundary layers and contact line, on
the instability onset.

Recalling the definition of σ0,r from (2.27a), the onset acceleration is given by the sum
of two contributions

min fSH1 ≈ 2χn=0,r
ν

b2

√
R
g

(
1
m

+ γ

ρgR2 m
)

+ 4M
ρb

m
R

√
R
g

(
1
m

+ γ

ρgR2 m
)

, (B2)

where the deep-water approximation tanh (mh/R) ≈ 1 has been used for simplicity.
The two contributions and their sum are plotted in figure 15(a,b), where the filled circles

correspond to the azimuthal wavenumbers reported in figure 6, i.e. m = 1, 2, . . . , 15.
The parameter M is fixed to the value used in §§ 3 and 4, i.e. 0.0485. In figure 15(a)
the boundary layer damping is the one given by the Darcy theory, 12ν/b2, whereas in
figure 15(b) the modified damping coefficient χn=0,rν/b2 is used. In the absence of contact
line dissipation, the onset acceleration of low m-modes progressively decreases as the
threshold is dictated by the gravity term ∼ √

1/m, while capillarity only matters at larger
m. On the contrary, assuming M /= 0 introduces a correction ∼ √

m that, depending on
the value of M, may quickly dominate over

√
1/m, hence leading to a growing min fSH1

already at relatively low m. Such a trend is exacerbated by larger M. This is clearly visible
in figure 15(c,d), where only the overall value min fSH1 is plotted for several values of M.

The exact same arguments apply as well to the case of rectangular Hele-Shaw cells
with the only difference that m/R → k. A similar trend of min fSH1 for increasing driving
frequencies is indeed observable in figure 5.
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Figure 15. (a,b) Individual contributions, i.e. boundary layer and contact line (M = 0.0485), to the
subharmonic onset acceleration of the first 15 azimuthal modes as prescribed by (B2). (c,d) Onset acceleration
of the first 15 azimuthal modes as prescribed by (B2) for several values of M. Panels (a–c) use the boundary
layer damping from the Darcy theory, while panels (b–d) use the modified damping coefficient presented in
this work. Note that in each subpanel, the solid lines only serve to guide the eye.

Appendix C. Modification of the unforced dispersion relation due to a non-flat
out-of-plane capillary meniscus

The revised gap-averaged Floquet analysis formalised in this work provides a modified
damping coefficient, σCL = χnν/b2 with χn ∈ C, whose imaginary part χn,i > 0
leads to a frequency detuning of the Faraday tongues. This detuning represents one
of the main findings of the analysis and seems confirmed by our experimental
observations.

However, there may be other concomitant effects ignored by the analysis, such
as a non-flat out-of-plane capillary meniscus, that could contribute to shifting the
natural frequencies and, consequently, the Faraday tongues, towards lower values,
thus possibly questioning the actual improvement brought by the present theory.
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Figure 16. (a) Static meniscus measured experimentally by Monsalve et al. (2022) using water and a gap size
b = 22 mm (dashed line) and computed numerically according to (C1) using a value of θs = 75◦. (b) Shape of
the static meniscus computed numerically in our experimental set-up. (c) Black solid line, theoretical dispersion
relation for the case of water, fluid depth h = 50 mm and b = 22 mm, ω2

0 = (1 + γ k2/ρg)gk tanh kh; grey solid
line, numerical dispersion relation in the case of a pinned contact line; red dotted, grey dotted and grey dashed
lines give the meniscus corrections to the two dispersion relations, while the blue filled circles correspond to
the experiments of Monsalve et al. (2022) with a pinned contact line and with the static meniscus reported
in (a). A comparison of (c) to figure 8 of Monsalve et al. (2022) validates our numerical scheme. Their curves
are not reported for the sake of clarity but perfectly overlap our curves. (d) Same as in (c), but for the condition
of our experimental set-up. The blue-filled circles correspond to the driving frequency associated with the
minimal onset acceleration amplitude for modes m = 5, 6, 7, 8 and 9 for which k = m/R (R = 44 mm). The
inset shows that the meniscus correction to the frequency, being negligible, does not explain the frequency shift
of the experimental Faraday tongues. Indeed, the blue markers lie above all dispersion relations obtained by
varying the static contact angle and wetting conditions.

