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Abstract

Background. Illicit drug use may lead to dependence on those drugs, is associated with various
psychiatric disorders, and can have hazardous, sometimes life-threatening, consequences. We
investigated the genetic architecture underlying the lifetime use (LU) of several drugs, individu-
ally and in combination.
Methods.We conducted genome-wide association studies of LU of cocaine, methamphetamine,
inhalants, illegal opioids, prescription opioids, and prescription stimulants in European (EUR),
African (AFR), and Latin American (AMR)-ancestry subjects (cases ranging from n = 4,900–
21,850 [EUR], n = 519–9,802 [AFR], and n = 899–5,012 [AMR]; controls from n = 93,763–
110,658 [EUR], n = 37,261–46,509 [AFR], and n = 31,412–35,501 [AMR]). We also investigated
the use of illicit drugs of any kind and the total count of drugs a person has ever used. Then, we
assessed the global and local genetic correlations between substance LU (SubLU) traits and their
genetic correlations with other traits.
Results. We found numerous genes that affect SubLU traits, with no overlap among the
significant loci between traits, suggesting that unique genetic factors may differentially affect
the use of different drugs. Nevertheless, the genetic correlations between SubLU traits were very
strong; however, the phenotypic correlations were moderate. There were strong genetic correl-
ations between various SubLU traits and psychiatric traits, most notably opioid use disorder,
cannabis use disorder, problematic alcohol use, and suicidality.
Conclusions. Our findings provide insights into the genetic basis of substance use, identifying
several novel genes associated with SubLU traits. This study can provide an improved under-
standing of the biology underlying SubLU and could potentially facilitate future risk assessments
for the use of illicit and hazardous drugs.

Background

Illicit and hazardous drugs, such as cocaine, methamphetamine, inhalants, stimulants, and
opioids, pose significant health risks, contributing to injuries, psychiatric and physical diseases,
and an increased risk of death (Afonso, Mohammad, & Thatai, 2007; Isoardi et al., 2020; Jones &
Rayner, 2015; Kaye, McKetin, Duflou, & Darke, 2007; Maraj, Figueredo, & Morris, 2010; Mick,
McManus, & Goldberg, 2013; Valente et al., 2012; van der Woude, 2000; Verna, Schluger, &
Brown, 2019). Nevertheless, drug use is a widespread phenomenon with increasing prevalence
(Barocas et al., 2018; Han et al., 2021; John &Wu, 2017; Wu & Ringwalt, 2006; Yockey, King, &
Vidourek, 2020). Therefore, both environmental and genetic factors influencing the use of these
drugs are major public health concerns.

In 2023, the past-year prevalence of cocaine use in the United States was 1.8%, inhalant use
was 0.9%, andmethamphetamine use was 0.9%. In addition, there was a past-year 1.4% frequency
of prescription stimulant use and 3.1% use of legal and illegal opioids (SAMHSA, 2023). The
lifetime prevalence of opioid use and misuse was between 11.9% and 37.8% (Han et al., 2017;
Zajacova et al., 2023), while the prevalence of illegal street opioid use, such as heroin, was
between 1.6% and 1.84% (Ihongbe &Masho, 2016; Martins et al., 2017). The lifetime prevalence
of prescription stimulant use is 9.5% (McCabe & West, 2013).

Transition rates from initial use to developing a use disorder or addiction vary between
different drugs. For example, between 0.3% and 0.4% of the population reportedly develops
cocaine use disorder (CocUD) (John & Wu, 2017; Kerridge et al., 2019) (suggesting a transition
rate of up to ~2.5%), whereas 0.8–4.6% develop opioid use disorder (OUD) (Barocas et al., 2018;
Han et al., 2017) (suggesting a transition rate of up to ~39%). There is also high comorbidity
between the use of different types of drugs; for example, cocaine use is prevalent in 11.8% of heavy
alcohol users, with 2.10% of this population developing CocUD (John &Wu, 2017). In addition,
73% of individuals with OUD report co-use of other substances (Mahoney, Marshalek, Haut,
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Hodder, et al., 2021), and 27.5% of them develop alcohol use
disorder (Baskerville et al., 2023). Tobacco smoking is strongly
associated with opioid use and OUD (Rajabi et al., 2019).

There is also high comorbidity between substance use and
various psychiatric disorders. The point prevalence of depression
is 24% among cocaine-dependent users (López & Becoña, 2007)
and 27–61% among opioid users (Rogers et al., 2021), compared
to 5% in the general population (WHO, 2023). The odds of
depression among methamphetamine users are 18–66% higher
than in the general population (Leung et al., 2023) and 32%
higher among inhalant users (Gentile, Bianco, Nordstrom &
Nordstrom, 2021). Other disorders, such as attention-deficit/
hyperactivity disorder (ADHD) (Obermeit et al., 2013; Oliva
et al., 2021; Wilens et al., 2008), schizophrenia (Hunt et al.,
2018), post-traumatic stress disorder (PTSD) (Dahlby & Kerr,
2020), and bipolar disorder (BD) (Cerullo & Strakowski, 2007),
are also more common in people with histories of substance use.
Drugs, such as cocaine, opioids, and stimulants, pose health risks
other than psychiatric effects, which can deeply impair the quality
of life and may be life-threatening; these include hypertension,
elevated heart rate, myocardial infarction and heart failure
(Afonso et al., 2007; Kaye et al., 2007; Maraj et al., 2010; Mick
et al., 2013), liver damage (Valente et al., 2012; Verna et al., 2019;
Zhao et al., 2020), and kidney injury (Isoardi et al., 2020; Jones &
Rayner, 2015; Valente et al., 2012; van der Woude, 2000). Out of
600,000 drug-related deaths in a 37-year period, the vast majority
were caused by cocaine, prescription opioids, and street opioid
overdose (Jalal et al., 2018). However, this study did not include
alcohol- and tobacco-related deaths, which are estimated to be
even higher (Karaye, Maleki, Hassan, & Yunusa, 2023; Siegel
et al., 2015). Opioid abuse has been considered a national epi-
demic in the United States (Volkow & Blanco, 2021), with annual
opioid-associated mortality rates rising to 73,838 in 2022 (NIH,
2022). In total, ~150,000 people die every year in the United
States due to drug overdose (CDC, 2024).

