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ABSTRACT. The critique by Issler and other (2017) of our avalanche dynamics model maintains that we
disregard well-established results of particulate gravity flows. Here we show that the arguments of Issler
and others (1) violate Newton’s laws of motion in the avalanche core and (2) ignore size-dependent drag
forces on snow particles (Stokes law) that lead to the formation of avalanche suspension layers. We
explain why we cannot amend our model equations to accommodate their suggestions. The goal of
our approach is to describe highly non-stationary processes in the avalanche core that lead to a wide
range of avalanche flow types and therefore different flow behavior. This is important for practical
applications.
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1. INTRODUCTION
In their recent paper, Issler and others (2017) make three
direct charges against our work. Namely (i) the proposed
method does not agree with results on dense granular
flows, (ii) a third-order equation to describe the slope per-
pendicular accelerations is in error and (iii) the model
for the suspension cloud disregards well-established results
on particulate gravity currents and needs substantial
adjustments.

Our response to these charges is clear: the arguments
invoked by Issler and others (2017) violate Newton’s
laws of motion, specifically the law of action and reaction.
As such, they are a clear mis-statement of our work.
Furthermore, avalanche flow involves non-equilibrium pro-
cesses that cannot be adequately described using quasi-equi-
librium mechanics, as Issler and others (2017) seem to
suggest. The fluidization of the avalanche core and the for-
mation of the powder cloud require considering flow transi-
tions they may, or may not reach equilibrium. Because we
have abandoned quasi-equilibrium flow models, we can
accurately describe the movement of dense flowing and
powder snow avalanches for many practical applications
(Dreier and others, 2016; Stoffel and others, 2016; Bartelt
and others, 2017; Margreth and others, 2017).

The paper of Issler and others (2017) therefore provides an
excellent opportunity to discuss the state of avalanche mod-
eling, particularly the key problems in avalanche dynamics,
firstly the interaction of the core with the basal running
surface and secondly the formation and movement of the
powder cloud. We wish to express our arguments as
clearly and directly as possible. Our hope is that they can
be easily grasped by a practicing avalanche engineer. In
this way, the concerns of Issler and others (2017) can be
explained and resolved. Our yardstick is not agreement to
well-established concepts, but to the problem at hand,
snow in motion.

2. THE AVALANCHE CORE
In our model for the avalanche core we define a local coord-
inate system with the x-axis located parallel to the terrain

surface. The z-axis is defined perpendicular to the basal
plane, Figure 1. In the following, we turn our local x-axis
into the flow direction, permitting us to reduce the problem
of avalanche flow to one-dimension without losing general-
ity. We consider the movement of avalanche mass MΦðtÞ
flowing through regions with fixed sides, which we term
flow ‘columns’. The flow height of the column hΦðtÞ varies
with time. We measure the flow height hΦðtÞ with respect
to the co-volume height h0ðtÞ, which we assume to represent
the densest possible packing of avalanche snow for the mass
MΦðtÞ. The column with height hΦ can expand from or
contract to the co-volume h0. This description allows us to
consider instationary processes arising from shearing. By
considering the change in acceleration of the center-of-
mass (located at the height kΦ inside the column) we consider
states of static equilibrium (€kΦ ¼ 0), states of dynamic
equilibrium (€kΦ ≠ 0 and k

���
Φ ¼ 0) and states of dynamic

non-equilibrium (€kΦ ≠ 0 and k
���
Φ ≠ 0). We argue that all the

three states are necessary to describe avalanche flow, espe-
cially the formation of the powder cloud.

The dispersive pressure Nk, a name first coined by
Bagnold (1954), is the excess pressure resulting from the
shearing of the snow particles. At first, Issler and others cor-
rectly state our definition for Nk (Issler and others, 2017,
Eqn (V.4))

Nk ¼ MΦ
€kΦ: ð1Þ

Because we have a free upper boundary and a fixed lower
boundary, the dispersive pressure causes a reaction on the
bottom surface due to the upward acceleration of the
center-of-mass, Figure 1. This definition of dispersive pres-
sure is valid for both expansion of the column (increasing
Nk, €kΦ> 0) and when the column contracts (decreasing Nk,
€kΦ < 0). We make no assumptions concerning the speed of
the expansion or contraction, unlike Issler and others
(2017). The volume VΦ contains random kinetic energy
RKVΦ. The energy density RK represents the kinetic energy
associated with random particle movements (Bartelt and
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others, 2006). Issler and others (2017) state, ‘Buser and
Bartelt postulate that the equation of state of a granular
snow avalanche is essentially equivalent to that of an ideal
gas, i.e. they assume

