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FOR MARKOV-MODULATED BROWNIAN MOTION
WITH PHASE-DEPENDENT TERMINATION RATES
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Abstract

We consider a Markov-modulated Brownian motion (MMBM) with phase-dependent
termination rates, i.e. while in a phase i the process terminates with a constant hazard
rate ri ≥ 0. For such a process, we determine the matrix of expected local times (at
zero) before termination and hence the resolvent. The results are applied to some recent
questions arising in the framework of insurance risk. We further provide expressions for
the resolvent and the local times at zero of an MMBM reflected at its infimum.
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1. