PROBLEMS FOR SOLUTION

P 43. (Corrected.) Let G be a group generated by P
and Q, and let H be the cyclic subgroup generated by P. If
P and Q satisfy the relations P2QP = Q2 and Q2 P-4 = pk
for some k, then the indexof H in G is 1 or 7.

N.S. Mendelsohn

P 44. Show that
2 0 1
n=1 n3(n+1)3°

E. L. Whitney

P 45. Show that

2 n+1
10 0 ~1+2 =0

for n=1, 3, 5, ... . where ; = t(t-4)(t-2) ... (t-k+1)/K!.

B. Wolk
P 46. Given infinitely many points in the plane such that

(a) the distance between any two of them is greater than 1,

(b) for infinitely many n, there are more than cn? points in
the circle |z| < n.

Show that for any & > o there is a line which comes closer
than ¢ to infinitely many of the points.

P. Erdos

SOLUTIONS
P 10. (a) Prove that every set of six points in the plane
can be colored in three colors in such a way that no two points
unit distance apart have the same color.
(b) Show that in (a) six cannot be replaced by seven.
L. Moser and W. Moser
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Solution by the proposers. Two points which are unit dis-
tance apart we call friends, otherwise enemies. Obviously 4
points cannot all be friends of each other; and 2 points cannot
have 3 common friends. If a finite set of points can be colored
in 3 colors so that no pair of friends have the same color, we
say this set can be 3-colored.

Any set of 4 points P‘1 PZ’ P3, P can be 3-colored.
For at least one pair, say P, and P,, are enemies; color

these alike and use the two remaining colors for P3 and P4c.

Let Py, P;, P3, Py, Py bea set of 5 pointé. Not all of
them have precisely 3 friends each. For, in this case, if 1'-’1
and P, are enemies, then they would have P;, Py, Py as
common friends, and this is impossible. Now, if P, has < 2
friends 3-color the four points PZ’ P3, P4, }?5 and use for
P, the available color different from P,'s friends. If P, has
4 friends, they lie on a unit circle (whose center is Pi) and can
obviously be colored in 2 colors, leaving the third color for P,.
Thus every set of 5 points can be 3-colored.

Let Pi’ PZ’ P3, P4, 155, Pé be a set of 6 points. If P1,
say, has < 2 friends, 3-color the set P,, P3, Py, Pg, Pg and
use for P, the color different from those used for P,'s friends.
If Py has 5 friends, they lie on a unit circle and can obviously
be colored in 2 colors, leaving the third color for P,. If P,
has 4 friends, say PZ’ P3, P4, PS’ and has enemy Py, use 2
colors for P,, P3, P4, Pg (they lie on a unit circle) and use the
third color for P and P Thus we may restrict our attention
to the situation where each of the 6 points has precisely 3 friends.

Let P4 and P, be enemies. Since each has 3 friends in
the set P3, Py, Pg, Py they must have 2 common friends say
P3 and P4. Let P5 be Pi‘s third friend (and hence P, and
Py are enemies). PS and PZ are enemies; for otherwise Pi
and P, would have 3 common friends (namely P3, Py Ps).
Furthermore PS cannot be friends with both P3 and Py; for
otherwise P3; and P, would have 3 common friends (namely
Py, P, Pg). It follows that Pg is friendly with P¢ and either
P3 or Py, say P3. Finally, since P; and P3 each have 3
friends different from Pg it follows that Py must have P;
and P4 as friends. Hence the set can be 3-colored by using
color A for P1 and P6’ color B for P3 and P4, color C
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for Pg, P, e.g. fig.1, where two points are joined by 2 unit
line if they are friends.

Psg

Fig.2

Fig.1

Fig. 2 exhibits a configuration of 7 points which cannot be 3-colored.

P 30. Show that every triangle can be dissected into n
isosceles triangles for every n> 4 but that some triangles
cannot be dissected into 3 isosceles triangles.

L. Sauvé

Solution by the proposer. For n =2, the dissecting line
must pass through a vertex, and an investigation of the possible
cases shows that the following triangles, and only those, can be
dissected into 2 isosceles triangles:
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(1) all right-angled triangles,

(2) all triangles in which one angle is twice another,

(3) all tr'iangles in which one angle is three times another.

For n =3, the dissection is always possible in the follow-
ing cases:

(1) all acute-angled triangles; simply join the circumcentre
to the vertices,

(2) all right-angled triangles. Let ABC be a right-angled
triangle with the right angle at A.

C
A D B
C
D
A E B
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If £B #«£C, say £ B < «£C, draw £/BCD =£B. Then BCD is
isosceles and ACD can be dissected into 2 isosceles triangles
as seenincase n=2. If 4B =/C, draw AD_LBC and DE_LAB.