NhΦ ¼ γRKhΦ:0 ð2Þ

In this equation, γ is a coefficient relating the random kinetic
energy Rk to the pressure N. This statement is both (i) physic-
ally incorrect and (ii) a mis-statement of our work (see Issler
and others, 2017, Eqn (11)). The normal force is defined by
Newton’s law of action and reaction, not by RK or an
analogy to the ideal gas law. If the center-of-mass does not
move, then the reaction on the bottom is always equal to
the weight N ¼ MΦgz, independent of the magnitude of
random kinetic energy RK (Fig. 2). The particle collisions
with the boundary are such that they support the flow in equi-
librium N ¼ MΦgz. This can occur for RK ¼ 0, or any finite
value RK> 0, (Fig. 2). It does not matter whether we have a
solid continuum or a granular continuum. Newton’s law
holds, i.e., we have

N ¼ MΦgz þMΦ
€kΦ: ð3Þ

We repeat: our dispersive pressure is the imbalance
between the reactionN and the weightMΦgz. Imagine stand-
ing on a bathroom scale and measuring the reaction (your
weight), one time standing flat-footed, the next time down
in a crouch. In both cases, the weight is measured (although
your configuration has changed). Our dispersive pressure is
zero in both cases. Only when you change your configur-
ation (move your center-of-mass upwards or downward)
does the reading on the scale (the reaction) change. By
Newton, it changes in accordance to how quickly your
center-of-mass is accelerated.

It is a commonmistake to think that the dispersive pressure
holds the center-of-mass in place. It is the reaction on the
bottom, invoked by the action (the weight) that holds the
center-of-mass in place. Moreover, N (reaction) = MΦgz
(action).

The random kinetic energy RK does not do anything but
expand the volume. Once expanded, the center-of-mass
does not move anymore and we cannot see any difference
in N, both before and after the expansion (or shrinking).
Both states have the same mass and therefore the same
weight and the same reaction.

Our formulation satisfies the boundary conditions exactly,
in accordance with Newton and simple experiments, that
when RK ¼ 0, Nk ¼ 0 and further when RK = constant,
Nk ¼ 0. In their formulation Issler and others (2017) forget
the reaction on the boundary and assume the random
energy RK somehow holds the mass in place. Issler and
others assumptions lead them to conclude that the acceler-
ation €kΦ of the center-of-mass can be by given by (see

Figure 1. Newton’s law of action and reaction applied to a flow column in the avalanche body. Avalanche mass flows in the slope parallel x-
direction. The column can expand in the slope perpendicular z-direction. Particulate avalanche mass MΦ flows through the column; the
column sides are fixed and therefore the volume VΦ can only vary with height. We consider two states: (a) the co-volume, or dense
packing of snow granules. The norm of the force on the ground is N ¼ MΦgz. The center-of-mass of the co-volume is located at k0. (b)

During flow the particulate mass MΦ is sheared and expands due to the acceleration €kΦ. The height of the flow column, defined by the
location of the highest particle, is now hΦ. The center-of-mass moves from k0 to kΦ. The reaction to the acceleration of the center-of-mass
is termed the dispersive pressure Nk ¼ MΦ

€kΦ. No restrictions are made on the timescale of the expansion.

Figure 2. Two columns in the avalanche, both contain the same
mass MΦ. The avalanche column on the left contains no random
energy RK ¼ 0; the column on the right contains random energy
RK > 0. Only when the center-of-mass of the column changes,
there will be a change in the normal pressure N. The weight of
both masses remains the same N ¼ MΦgz. This is Newton’s law of
action and reaction. According to Issler and others (2017) the
normal force N is proportional to RK.
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Issler and others, 2017, Eqn (12), but found elsewhere, e.g.
Eqn (21))

€kΦ ¼ γ
RK

MΦ
þ gz: ð4Þ

This equation disregards the boundary. When RK ¼ 0, it
implies that €kΦ = gz and therefore the mass is in free fall
(no boundary). This is not a ‘strong assumption’ of our
theory, but a mis-statement.

