PROBLEMS FOR SOLUTION

P43. (Corrected.) Let G be a group generated by P and Q, and let H be the cyclic subgroup generated by P. If P and Q satisfy the relations $P^{2} Q P=Q^{2}$ and $Q^{2} P Q^{-4}=P k$ for some k, then the index of H in G is 1 or 7 .

N. S. Mendelsohn

P44. Show that

$$
\pi^{2}=10-\sum_{n=1}^{\infty} \frac{1}{n^{3}(n+1)^{3}}
$$

E. L. Whitney

P45. Show that

$$
\sum_{i=0}^{n}\binom{n+1}{i} \int_{0}^{1}\binom{t}{i+2} d t=0
$$

for $n=1,3,5, \ldots$, where $\binom{t}{k}=t(t-1)(t-2) \ldots(t-k+1) / k!$.
B. Wolk

P 46. Given infinitely many points in the plane such that
(a) the distance between any two of them is greater than 1 ,
(b) for infinitely many n, there are more than cn^{2} points in the circle $|z|<n$.

Show that for any $\varepsilon>0$ there is a line which comes closer than ε to infinitely many of the points.
P. Erdös

SOLUTIONS

P10. (a) Prove that every set of six points in the plane can be colored in three colors in such a way that no two points unit distance apart have the same color.
(b) Show that in (a) six cannot be replaced by seven.

L. Moser and W. Moser

Solution by the proposers. Two points which are unit dis tance apart we call friends, otherwise enemies. Obviously 4 points cannot all be friends of each other; and 2 points cannot have 3 common friends. If a finite set of points can be colored in 3 colors so that no pair of friends have the same color, we say this set can be 3 -colored.

Any set of 4 points $P_{1}, P_{2}, P_{3}, P_{4}$ can be 3 -colored. For at least one pair, say \mathcal{P}_{1} and P_{2}, are enemies; color these alike and use the two remaining colors for P_{3} and P_{4}.

Let $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ be a set of 5 points. Not all of them have precisely 3 friends each. For, in this case, if P_{1} and P_{2} are enemies, then they would have P_{3}, P_{4}, P_{5} as common friends, and this is impossible. Now, if P_{1} has ≤ 2 friends 3-coior the four points $P_{2}, P_{3}, P_{4}, P_{5}$ and use for P_{1} the available color different from P_{1} 's friends. If P_{1} has 4 friends, they lie on a unit circle (whose center is P_{1}) and can obviously be colored in 2 colors, leaving the third color for P_{1}. Thus every set of 5 points can be 3 -colored.

Let $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$ be a set of 6 points. If P_{1}, say, has ≤ 2 friends, 3-color the set $P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$ and use for P_{1}^{-}the color different from those used for P_{1} 's friends. If P_{1} has 5 friends, they lie on a unit circle and can obviously be colored in 2 colors, leaving the third color for P_{1}. If P_{1} has 4 friends, say $P_{2}, P_{3}, P_{4}, P_{5}$, and has enemy P_{6}, use 2 colors for $P_{2}, P_{3}, P_{4}, P_{5}$ (they lie on a unit circle) and use the third color for P_{1} and P_{6}. Thus we may restrict our attention to the situation where each of the 6 points has precisely 3 friends.

Let P_{1} and P_{2} be enemies. Since each has 3 friends in the set $P_{3}, P_{4}, P_{5}, P_{6}$ they must have 2 common friends say P_{3} and P_{4}. Let P_{5} be P_{1} 's third friend (and hence P_{1} and P_{6} are enemies). P_{5} and P_{2} are enemies; for otherwise P_{1} and P_{2} would have 3 common friends (namely P_{3}, P_{4}, P_{5}). Furthermore P_{5} cannot be friends with both P_{3} and P_{4}; for otherwise P_{3} and P_{4} would have 3 common friends (namely P_{1}, P_{2}, P_{5}). It follows that P_{5} is friendly with P_{6} and either P_{3} or P_{4}, say P_{3}. Finally, since P_{1} and P_{3} each have 3 friends different from P_{6} it follows that P_{6} must have P_{2} and P_{4} as friends. Hence the set can be 3-colored by using color A for P_{1} and P_{6}, color B for P_{3} and P_{4}, color C
for P_{5}, P_{2}, e. g. fig.1, where two points are joined by a unit line if they are friends.