The triangle with angles 19, 80, 171C serves as an example
to show that not every obtuse angled triangle can be dissected into
3 isosceles triangles. For one of the dissecting lines must pass
through a vertex; but no such line can be found which yields an
isosceles triangle and a triangle of the types for which n =2 is
possible. ‘

For n =4, the theorem holds for every triangle. For,
given ABC in which the greatest angle
is at A, the altitude AH must fall
within the triangle. Joining H to
the midpoints P and Q of AB
and AC yields 4 isosceles
triangles.

B H

Assume that the theorem holds for n=m and let ABC
be a given triangle. We distinguish two cases:

(1) ABC is not equilateral. Then ABC can be dissected
into an isosceles triangle and another triangle; the latter can be
dissected into m isosceles triangles and thus ABC can be
dissected into m + 1 1isosceles triangles.

(2) ABC is equilateral. Then the theorem holds for
n=3, 4, 5. The cases n=3, 4 have been proved above. For
n =5, select a point D on AC such that CD < AD and draw
DE H AD. Then ABED 1is a cyclic quadrilateral and the centre
O of its circumncircle lies within it. Join O to A,B,D,E and
we have ABC dissected into 5 isosceles triangles. Now, if
P,Q,H are the mid points of AB, AC, BC then triangles PBH,
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APH, AQH are isosceles, and triangle QHC (which is equi-
lateral) can be dissected into m isosceles triangles by the
induction hypothesis; hence ABC can be dissected into m + 3
isosceles triangles. Thus the truth of the theorem for

n =3, 4, 5 implies its truth for n > 5.

COROLLARY. Every convex m-gon can be dissected
into n isosceles triangles for every n > 4(m - 2), and this in-
equality is the best possible.

Also solved by the proposer, R.J. Wisner, and L. Moser.

P 34. Prove that if p> 3 is a prime = 3 (mod 4) and
2]
C=e /P then

’

o 2
T _(+g) = (;)

2
where r runs through the quadratic residues of p, and (—) is
the Legendre symbol of quadratic residuacity.

L.J. Mordell

Solution by Emma Lehmer and P. Chowla. Suppose first

= 2 : .
that p =7 (mod 8). Then (=) =1 and hence the quadratic residues
may be denoted by either r or 2r. Thus
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2r b
T, (4-¢7) =T _(1-2
and then

r
.+t = 1.

2 -1
Suppose next that p =3 (mod 8). Then (;) =-1, (-;-) =-1

and so the quadratic residues may be denoted by either r or
-2r. Hence

T -2 =17 1 -1H,
r r

‘(_1)(p-i)/2

r 2r
TTr (1 + L ) - n.r g 3
and then if p> 3, Trr (1 + gr) =1, since Tr=0 (mod p).

Also solved by the proposer, L. Carlitz, and R. Ayoub.

P 32. The equation
(1+2 cosE)(i + 2 cosE) =1
P q

is obviously satisfied by p =q =2. Are there any other rational
solutions with p>q>1?

N. W. Johnson

Solution by H. Schwerdtfeger. Let us write the given
equation in the form

2 2
(1+2cos—li)(1+2cosLb) =1
n n

and ask for integral solutions {(a,b,n). Such may be obtained
in the following way. Let
2 = eZwi/n

(or any other primitive n-th root of 1). Then the equation
becomes

a - -b
(1+ 2 +~za)(1+zb+z ) = 1,
cqs . a b
and after multiplication by z z ,
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2(a+Db) a+2b 2a+b 2b 2
+ z + z + z

b
f(a,b;z) =2 +2% 42 42 +1=0.

Now we put the question in the following way. For which
positive integral a,b,n is a primitive n-th root of unity a root
of this equation?

-1
It may be noted that automatically with x also x is a
root of the equation.

Series of solutions are obtained as follows. Let 2% = v.
Then
4 3 2 2, 2
fla,a;z) =y +2y +2y +2y+1 = (y+1) (y +1).
Hence

2wi/2a 2wif4a
e e

or

which for any positive integer a yields the solutions
b=a, n=2a and b=a, n=4a.

Further we examine
6 5 4 2
fla,2a25z) =y +y +2y +2y +y+1.

By testing divisibility with the cyclotomic polynomials of degree
< 6 it is found that no root of unity is root of this polynomial.

Finally,

8 7
f(a, 3a;z) y +vy +Y6+Y5+Y3+Y2+Y+1

2. 2 4 3 2
(y+1) (y +4)y -y +y -y +1)

whence the following solutions are derived: for b =3a; n=2a,
n =4a, and n=10a.
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