More importantly, Issler and others (2017) conclude that
only a second-order equation, similar to the above, is
needed to describe the avalanche core. We conclude other-
wise: the mean normal pressure will differ from the weight
only when we have changes in the slope-perpendicular
acceleration of the avalanche core (k

���
, jerk). In order to

track changes in the avalanche core, we must advance to a
higher kinematic level to consider jerks and jolts arising
from the basal boundary. This is yet another simple conse-
quence of Newton’s law.

The changes in slope-perpendicular acceleration can be
found by equating a fraction (γ) of the production of
random energy ( _P) with the work needed to change the loca-
tion of the center-of-mass of the avalanche. We simply say
that a fraction of the shear-work is used to raise the center-
of-mass. For details, see Buser and Bartelt (2009, 2015).
Using the definition of substantial derivative,

DðNVΦÞ
Dt

¼ γ _PVΦ: ð5Þ

The parameter γ is not a coefficient related to the ideal gas
law, or an equation of state, as Issler and others (2017)
suggest. It is a coefficient that partitions the production of

the random energy into a change in both the random
kinetic energy and the potential energy in the slope perpen-
dicular direction. This balance equation satisfies energy con-
servation and also Newton’s law. It opens the door to
modeling highly non-stationary processes in the avalanche
core. We do make the assumption that there is no change
in mass during the change in acceleration. This assumption
can be (and is) relaxed when we consider snow entrainment.

The only well-established concept of granular mechanics
that we invoke (besides Newton) is Reynolds’ result that a
sheared granular body dilates (Reynolds, 1885). The shear
work rate, a quantity that depends on the avalanche bound-
ary conditions, constrains the energy that is available to
change the structure of the core.

3. FRICTION
Issler and others (2017) are clearly uncomfortable with our
third-order equation describing changes in slope-perpen-
dicular accelerations (jerks). A third-order equation is neces-
sary because the frictional shear work, the process driving the
accelerations, is a slope and terrain dependent function. It
depends on time. We cannot exclude sudden changes that
occur over short-time intervals (imagine avalanches con-
fronted by sudden changes in terrain and roughness which
is the normal case, see Fig. 3). This function is basically
unknown, but determines the configuration of the core and
therefore flow friction. We must calculate it at discrete time
intervals as the avalanche descends considering the local
boundary conditions. For this reason, we never can assume
stationary flow when discussing models of flow friction.

Note that our third-order equation can be expressed as
a second-order equation in the slope-perpendicular

Figure 3. The avalanche core Φ experiences a continuous series of jolts from the boundary. Shearing Sðx; tÞ induces changes in slope-
perpendicular accelerations €kΦðx; tÞ which are an unknown function of position x and time t. The accelerations depend on the speed of
the avalanche, as well as external factors such as terrain. The configurational energy of the core RV , and therefore flow friction, depends
on the external forcing, which is a function of x and t. The component of gravity in the x-direction is denoted gx. It acts on the core mass,
not the cloud mass. Large velocity gradients exist between the leading edge and tail (wake) of the powder cloud Π.
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velocity. €wΦ ¼ _kΦ,

€wΦ þ gz þ _wΦ

kΦ

� �
wΦ ¼ €wΦ þ ω2wΦ ¼ γ

_PðtÞ
MΦ

: ð6Þ

This equation is similar to an undamped, non-linear para-
metric oscillator. In principle, the external forcing _PðtÞ
could be formulated as a Fourier series to identify the fre-
quency content of the forcing. The frequency ω identifies
the external input frequency which will fluidize the core;
that is, amplify the configurational energy RV. Moreover,
whether the avalanche core relaxes (i.e. returns to the
co-volume, frictional flow regime) or fluidizes (collisional
flow regime) depends on slope angle and the frequency
content of the frictional input. We do not describe flow
friction using the random kinetic energy RK, rather the
configurational energy RV, which is a measure of particle
spacing in the core.