Most genome-wide association studies (GWASs) of substance
use traits have dealt with substance use frequency, substance
dependence, and substance use disorders (SUDs) (Dao et al.,
2021; Deak et al., 2022; Levey et al., 2023; Sanchez-Roige et al.,
2019; Zhou et al., 2023), and less so with substance lifetime use
(LU) (with the exception of tobacco smoking initiation, which is
similar to an LU trait; e.g. see Saunders et al., 2022). Although it is
clear why SUDs are of great interest, the liability to use drugs
should be investigated too, considering the high transition rates
from use to use disorder and possible hazards that arise from
nondependent use. In addition, studies conducted so far regarding
cannabis (Levey et al., 2023; Pasman et al., 2018) and alcohol
(Saunders et al., 2022; Zhou et al., 2023), for example, indicate that
substance LU (SubLU) and SUD traits are somewhat different
from one another genetically. Here, we conducted GWAS ana-
lyses to investigate the genetic basis of LU of cocaine, metham-
phetamine, inhalants, illegal opioids, prescription opioids, and
prescription stimulants in European (EUR), African (AFR), and
Latin American (AMR) ancestry research participants. We exam-
ined the genetic and phenotypic similarities and differences
between these traits and their global and local genetic correlations
with traits of interest, including chronic pain, SUDs, depression,
and other psychiatric, medical, and socioeconomic traits. We also
evaluated the genetic underpinnings of the inclination to use illicit
drugs of any kind, as well as the amount of drugs a person uses
over a lifetime.

Methods

See also Supplementary Methods.

Cohorts

We included subjects of EUR, AFR, and AMR ancestries from the
All of Us (AoU; v7) biobank. Genotyping and quality control
procedures were described previously (Bick et al., 2024). LU of
cocaine, methamphetamine, inhalants, street opioids, prescription
opioids, and prescription stimulants phenotypes were defined
using a lifestyle survey. The ‘any substance’ (SubLU) and quanti-
tative ‘number of substances used’ (nSubLU) phenotypes were
defined using the same survey.

GWAS analysis and meta-analysis

GWAS analyses were conducted using PLINK 2.0, with sex, age,
and the first 10 genetic PCs as covariates. We removed subjects
due to relatedness, and variants were excluded due to minor allele
frequency <0.1% and Hardy–Weinberg equilibrium p < 1 × 10�6.
Cross-ancestry meta-analyses were performed using METAL
(Willer, Li, & Abecasis, 2010).

Genetic correlations and SNP-based heritability

We used linkage disequilibrium score regression (LDSC) (Bulik-
Sullivan et al., 2015) to calculate single-nucleotide polymorphism
(SNP)-based heritability (h2) for all the traits and inter-trait genetic
correlations between all six individual SubLU traits. Then, we
calculated the genetic correlation between each trait, including
the composite traits SubLU and nSubLU, and 12 selected traits
(Deak et al., 2022; Demontis et al., 2023; Docherty et al., 2023;
Johnston et al., 2019; Levey et al., 2021; Levey et al., 2023; Nie-
vergelt et al., 2024; O’Connell et al., 2025; Trubetskoy et al., 2022;
Watanabe et al., 2022; Zhou et al., 2023) (Supplementary
Table S1). For this analysis, we selected substance use traits with
well-powered GWAS available. Psychiatric traits were included if
they were previously phenotypically associated with substance use
traits, such as schizophrenia, depression, BD, and PTSD (Dahlby
& Kerr, 2020; Hunt et al., 2018; López & Becoña, 2007; Rogers
et al., 2021), or if they are commonly associated with the use of, or
treatment via, specific substances (e.g. ADHD, which is associated
with stimulant use [Wilens et al., 2008], and chronic pain, which is
associated with opioid use [Weiss et al., 2014]). The trait ‘aca-
demic degree’ was selected to represent cognitive function
(Braatveit, Torsheim, & Hove, 2018).

Phenotypic correlations

We estimated inter-trait phenotypic correlations using χ2- and φ-
coefficient (rφ).

Local genetic correlations

We used local analysis of covariant association (LAVA) (Werme,
van der Sluis, Posthuma, & de Leeuw, 2022) to calculate inter-trait
local genetic correlations between all six SubLU traits (a total of
15 pairs). Then, we calculated the local genetic correlations between
each trait – including SubLU and nSubLU – and 12 selected traits of
interest (Supplementary Table S1).
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Cross-ancestry genetic correlations

We used Popcorn (Brown et al., 2016) to calculate the cross-
ancestry genetic correlations between the SubLU trait in AFR and
AMR populations and a selected list of traits in EUR. We used the
same set of traits that were measured for genetic correlation among
EURusing LDSC (see above).We applied the Benjamini–Hochberg
procedure for correction of false discovery rate (FDR).

Genomic structural equation modeling (gSEM)

We utilized gSEM (Grotzinger et al., 2019) to examine the under-
lying latent factor structure of the six individual SubLU traits, along
with nine other psychiatric and health-related traits associated with
substance use specifically.