Fig. 1

Fig. 2

Fig. 2 exhibits a configuration of 7 points which cannot be 3 -colored.

P 30. Show that every triangle can be dissected into n isosceles triangles for every $n \geq 4$ but that some triangles cannot be dissected into 3 isosceles triangles.
L. Sauvé

Solution by the proposer. For $n=2$, the dissecting line must pass through a vertex, and an investigation of the possible cases shows that the following triangles, and only those, can be dissected into 2 isosceles triangles:
(1) all right-angled triangles,
(2) all triangles in which one angle is twice another,
(3) all triangles in which one angle is three times another.

For $n=3$, the dissection is always possible in the following cases:
(1) all acute-angled triangles; simply join the circumcentre to the vertices,
(2) all right-angled triangles. Let $A B C$ be a right-angled triangle with the right angle at A.

If $\angle B \neq \angle C$, say $\angle B<\angle C$, draw $\angle B C D=\angle B$. Then $B C D$ is isosceles and ACD can be dissected into 2 isosceles triangles as seen in case $n=2$. If $\angle B=\angle C$, draw $A D \perp B C$ and $D E \perp A B$.

The triangle with angles $1^{\circ}, 8^{\circ}, 171^{\circ}$ serves as an example to show that not every obtuse angled triangle can be dissected into 3 isosceles triangles. For one of the dissecting lines must pass through a vertex; but no such line can be found which yields an isosceles triangle and a triangle of the types for which $n=2$ is possible.

For $n=4$, the theorem holds for every triangle. For, given $A B C$ in which the greatest angle is at A, the altitude $A H$ must fall within the triangle. Joining II to the midpoints P and Q of $A B$ and AC yields 4 isosceles triangles.

Assume that the theorem holds for $n=m$ and let $A B C$ be a given triangle. We distinguish two cases:
(1) $A B C$ is not equilateral. Then $A B C$ can be dissected into an isosceles triangle and another triangle; the latter can be dissected into m isosceles triangles and thus $A B C$ can be dissected into $m+1$ isosceles triangles.
(2) ABC is equilateral. Then the theorem holds for $\mathrm{n}=3,4,5$. The cases $\mathrm{n}=3,4$ have been proved above. For $n=5$, select a point D on $A C$ such that $C D<A D$ and draw $D E \| A D$. Then $A B E D$ is a cyclic quadrilateral and the centre O of its circumcircle lies within it. Join O to A, B, D, E and we have $A B C$ dissected into 5 isosceles triangles. Now, if P, Q, H are the mid points of $A B, A C, B C$ then triangles $P B H$,

APH, AQH are isosceles, and triangle QHC (which is equilateral) can be dissected into m isosceles triangles by the induction hypothesis; hence $A B C$ can be dissected into $m+3$ isosceles triangles. Thus the truth of the theorem for $\mathrm{n}=3,4,5$ implies its truth for $\mathrm{n}>5$.

B

E

H

COROLLARY. Every convex m-gon can be dissected into n isosceles triangles for every $n \geq 4(m-2)$, and this inequality is the best possible.