Of course, the slope-perpendicular accelerations are
damped and therefore the configurational energy RV will
decay. One significant damping process is the energy
needed to create the suspension layer, which must be
removed from the core. Other damping processes exist, for
example the compaction (sink-in) of the running surface or
the granularization of the snowcover. All will contribute to
reducing the accelerations in the slope-perpendicular direction
and reducing the configurational energy RV. In the analysis of
our friction model, all of these additional damping processes
are not considered by Issler and others (2017), leading to the
conclusion that friction will simply decrease with velocity.
By making the friction coefficients a function of the configur-
ational energy we capture the dissipative effects in the slope-
perpendicular direction, which can be significant.

4. SUSPENSION LAYER
Snow mass in avalanches behaves in one of the two distinct
ways: if the particle is small enough it is suspended in air; if
the particle is large (or if small particles act as a coordinated
packet as a whole, clusters) the mass cannot be suspended. It
falls back to the ground under the action of gravity, see
Figure 4. In our model the mass that can be suspended
belongs to the suspension layer; mass that cannot be sus-
pended, belongs by definition to the avalanche core

(Bartelt and others, 2016). That is, we separate particulate
mass according to how it physically behaves. Moreover,

• MΦ, ‘heavy’ mass, non-suspended mass
• MΠ, fine particles and air, suspended mass

This definition diverges from the definition of Issler and
others (2017). We try to avoid the oxymoron of a ‘gravity-
driven suspension current’ in which the suspension cloud
contains non-suspendable mass. We separate the suspended
mass from the non-suspended mass.

A particle becomes suspended when the downward force
of gravity and the particle drag forces (Stokes) almost exactly
offset, producing particles that almost do not move relative to
the air, see Figure 5. This definition explains the fundamental
difference between our model and much of the literature
cited by Issler and others (2017) (e.g. Ancey, 2004;
Turnbull and McElwaine, 2007): The density difference
between the ice grains and air is not the driving force of
the suspension cloud, by definition. If it would be so, then
we would see a whole host of unusual phenomena. For
example, cumulus clouds or banks of fog clinging to

Figure 4. A representative column in the avalanche. Avalanche mass is divided into suspended mass MΠ and heavy mass that falls to the
ground under gravity MΦ. The two masses (a) overlap. The suspension layer consists of suspended mass MΠ (by definition); the avalanche
core consists of the gravity driven mass MΦ. Both layers have the same height measured from the ground. (b) The heavy mass segregates
out of the suspension layer. Packets of ice-dust (clusters) may fall under gravity, acting as a coordinated whole and thus belong to the
core mass MΦ.

Figure 5. The model of Issler and others (2017) treats suspension
clouds as gravity currents. They argue that gravity accelerates a
suspension cloud because the density difference between the ice
and air is large. Their model predicts, clouds should fall from the
sky and reach large velocities. The inclusion of gravity in our
model of the suspension cloud is in error because MΠ contains
only mass that can be suspended. That is, we assume no relative
movement of the particles with the air g= S. The cloud can only
move by accelerating the air containing the ice particles.
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mountain cliffs would fall directly from the sky and ravage
havoc among the peaceful inhabitants of mountain commu-
nities (Fig. 5). Of course, clouds do not fall from the sky (even
though the clouds contain huge amounts of mass) because of
Stokes drag. The clouds are suspended.

One way to visualize the suspension cloud is at the end of
an avalanche event when the cloud hangs over the deposits.
Note there is a density difference between the ice particles
and the air, but the cloud is stationary; the particles sediment
slowly, but any wind can sweep the cloud away. The air
drives the particles; the particles do not drive the air. The
tail of the powder cloud is correctly termed the wake; its
non-motion standing in sharp contrast to its formation at
the avalanche front, best compared with the formation of
the smoke cloud ejected by a fast moving steam engine
(Fig. 3). Our model of the suspension layer captures this
behavior: we are able to predict the large slope-parallel vel-
ocity gradients that exist in the cloud between the avalanche
front and wake, as well as the speed of the lateral spreading
(Dreier and others, 2016).