Results

GWAS analyses

The average number of participants for the analysis of the six
SubLU traits (cocaine, methamphetamine, inhalants, street opioids,
prescription opioids, and prescription stimulants) was 115,578 in
EUR, 47,039 in AFR, and 36,407 in AMR (for details, see Table 1).
Demographics for the nSubLU trait are presented in Supplementary
Table S2. For each trait, we also conducted a cross-ancestry meta-
analysis. All lead SNPs were significant in the range of 5 × 10�8 and
1 × 10�9, except as noted (Table 2). Fifteen analyses yielded at
least one significant SNP (Manhattan plots and regional plots in
Supplementary Figures S1–15).

For Cocaine LU, we found two genome-wide significant (GWS)
variants in EUR (CADM2*rs146999751 and GBF1*rs60331671) and
one in AFR (MTNR1A*rs78664860). A cross-ancestry meta-analysis
revealed four significant loci: LINC02008*rs9869718, CADM2*
rs4856591,TCF4*rs72930769, andMTNR1A*rs78664860. For Inhal-
ants LU, we found two significant hits: CDH12*rs4235547 in EUR
and CYP24A1*rs11699278 in AMR. A cross-ancestry meta-analysis
revealed two intergenic hits. For Methamphetamine LU, we found
one significant variant in AMR in a noncoding region (rs141493660,
p = 8.6 × 10�10) and a different one in a cross-ancestrymeta-analysis
(EXT1*rs17431748). For Street Opioids LU, we found a significant
hit only in AFR (MAGI1*rs113325386), which was preserved in the
cross-ancestrymeta-analysis. For PrescriptionOpioids LU, we found
one significant protein-coding locus in AMR (CNTN5*rs7298982),
andone in a cross-ancestrymeta-analysis (GRAMD1A*rs1052457445).
For Prescription Stimulants LU, we found significant hits in AMR

(TBCD*rs55775765), and in a cross-ancestry meta-analysis (MEF2C-
AS2*rs116758901).

We then conducted a GWAS of composite (cumulative) traits:
an ‘any substance’ LU (SubLU) trait, in which cases were defined as
subjects that used any of the substances included for the analyses
described above; and a quantitative trait of ‘number of substances
used’ (nSubLU), defined as the number of substances subjects listed
as ‘ever used’ in their lifetime (a range of 0–6 substances). The
number of participants used for the analysis was 115,635 in EUR,
47,086 in AFR, and 36,439 in AMR (Supplementary Table S2). All
lead SNPs were significant in the range of 5 × 10�8 and 10�9, unless
stated otherwise (Table 2).

For SubLU, the ‘any substance’ trait, we found three signifi-
cant variants in EUR (CADM2*rs1821351, p = 1.29 × 10�10;
LINC02758*rs7931884, p = 1.55 × 10�10; and rs4813097, which
is located in an overlapping area of two genes: SDCBP2-AS1 and
FKBP1A-SDCBP2) (Figure 1a) and one in AFR (DPRX*rs1600
561869) (Supplementary Figure S16). A cross-ancestry meta-
analysis revealed two significant loci that were also significant
for EUR (CADM2*rs1821351, p = 7.09 × 10�10, and LINC02758*
rs7931884) and three new significant SNPs (EBF1*rs116350745
and the intergenic rs76518228 and rs12489967) (Figure 1b and
Supplementary Figure S19–20).

For nSubLU, the quantitative trait, we found two hits in
EUR (GBF1*rs60331671 and LINC02758*rs7931884) (Figure 1c
and Supplementary Figure S21): one in AFR (the intergenic
rs141793374) (Supplementary Figure S17), and two in AMR
(LOC124900725*rs17465728 and the intergenic rs149549558)
(Supplementary Figure S18). A cross-ancestry meta-analysis
revealed six SNPs that were significantly associated with nSubLU:
the AFR-bound rs141793374 and five that were not significant for
the individual ancestries: ACTN2*rs2275399, CD47*rs327133,
LOC105372130*rs28758902, and the intergenic rs35149938 and
rs58899690 (Figure 1d and Supplementary Figure S22).

Inter-trait genetic correlations

LDSC was used to calculate SNP-based heritability (h2) and inter-
trait genetic correlations for the individual SubLU traits in EUR.
Heritability estimates ranged between 8.08% (for Street Opioids LU;
SE = 0.009) and 13.9% (for Prescription Opioids LU; SE = 0.019).
Intercept measures ranged between 0.992 and 1.012, and attenuation
ratios were of 0.085 or lower (Supplementary Table S3). Inter-trait
genetic correlations were calculated between all six individual SubLU
traits – a total of 15 pairs. A significant positive moderate-to-strong

Table 1. Sample size for each trait

Substance (LU)

EUR AFR AMR

Case Control Case Control Case Control

Cocaine 21,850 93,763 9,802 37,261 5,012 31,412

Methamphetamine 10,739 104,840 1,242 45,786 2,126 34,279

Prescription stimulants 13,536 102,039 2,295 44,746 2,245 34,159

Inhalants 6,788 108,775 519 46,509 899 35,501

Street opioids 4,900 110,658 2,383 44,651 1,207 35,194

Prescription opioids 12,074 103,504 2,786 44,257 2,291 34,118

All substances 34,017 81,618 12,904 34,182 7,316 29,123
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Table 2. Lead SNPs of substance lifetime use traits

Substance (LU) Ancestry rsID Chr Pos (h38) p Gene Protein

Cocaine AFR rs78664860 4 186548657 3.88E�08 MTNR1A Melatonin receptor 1A

AMR –

EUR rs146999751 3 85444443 4.43E�08 CADM2 Cell adhesion molecule 2

rs60331671 10 102250539 1.98E�08 GBF1 Golgi brefeldin A-resistant
guanine nucleotide
exchange factor 1