Bongarzone et al. (2022b) highlighted how a curved static interface lowers the resonant
frequencies. Since this effect has been ignored in our theoretical model, it is important to
quantify such a frequency shift in relation to the one produced by the oscillating boundary
layer, so as to verify that the detuning is actually produced by the oscillating viscous
boundary layers rather than by static capillary effects.

A way to disentangle the latter contribution from the former one consists of estimating
the inviscid natural frequencies when a static meniscus is present. This appendix, which
is inspired by the work of Monsalve et al. (2022), aims precisely to address this point.
Specifically, some of the results reported in Monsalve et al. (2022) will be used in
figure 16(a–c) as a validation of the numerical method employed in the following.

Note that the analysis is carried out for transverse waves with wavenumber k in a
rectangular channel, but it also applies to azimuthal waves with wavenumber m in thin
annular channels. Indeed, we have shown in § 3 that for small gap sizes b the governing
equations in the two cases coincide, with the only difference that k becomes m/R and
m = 1, 2, . . . , i.e. for a fixed radius R, the wavenumber is discrete.
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The first step consists of computing the shape of the actual two-dimensional static
meniscus, whose governing equation balances gravity and capillarity:

ρgη′
s = γ κ ′ (η′

s
) = γ

η′
s,y′y′(

1 + η′2
s,y′

)3/2 , with
∂η′

s

∂y′

∣∣∣∣
y′=±b/2

= cot θs. (C1)

Note that the shape of the meniscus is assumed invariant in the elongated direction x′ (or
ϕ) so that η′

s,x′ = η′
s,x′x′ = 0 (x′ ↔ ϕ):

κ ′ (η′
s
) =

η′
s,x′x′

(
1 + η′2

s,y′
)

+ η′
s,y′y′

(
1 + η′2

s,x′
)

− 2η′
s,x′η′

s,y′η′
s,x′y′(

1 + η′2
s,x′ + η′2

s,y′
)3/2 =

η′
s,y′y′(

1 + η′2
s,y

)3/2 .

(C2)

Equation (C1) is nonlinear in η′
s and is solved numerically in MATLAB through a

Chebyshev collocation method and the Gauss–Lobatto–Chebyshev collocation grid s ∈
[−1, 1] is mapped into the physical space y′ ∈ [0, b/2] through the linear mapping
y′ = (s + 1)b/4. Hence the solution to the nonlinear equation is obtained by means of
an iterative Newton method, whose detailed steps are given in Appendix A.1 of Viola
et al. (2018).

Figure 9(b) shows that the stable free surface is not flat, but rather curved in the vicinity
of the wall, where the meniscus height is approximately 1.5 mm. Given the fluid properties
of ethanol 70 %, we can fit the value of the static contact angle in order to retrieve
the measured meniscus height. The results of this procedure are given in figure 16(b),
which displays the shape of the static out-of-plane capillary meniscus corresponding to
our experiments. A static angle θs = 28◦, which coincides with the value measured by
Dollet et al. (2020), is found to give the correct meniscus height at the wall.