In our model, the ‘heavy’ (non-suspendable) mass, with all
the associated momentum, never leaves the core. It is part of
the core, by definition, because drag forces acting on the
larger particles (Stokes) are small relative to gravity. The
motion of the core mass is therefore governed by terrain
(slope-parallel direction). Our experience with models that
do not distinguish between suspended (cloud) and non-
suspended mass (core) is that they cannot correctly model
the momentum transfer between the cloud and core and
therefore cannot be applied to solve problems in practice
(Stoffel and others, 2016). These models presuppose clean
layers and interfaces where idealized but highly tangled
book-keeping operations governing mass and momentum
transfer are necessary. We make no such modeling assump-
tions: suspended and non-suspended mass at first coexist in
the core (Fig. 6). The top of the core volume is defined by
the location of the highest particle (or cluster of particles)
that will fall back to the ground. When mass is accelerated
upwards, however, part of this mass becomes suspended to
form the cloud. This is the formation of the suspension
layer. We try to avoid models where the separation
between core and suspension layer is never complete,
where it is a messy divorce of ever continuing entanglements
of mass and momentum. We enforce the divorce: the sus-
pended mass is given its share of momentum and never

returns (because it is suspended and cannot return by defin-
ition). The cloud and core are now two completely inde-
pendent bodies (Fig. 6); the motion of the core defined by
gravity; the motion of the cloud defined by inertia and the
initial momentum provided by the core. The suspension is
now independent of terrain. The engineering problem is to
understand over what distance the suspension cloud dissi-
pates the initial energy. This approach allows us to stick to
depth-averaged methodologies and, as we have shown, is
a practicable approach to modeling the danger of powder
snow avalanches.

It is not necessary to include particle sedimentation
(gravity) in the model because it is of little engineering rele-
vance. The particles serve as passive tracers to delineate
the shape of the cloud. Therefore, to understand how a sus-
pension cloud moves requires understanding the motion of
the air. If the avalanche core can create a wind storm then
the suspension layer can cause damage. Otherwise the
cloud, like a bank of fog, is harmless. This is often, but not
always, the case in practice.

This is why the gravity component can be neglected in our
approach to simulate the suspension layer which is simply
not a gravity current (again, by definition). Therefore, we
do not have to consider any well-established theory which
mixes and confuses the physical behavior of a particulate
‘gravity current’ with a ‘suspension layer’. These concepts
include Richardson number entrainment, potential flow,
shear instabilities etc. The physical processes, including
both gravitational and inertial accelerations that govern the
motion of a ‘highly turbulent’ gravity current are included
in our model of the avalanche core, assuming, of course,
that we allow for highly non-stationary behavior.

5. CONCLUSIONS
Here we must be blunt: we have not disregarded the solu-
tions offered by granular mechanics/particulate gravity cur-
rents. The situation is far more serious: we have abandoned
them for the simple reason we found that they do not work.
Confronted with the task of developing an avalanche
model for engineering practice we asked ourselves a
simple question: what does the consequential application
of the laws of Newton and Stokes imply for the all-important
descriptions of the basal boundary conditions, avalanche
flow friction and the formation of the powder cloud. We

Figure 6. Our model decouples the suspended and heavy mass, allowing the modeling of both the avalanche front and avalanche wake
without imposing artificial interfaces. The avalanche core is defined by the location of the highest heavy particle. This mass never leaves
the core, but expands upwards into the suspension layer, often to great heights. Momentum is transferred from the heavy particles to the
air giving the suspension layer an initial velocity (initial condition).
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wanted to avoid model formulations that abound in needless
and misleading jargon, mis-statement, contradiction and
general illogic. Above all we wanted a model that can be
tested using experimental measurements and that is compre-
hensible to engineers and technologists.

We came to the remarkable conclusion that the applica-
tion of Newton’s law demands that we consider changes in
slope-perpendicular accelerations arising from the inter-
action of the avalanche core with highly variable terrain.
This process, which depends on snow properties, determines
avalanche friction. By invoking Newton we could explain
why avalanches exhibit different flow regimes. The com-
bined application of the laws of Newton and Stokes
allowed us to formulate a model for the formation of the
powder cloud, helping us explain under what snow and
terrain conditions we must expect damaging impact pres-
sures from the avalanche cloud. We did not set out to do
so, but by trying to supply avalanche experts with useful
and comprehensible tools, we have rejected a great body
of well-established ideas. We strongly suggest that the ava-
lanche community try-out their ideas first on some straight
forward case studies. They might find, like us, that some of
their ideas do not provide the results they expect.
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