Meta-analysis rs9869718 3 82064905 3.20E�08 LINC02008 Long intergenic nonprotein-
coding RNA 2008

rs4856591 3 85563400 2.28E�08 CADM2 Cell adhesion molecule 2

rs78664860 4 186548657 3.88E�08 MTNR1A melatonin receptor 1A

rs72930769 18 55491419 3.90E�08 TCF4 transcription factor 4

Inhalants AFR –

AMR rs141550494 8 52895329 3.25E�08 – –

rs11699278 20 54172253 2.31E�08 CYP24A1 Cytochrome P450 family 24
subfamily A member 1

EUR rs4235547 5 22195653 1.87E�08 CDH12 Caherin–12

rs77469549 19 40635573 2.05E�08 – –

Meta-analysis rs112202767 1 40964121 1.83E�08 – –

rs72637502 8 52881639 3.39E�08 – –

Methamphetamine AFR –

AMR rs141493660 8 78235188 8.58E�10 – –

EUR –

Meta-analysis rs17431748 8 118078108 2.91E�08 EXT1 Exostosin
glycosyltransferase 1

Street opioids AFR rs113325386 3 65465078 2.01E�08 MAGI1 Membrane-associated
guanylate kinase, WWand
PDZ domain-containing 1

AMR –

EUR –

Meta-analysis rs113325386 3 65465078 2.01E�08 MAGI1 Membrane-associated
guanylate kinase, WWand
PDZ domain-containing 1

Prescription opioids AFR rs141109612 19 34977173 2.81E�08 – –

AMR rs149549558 11 71589856 1.64E�08 – –

rs72989824 11 99423774 1.74E�08 CNTN5 Contactin 5

EUR –

Meta-analysis rs1052457445 19 35026372 1.04E�08 GRAMD1A GRAM domain containing 1A

Prescription stimulants AFR –

AMR rs55775765 17 82759850 4.45E�08 TBCD Tubulin folding cofactor D

EUR –

Meta-analysis rs116758901 5 88702511 3.98E�08 MEF2C-AS2a

Any substance
(SubLU)

AFR rs1600561869 19 53618688 5.32E�09 DPRX Civergent-paired related
homeobox

AMR –

EUR rs1821351 3 85439175 1.29E�10 CADM2 cell adhesion molecule 2

rs7931884 11 28626831 1.55E�10 LINC02758 Long intergenic nonprotein-
coding RNA 2758

rs4813097 20 1359305 2.75E�08 SDCBP2-AS1;
FKBP1A-SDCBP2

SDCBP2 Antisense RNA 1;
FKBP1A-SDCBP2

(Continued)
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correlation was found between all pairs. The strongest correlations
were between Street Opioids LU and Prescription Opioids LU
(rg = 0.968, p = 5.87 × 10�68), Street Opioids LU andMethampheta-
mine LU (rg = 0.965, p = 9.96 × 10�129), and Cocaine LU and
Methamphetamine LU (rg = 0.95, p= 1.66 × 10

�133). In total, 12 pairs
of traits had a strong genetic correlation of rg > 0.7 (Figure 2a and
Supplementary Table S4).

Inter-trait phenotypic correlations

Inter-trait phenotypic correlations were calculated for individual
SubLU traits using χ2-estimates and φ-coefficients. The analyses
were conducted separately for EUR, AFR, and AMR, and revealed
positive weak-to-moderate phenotypic correlations between all the
traits in all the ancestries (Supplementary Table S5). In EUR
(Figure 2b) and AMR (Supplementary Figure S23), the strongest
correlation was observed between Cocaine LU and Metham-
phetamine LU (rφ = 0.5 and rφ = 0.47, respectively). In AFR
(Supplementary Figure S24), the strongest correlation was
between Cocaine LU and Street Opioids LU (rφ = 0.31).

Inter-trait local genetic correlations

Inter-trait local genetic correlations were calculated for individual
SubLU traits in EUR using LAVA (Werme et al., 2022). For every
trait, only regions that reached the significance threshold of p < 0.05
were used to calculate genetic correlations with the other traits
(a total of 3,242 regions in 15 pairs). After Bonferroni correction for
3,242 tests, the statistically significant threshold was set on p = 1.54
× 10�5. All 15 pairs had genetic correlations in at least three regions,
and all the correlations were positive. The most highly correlated

traits were Street Opioids LU and Methamphetamine LU (40
significantly correlated genetic regions), Street Opioids LU and
Prescription Opioids LU (37 regions), and Street Opioids LU and
Inhalants LU (37 regions). The most prominent region was
region 1,225 (chr7:152253295–153241228), which genetically cor-
related eight pairs (the full data are presented in Supplementary
Table S6).

Correlations between SubLU traits and other traits of interest

LDSC was used to calculate genetic correlations between the indi-
vidual SubLU traits in EUR and 12 selected traits related to sub-
stance use, substance dependence, and common psychiatric
illnesses (Figure 2c and Supplementary Table S7). In total, 72 pairs
were analyzed (6 substance use traits × 12 ‘other’ traits); there were
only 4 instances of nonsignificant (but nominally correlated) rela-
tionships, all of them involving Inhalants LU. For all other pairs,
there were significant genetic correlations with a wide spectrum of
statistical significance: the weakest effect was for Prescription Opi-
oids LU and schizophrenia (rg = 0.193, p = 4.64 × 10�6) and the
strongest was for Street Opioids LU and cannabis use disorder
(CanUD) (rg = 0.843, p = 1.82 × 10�66). For 10 of the 11 traits
tested, all the correlations with SubLU traits were positive, while for
academic degree, all the correlations were negative. The two stron-
gest correlations of OUDwere with opioid use traits (Street Opioids
LU: rg = 0.789, p = 2.4 × 10�24; Prescription Opioids LU: rg = 0.749,
p = 4.31 × 10�14), and the strongest correlation of chronic pain was
with Prescription Opioids LU (rg = 0.487, p = 4.05 × 10�25). Even
though prescription stimulants are prescribed mostly to treat
ADHD (Piper et al., 2018), Methamphetamine LU (rg = 0.665,
p = 5.10 × 10�45) and Cocaine LU (rg = 0.6212, p = 8.10 × 10�43)

Table 2. (Continued)

Substance (LU) Ancestry rsID Chr Pos (h38) p Gene Protein

Meta-analysis rs76518228 1 232289714 9.08E�09 –

rs1821351 3 85439175 7.09E�10 CADM2 Cell adhesion molecule 2

rs12489967 3 170355551 2.91E�08 – –

rs116350745 5 159009642 4.93E�08 EBF1 Early B-cell factor 1

rs7931884 11 28626831 3.93E�09 LINC02758 long intergenic nonprotein-
coding RNA 2758

Number of substances
(0–6)
(nSubLU)

AFR rs141793374 18 10563190 4.69E�08 –

AMR rs17465728 4 80232838 1.10E�08 LOC124900725a

rs149549558 11 71589856 1.48E�09 –

EUR rs60331671 10 102250539 6.32E�09 GBF1 Golgi brefeldin A-resistant
guanine nucleotide
exchange factor 1

rs7931884 11 28626831 1.14E�08 LINC02758 Long intergenic nonprotein
coding RNA 2758

Meta-analysis rs2275399 1 236718103 2.31E�08 ACTN2 Actinin alpha 2

rs35149938 2 59939243 3.15E�08 –

rs327133 3 108088638 2.52E�08 CD47 CD47

rs1594670302 13 96084351 3.33E�08 –

rs141793374 18 10563190 4.69E�08 –

rs28758902 18 55740956 1.79E�08 LOC105372130a

aNoncoding RNA.
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Figure 1.Manhattan plot of substance lifetime use (LU) (LU of one or more of the drugs discussed in this study) in (a) EUR (nCases = 34,017, nControls = 81,618); (b) cross-ancestry
meta-analysis (nCases = 54,237, nConrols = 144,923), and number of lifetime substances used (the number of different drugs, of the drugs discussed in this study, and a subject used
in his or her lifetime; a quantitative trait with a range of 0–6) in (c) EUR (n = 115,635); (d) cross-ancestry meta-analysis (n = 199,190).
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had higher genetic correlation with ADHD compared to Prescrip-
tion Stimulants LU (rg = 0.528, p= 4.02 × 10

�26).We also calculated
the genetic correlations between SubLU and nSubLU and the same
12 selected traits. All the tests had significant results. For all the
traits, the rg values with SubLU and nSubLU were highly similar.
Nevertheless, in all cases, the correlation with nSubLU had much
lower p-values.

Local genetic correlations between SubLU traits and other traits
of interest

Local genetic correlations between individual SubLU traits in EUR
and other traits of interest were calculated using LAVA(Werme et al.,
2022). For every trait, only regions that reached the significance
threshold of p < 0.05 were used to calculate genetic correlations with
the other traits (a total of 15,841 regions in 96 pairs). After Bonferroni
correction for 15,841 tests, the statistical significance threshold was
set at p = 3.16 × 10�6. In total, 25 significant correlations between
individual and cumulative SubLU traits and the other traits of interest
were found. Methamphetamine LU was the SubLU trait with the
greatest number of shared regions, with six different associations,
two of them with CanUD. One region – 1,292 (chr8: 55275355–
56346878) – was associated with problematic alcohol use (PAU) as
well as two individual LU traits: Inhalants LUandMethamphetamine
LU. Region 1,966 (chr14:33591114–34695195) associated schizo-
phrenia with both Prescription Stimulants LU and nSubLU.

Region 727 (chr4:139553761–141087047) associated chronic pain
with Prescription Stimulants LU and BD with Street Opioids.
Region 267 (chr2:59251997–60775066) associatedCanUDwithMeth-
amphetamine LU, BD with Cocaine LU, academic degree with
SubLU, and BD with SubLU. All the other significant regions were
associated with one pair of traits (Supplementary Table S8).

Cross-ancestry genetic correlations

Using Popcorn (Brown et al., 2016), genetic correlations were calcu-
lated for SubLU in AMR and AFR against a set of traits of interest in
EUR. After FDR correction, there were three significant correlations
in AFR – for chronic pain, suicidality, and academic degree – and
eight in AMR – for OUD, PAU, CanUD, chronic pain, ADHD,
depression, BD, and suicidality. In all the cases, the correlation
with SubLU was in the same direction as in EUR (as calculated by
LDSC) (Supplementary Table S9 and Supplementary Figure S25).

gSEM modeling

Heritability estimates and genetic correlations were calculated
across traits using LDSC (Supplementary Table S10). Parallel ana-
lysis indicated that a two-factor model best fit the data, although a
third factor was relatively close to reaching the threshold for
consideration (Supplementary Figure S26). Therefore, we per-
formed two exploratory factor analyses (two- and three-factor