Also solved by the proposer, R.J. Wisner, and L. Moser.

$$
\text { P 31. Prove that if } p>3 \text { is a prime } \equiv 3(\bmod 4) \text { and }
$$ $\zeta=\mathrm{e}^{2 \pi \mathrm{i} / \mathrm{P}}$, then

$$
\Pi_{r}\left(1+\zeta^{r}\right)=\left(\frac{2}{p}\right)
$$

where r runs through the quadratic residues of p, and $\left(\frac{2}{p}\right)$ is the Legendre symbol of quadratic residuacity.
L. J. Mordell

Solution by Emma Lehmer and P. Chowla. Suppose first that $p \equiv 7(\bmod 8)$. Then $\left(\frac{2}{p}\right)=1$ and hence the quadratic residues may be denoted by either r or $2 r$. Thus

$$
\Pi_{r}\left(1-\zeta^{2 r}\right)=\Pi_{r}\left(1-\zeta^{r}\right)
$$

and then

$$
\Pi_{r}\left(1+\zeta^{r}\right)=1
$$

Suppose next that $p \equiv 3(\bmod 8)$. Then $\left(\frac{2}{p}\right)=-1,\left(\frac{-1}{p}\right)=-1$ and so the quadratic residues may be denoted by either r or $-2 r$. Hence

$$
\begin{gathered}
\Pi_{r}\left(1-\zeta^{-2 r}\right)=\Pi_{r}\left(1-\zeta^{r}\right) \\
(-1)^{(p-1) / 2} \Pi_{r}\left(1+\zeta^{r}\right)=\Pi_{r} \zeta^{2 r},
\end{gathered}
$$

and then if $\mathrm{p}>3, \prod_{r}\left(1+\zeta^{r}\right)=1$, since $\Sigma r \equiv 0(\bmod \mathrm{p})$.
Also solved by the proposer, L. Carlitz, and R. Ayoub.

P 32. The equation

$$
\left(1+2 \cos \frac{\pi}{p}\right)\left(1+2 \cos \frac{\pi}{q}\right)=1
$$

is obviously satisfied by $p=q=2$. Are there any other rational solutions with $p \geq q \geq 1$?

N. W. Johnson

Solution by H. Schwerdtfeger. Let us write the given equation in the form

$$
\left(1+2 \cos \frac{2 \pi a}{n}\right)\left(1+2 \cos \frac{2 \pi b}{n}\right)=1
$$

and ask for integral solutions (a,b,n). Such may be obtained in the following way. Let

$$
z=e^{2 \pi i / n}
$$

(or any other primitive n-th root of 1). Then the equation becomes

$$
\left(1+z^{a}+z^{-a}\right)\left(1+z^{b}+z^{-b}\right)=1
$$

and after multiplication by $z^{a} z^{b}$,
$f(a, b ; z)=z^{2(a+b)}+z^{a+2 b}+z^{2 a+b}+z^{2 b}+z^{2 a}+z^{b}+z^{a}+1=0$.
Now we put the question in the following way. For which positive integral a, b, n is a primitive n-th root of unity a root of this equation?

It may be noted that automatically with x also x^{-1} is a root of the equation.

Series of solutions are obtained as follows. Let $z^{a}=y$. Then

$$
f(a, a ; z)=y^{4}+2 y^{3}+2 y^{2}+2 y+1=(y+1)^{2}\left(y^{2}+1\right) .
$$

Hence

$$
z=e^{2 \pi i / 2 a} \text { or } e^{2 \pi i / 4 a}
$$

which for any positive integer a yields the solutions $\mathrm{b}=\mathrm{a}, \mathrm{n}=2 \mathrm{a}$ and $\mathrm{b}=\mathrm{a}, \mathrm{n}=4 \mathrm{a}$.

Further we examine

$$
f(a, 2 a ; z)=y^{6}+y^{5}+2 y^{4}+2 y^{2}+y+1
$$

By testing divisibility with the cyclotomic polynomials of degree <6 it is found that no root of unity is root of this polynomial.

Finally,

$$
\begin{aligned}
f(a, 3 a ; z) & =y^{8}+y^{7}+y^{6}+y^{5}+y^{3}+y^{2}+y+1 \\
& =(y+1)^{2}\left(y^{2}+1\right)\left(y^{4}-y^{3}+y^{2}-y+1\right)
\end{aligned}
$$

whence the following solutions are derived: for $b=3 a ; n=2 a$, $n=4 a$, and $n=10 a$.