Next, we introduce the velocity potential Φ ′ and write down the potential form of the
unforced governing equations and boundary conditions introduced in § 2. Those equations
are linearised around the rest state, which has now a curved static interface in the direction
of the small gap size, i.e. η′

s( y) /= 0. The continuity equation rewrites as the Laplacian of
the velocity potential

− k2Φ̌ ′ + ∂2Φ̌ ′

∂y′2 + ∂2Φ̌ ′

∂z′2 = 0, (C3)

subjected to the no-penetration condition at the solid bottoms and lateral walls ∂Φ̌ ′/∂n′ =
0, while the dynamic and kinematic conditions read

iω0Φ̌
′ = −gη̌′ + γ

ρ

⎡
⎢⎣ 1(

1 + η′2
s,y′

)3/2
∂2

∂y′2 −
3η′

s,y′y′η′
s,y′(

1 + η′
s,y′

)5/2
∂

∂y′ − k2(
1 + η′2

s,y′
)1/2

⎤
⎥⎦ η̌′,

(C4)

iω0η̌
′ = ∂Φ̌ ′

∂z′ , (C5)

where the following ansatzes for the infinitesimal perturbations have been introduced:

Φ ′ = Φ̌ ′ ( y′, z′) ei(ω0t′+kx′) + c.c., η′ = η̌′ ( y′) ei(ω0t′+kx′) + c.c.. (C6a,b)
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In order to close the problem we enforced a contact line condition

∂η̌′

∂y′

∣∣∣∣
y′=±b/2

= 0 ( free) or
∂η̌′

∂t′

∣∣∣∣
y′=±b/2

= 0 ( pinned). (C7)

Conditions (C7) represent two diametrically opposed scenarios. The most relevant
condition to be considered for our experiments is the free contact line, but the results
obtained from the imposition of the pinned contact line condition are used for validation
with Monsalve et al. (2022). Regardless of the chosen contact line condition (C7),
(C3)–(C8) can be recast into the generalised eigenvalue problem

(iω0B − Ak) q̌′ = 0, (C8)

with q̌′ = {Φ̌ ′, η̌′}T a natural mode of the system and ω0 the associated natural frequency.
The expression of linear operators B and Ak is given in Viola et al. (2018). Those
operators are here discretised by means of the Chebyshev collocation method, where a
two-dimensional mapping is used to map the computational space to the physical space
that has a curved boundary due to the static meniscus η′

s. The eigenvalue problem (C8)
is then solved numerically in MATLAB using the built-in function eigs by providing the
wavenumber k as an input. The number of grid points in the radial and vertical direction is
ny = nz = 60, which largely ensures convergence of the results. This numerical approach
has been employed and validated in a series of recent works (Bongarzone, Guido &
Gallaire 2022a; Marcotte, Gallaire & Bongarzone 2023a,b), and a detailed description
of its implementation can be found in Appendix A.2 of Viola et al. (2018).

The modified dispersion relation of transverse (or azimuthal) waves computed
numerically by solving (C8) is displayed in figure 16(c,d). Figure 16(c) reproduces figure 8
of Monsalve et al. (2022) and only serves as a further validation step for our numerical
method. Instead, figure 16(d) shows that our measurements (blue markers) lie above all
dispersion relations obtained by varying the static contact angle and wetting conditions. In
other words, the tip of the Faraday tongues are found at frequencies lower than any of those
obtained by accounting for the meniscus shape and the wetting conditions, irrespective of
the latter. This indicates that another mechanism accounts for this frequency shift. Since in
addition, in the free contact line regime, the static contact angle does not have a perceivable
effect, the entirety of the frequency shift has to be accounted for by another effect, which
we show to possibly be unsteady boundary layers.

Figure 16(c,d) both show that meniscus modifications are much more pronounced, at
least at low θs values, when the contact line remains pinned at the lateral walls. This is
somewhat intuitive as the first-order interface shape strongly depends on the y′-coordinate
(see figure 5 of Monsalve et al. (2022)), whereas it is almost invariant in y′ if the contact
line follows a free dynamics. Given that in our experiments the contact line follows a
free dynamics, we can eventually justify ignoring the shape of the out-of-plane capillary
meniscus. On the other hand, the actual shape of the static meniscus is important for pinned
contact line conditions, as it provokes a non-negligible increase of the natural frequencies
(Wilson et al. 2022).
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