Figure 2. (a) Inter-trait genetic correlations between all six individual substance lifetime use (LU) traits in EUR. (b) Inter-trait phenotypic correlations between all six individual
substance LU traits in EUR. (c) Genetic correlations between all six individual and cumulative substance LU traits in EURand a selected list of traits. Statistically nonsignificant values
are in dark gray Note: ADHD, ‘attention-deficit/hyperactivity disorder’; BD, ‘bipolar disorder’; CanUD, ‘cannabis use disorder’; ns, ‘nonsignificant’; OUD, ‘opioid use disorder’; PAU,
‘problematic alcohol use’; PTSD, ‘post-traumatic stress disorder’ [Deak et al., 2022; Demontis et al., 2023; Doherty et al., 2018; Johnston et al., 2019; Levey et al., 2023; Levey et al.,
2021; Nievergelt et al., 2024; O’Connell et al., 2025; Trubetskoy et al., 2022; Watanabe et al., 2022; Zhou et al., 2023].
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solutions). Comparisons across the two- and three-factor model
EFA results suggested that the two-factormodel best fit the data due
to theminimal amount of variance accounted for by inclusion of the
third factor (<0.06). For the two-factor EFA, cocaine, inhalants,
methamphetamines, street opioids, prescription opioids, prescrip-
tion stimulants, CanUD, PAU, and OUD (i.e. substance-related
traits) loaded onto factor 1, while suicidality, PTSD, schizophrenia,
depression, and chronic pain (i.e. nonsubstance psychiatric traits)
loaded onto factor 2. ADHD cross-loaded onto both factors. A
confirmatory factor analysis (CFA) was performed, inputting traits
on the relevant factor as indicated by EFA loading results, and the
CFA results indicated adequate fit with comparative fit index
(CFI) = 0.9476 and standardized root mean square residual
(SRMR) = 0.0784 (Figure 3 and Supplementary Table S11).

Discussion

Substance use and use disorders, even for the same substance, have
often been seen to differ genetically (Levey et al., 2023; Pasman
et al., 2019; Sanchez-Roige et al., 2019; Zhou et al., 2020) and,
therefore, need to be studied individually. While there have been
numerous studies of alcohol and tobacco use traits (Buchwald et al.,
2021; Sanchez-Roige et al., 2019; Xu et al., 2020; Zhou et al., 2023)
and several for cannabis (Levey et al., 2023; Pasman et al., 2018),

many substance use traits have not yet been subject to genetic study.
We present here the first genetic investigations for several of these
traits. We found several genes associated with different SubLU
traits, with no overlap among the significant loci between traits:
although there were very high genetic correlations between these
traits (in EUR), different lead SNPs – located within different genes
– were significantly associated with each of these phenotypes. This
may, however, reflect power limitations, that is, as more cases
become available for each substance and more loci are identified,
it is plausible that more loci common to multiple traits may be
identified.

For the individual SubLU traits, there were a total of three hits in
AFR, two of them within protein-coding genes. For Cocaine LU, the
MTNR1A genehad a significant effect (all significant SNPsmentioned
in this section had a p-value in the range of 5 × 10�8

–1 × 10�10). This
gene encodes one of the two main melatonin receptors, known for
its major role in circadian rhythms and the sleep–wake cycle
(Hardeland, Pandi-Perumal, & Cardinali, 2006). There is a strong
association between sleep disorders and SUDs (Conroy & Arnedt,
2014), and specifically cocaine (Schierenbeck, Riemann, Berger, &
Hornyak, 2008), and melatonin was used as an experimental
treatment for SUDs, with mixed results (Das, Prithviraj, &
Mohanraj, 2022). The effect of MTNR1A on Cocaine LU may
provide a window into the interaction between sleep disorders and

Figure 3. Path diagram for genomic structural equation modeling for confirmatory factor analysis (CFA) results of the two-factor model. The diagram presents the results of the
correlated two-factor CFA model of 15 substance use, psychiatric, and chronic pain traits for European ancestry participants. Standardized estimates are provided for each path
with standard errors included in parentheses.
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cocaine use, especially considering that it was also significant in a
cross-ancestry meta-analysis. For Street Opioids LU, there was a
hit in an intronic variant of MAGI1. Its encoded protein partici-
pates in inter-cell interactions and has been associated with
neuroticism (Genetics of Personality et al., 2015), BD, and schizo-
phrenia (Karlsson et al., 2012).

To our knowledge, there have been no previous genetic studies
of inhalant use or dependence. In AMR, rs11699278 – an intronic
variant of CYP24A1, a gene involved in the regulation of vitamin D
and calcium homeostasis (Jones, Prosser, &Kaufmann, 2012) –was
associated with Inhalants LU; it did not have high LD with any
significant (or nearly significant) SNPs (Supplementary Figure S4),
so this finding might be a false-positive. There was a significant
effect of CNTN5, a member of the contactin gene family, on Pre-
scriptionOpioids LU. This gene has a role in cell-surface interactions
during the developmental phase of the nervous system. Variants are
associated with Alzheimer’s disease (Dauar et al., 2023), autism (van
Daalen et al., 2011), and ADHD (Lionel et al., 2011).

In EUR, four loci were associated with individual SubLU traits.
GBF1 had a significant effect on Cocaine LU. The protein encoded
by this gene has a role in diseases that affectmuscular function, such
as Charcot–Marie–Tooth (Mendoza-Ferreira et al., 2020) and Par-
kinson’s disease (PD) (Zhao et al., 2020). The latter might suggest
its involvement in dopaminergic processes: PD is related to dopa-
minergic cell death (Latif et al., 2021), while substance use elevates
dopamine release in the synapses (Trifilieff & Martinez, 2014).
Cocaine acts via dopamine transporter inhibition (Gether, Ander-
sen, Larsson, & Schousboe, 2006). In a multi-trait analysis of
GWAS, GBF1 had a significant effect on CanUD (Xu et al.,
2023). CADM2 was also associated with Cocaine LU in EUR, as
well as cross-ancestry, in line with numerous studies suggesting that
CADM2 is involved in substance use traits and risk-taking behavior
(Arends et al., 2021; Koller et al., 2024; Pasman et al., 2022; Sanchez-
Roige et al., 2023; Zhou et al., 2020). For Inhalants LU, there was a
lead SNP located in the CDH12 gene, encoding a protein that was
associated with infertility and endometriosis in females (Golawski
et al., 2022). It has also been previously associated with schizophre-
nia (Hawi et al., 2018).

Cross-ancestry meta-analyses revealed additional novel associ-
ations: TCF4 had a significant effect on Cocaine LU; this gene is
associated with Pitt–Hopkins syndrome, a disorder of severe devel-
opmental delay and intellectual disability (Sweatt, 2013), and also
with PTSD reexperiencing (Gelernter et al., 2019), corneal endo-
thelial dystrophy, schizophrenia (Forrest et al., 2014), and depres-
sion (Mossakowska-Wojcik et al., 2018). LINC02008, a gene
associated with blood pressure (Chen et al., 2021), affected Cocaine
LU too. For Methamphetamine LU, there was one GWS variant
that maps to EXT1. Variants at this locus are associated with
exostoses (Ludecke et al., 1997) and were previously associated
with other substance use traits such as smoking initiation
(Saunders et al., 2022). As for Prescription Opioids LU, there was
a cross-ancestry effect for a variant located within the GRAMD1A
gene, encoding a protein responsible for cholesterol transfer. Stud-
ies link cholesterol levels to substance use (Buydens-Branchey &
Branchey, 2003; Lin et al., 2012), suggesting that low plasma
cholesterol may be associated with increased craving for drugs
(Lin et al., 2012). For Prescription Stimulants, we found an effect
for the noncoding RNA MEF2C-AS2, previously associated with
sleep duration, physical activity (Doherty et al., 2018), and educa-
tional attainment (Okbay et al., 2022).

Genes that were significantly associated with the individual
SubLU traits cover a broad range of functionality, yet the inter-

trait genetic correlations were very high. Looking at the local inter-
trait genetic correlations, two of the three most highly correlated
pairs (Street Opioids LU–Methamphetamine LU and Street Opi-
oids LU–Prescription Opioids LU, with 40 and 37 correlated
regions, respectively) also had the highest rg between them. The
pair with the lowest observed rg, that is, Inhalants LU–Street
Opioids LU, also had 37 common regions, an indication of the
complexity of genetic correlations and of the hidden information
that might be exposed using LAVA. In comparison, the phenotypic
correlations between the traits were low to moderate, suggesting
that the differences between the traits (the inclination to prefer one
substance over another) may be based mostly on environmental
factors. In other words, genetically, SubLU traits are quite similar to
one another, yet factors such as substance availability (Kiang, Basu,
Chen, & Alexander, 2019), prescription patterns (Schieber et al.,
2019), income, socioeconomic status (Han et al., 2021; John &Wu,
2017; Patrick, Wightman, Schoeni, & Schulenberg, 2012; Skoog
et al., 2014; Wu & Ringwalt, 2006), and education (Han et al.,
2021; Skoog et al., 2014; Wu & Ringwalt, 2006) might lead people
to choose one drug over the other.

We also calculated the genetic correlations between individual
SubLU traits and 12 traits of interest. Generally, the prominent
results came from the two opioid LU traits. As expected, Prescrip-
tion and StreetOpioids LUhad the highest genetic correlationswith
OUD. Prescription Opioids LU had the highest genetic correlation
with depression, which was less expected; a clinical study showed
that the comorbidity of depression with OUD is actually lower than
with CocUD ormethamphetamine use disorder (MetUD) (Calarco
& Lobo, 2021). The fact that the present findings with the same
substances differ may reflect the differences between substance use
and use disorders, as well as differences between genetic and
phenotypic relationships. While initiation of cocaine use is mainly
recreational (van der Poel et al., 2009), opioids are usually pre-
scribed to treat pain (Weiss et al., 2014, which occurs in high
comorbidity with depression (IsHak et al., 2018). Therefore, the
fact that Prescription Opioids LU also had the highest genetic
correlation with chronic pain was expected. Prescription Opioids
LU also had the strongest negative correlation with having an
academic degree, in accordance with findings regarding impairing
effects of opioids on academic performance (Darolia, Owens, &
Tyler, 2022; Ellis, Kasper, & Cicero, 2020). Moderate negative
correlations between academic degree and methamphetamine
and cocaine LU are also backed by literature (Dean, Morales,
Hellemann, & London, 2018; Jeynes, 2022). A negative genetic
correlation between Prescription Stimulants LU and academic
degree is in line with its positive correlation with ADHD. The
relatively low (compared to other pairs) correlation between Pre-
scription Stimulants LU and ADHD, even though stimulants are
mainly prescribed to treat the latter, was surprising. Generally, the
trait that was most strongly associated with SubLU traits was
CanUD, with a mean rg of 0.76 (±0.073) among individual traits
and >0.82 for the cumulative SubLU traits. This can be partially
explained by the fact that cannabis is the most commonly used
intoxicating drug in daily or near-daily use in the United States,
even more than alcohol (5.21%) (Caulkins, 2024). Yet, daily or
near-daily tobacco smoking was more common, with 11.6% preva-
lence (2022).

Given the high correlations indicating moderate to strong
phenotypic and genetic associations across the substance use and
psychiatric traits, we utilized gSEM to examine the genetic archi-
tecture encompassed by these phenotypes. This investigation
revealed two latent genetic factors with substance use traits loading
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more strongly onto factor 1 and other traits (psychiatric disorders
and chronic pain) loading strongly onto factor 2, with the exception
of ADHD, which adequately cross-loaded onto both factors. These
results align with existing data regarding common genetic archi-
tecture between different SUDs (Abdellaoui et al., 2021; Deak &
Johnson, 2021; Hatoum et al., 2023) and are similar to previous
findings that showed that substance use traits tend to align under
the same latent factor, while other psychiatric traits usually fit under
a separate psychopathology-oriented factor (Abdellaoui et al., 2021;
Levey et al., 2023).

We conducted two further GWAS analyses of composite traits:
(i) counting any substance use trait (of the substances included in
this study) as an indicator of any-SubLU; and (ii) considering
substance use as a quantitative trait (nSubLU), measuring the total
number of substances used by each subject (a range of 0–6 sub-
stances), which can be viewed as a severity measure. By this, we
examined whether the genetic factors that are associated with
substance use in general are different, to a degree, from those that
influence the severity of substance use, or the tendency to use
multiple drugs. We found different loci associated with each of
these traits, suggesting that different factors affect any-substance
use and substance use severity as judged by the comorbidity of the
same substances. In AFR, the only hit for nSubLU was in a non-
coding region, while for SubLU, there was a significant variant
within the DPRX gene, encoding a DNA-binding protein thought
to be involved in embryonic development (Madissoon et al., 2016).
In AMR, there were two GWS findings for nSubLU, though one
has the appearance of a false positive, and the second maps to a
noncoding RNA (Supplementary Figure S18).

In EUR, there was one mutual finding between SubLU and
nSubLU, a variant that maps to LINC02758, which was previously
associated with smoking initiation (Saunders et al., 2022), suicidal
thoughts (Kimbrel et al., 2023), depression (Zhang et al., 2024),
ADHD (Chen et al., 2024), and risk-taking behavior (Baselmans
et al., 2022). For SubLU, its significance (p = 1.55 × 10�10) was
higher compared to nSubLU (p = 1.14 × 10�8) by nearly two orders
of magnitude, and only in SubLU it was significant for the cross-
ancestry meta-analysis.

CADM2 was significantly associated with SubLU in EUR and
cross-ancestry, but not with nSubLU. As already mentioned,
CADM2 is one of themost strongly associated genes with substance
use traits (Arends et al., 2021; Koller et al., 2024; Pasman et al., 2022;
Sanchez-Roige et al., 2023; Zhou et al., 2020). These results support
that it could bemore important in the inclination to use substances,
but less so for severity. We can also suggest the opposite regarding
GBF1, which was not significantly associated with SubLU, but was
with nSubLU, suggesting its possible involvement in increased risk
taking. As with other differential associations, this could also reflect
power differences between analyses and random variation. This
effect of GBF1 remained only in EUR, and did not appear cross-
ancestry.

There was a significant association between nSubLU and
ACTN2, previously associated with heart failure (Arvanitis
et al., 2020), smoking initiation (Saunders et al., 2022), external-
izing behavior (Karlsson Linner et al., 2024), and educational
attainment (Okbay et al., 2022). CD47, associated with smoking
initiation (Saunders et al., 2022) and BD (Li et al., 2021), was
GWS for nSubLU too.

The genetic correlations of SubLU and nSubLU with traits of
interest were almost identical. Nevertheless, some differences in
local genetic correlation were revealed: nSubLU was locally correl-
ated with schizophrenia and PAU (the latter association in a region

nearCADM2, suggesting a possible mediation of this association by
CADM2), which showed more severe traits that suggest a greater
association between nSubLU and pathologies. In Cross-ancestry,
we found similar genetic correlations between SubLU and chronic
pain across all three ancestries. In AMR, SubLU also had a signifi-
cant genetic correlation with OUD, PAU, CanUD, ADHD, and
depression, while in AFR, there was a genetic correlation between
SubLU and academic degree. Nevertheless, these correlations were
not as strikingly similar to those found in EUR, which may reflect
the lower power in AFR analyses compared to EUR. These findings
indicate that a similar underlying genomic architecture drives the
genetic correlations between SubLU and chronic pain across dif-
ferent ancestries, whereas other traits exhibit greater dissimilarities.

To our knowledge, this is the first study to examine the genetic
mechanisms behind a broad range of SubLU traits. Therefore,
nearly all the results presented here are novel. We found genes that
suggest a possible association between SubLU and some neuro-
logical disorders, including AD, PD, and autism.We also pointed to
a genetic association with psychiatric phenomena like psychosis,
depression, ADHD, and SUDs, observed through several mutual
genes, such as CADM2, TCF4, LINC02758, and CD47, and via
genetic correlations. The genetic correlations between SubLU traits
were very high, but no gene had a significant effect on more than
one individual trait. Most findings in the cumulative traits were
novel too (i.e. did not appear in the individual substances). Our
findings offer insights into the genetic predisposition to substance
use. This knowledge could facilitate future risk assessments for
substance use and provide improved understanding of the biology
that underlies these traits.

This study has limitations. First, all the data used was based
on the AoU cohort. AoU is a high-quality US sample with good
representation from a range of US populations, although it is still
important to explore these traits in other cohorts to confirm our
results and be able to generalize them to other populations.
Better powered studies might also reveal mutual (pleiotropic)
effects of specific SNPs or loci between SubLU traits, which we
were not able to detect in the current study due to limited sample
sizes. Future availability of well-powered datasets for a variety of
additional phenotypically associated traits like CocUD and
MetUD may provide important insights regarding a broader
range of genetic correlations between these phenotypes and
SubLU traits. Second, all substance lifetime users were considered
as a singular group, with no differentiation between occasional
and high-frequency users, including people with SUD. Third,
substance use traits were defined by self-report; this could impair
the nature of assigning participants to the right group (i.e. case or
control), considering the possible inaccuracies that may appear
in a self-reported trait, and especially considering the sensitivity
of reporting the use of an illegal substance. Fourth, for some of
the traits, the sample sizes for the AFR and AMR populations
were relatively small and, therefore, lacked the power to detect an
effect that might exist. Future studies with larger sample sizes for
those ancestries may reveal significant effects that did not appear
in the current study.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0033291725101293.
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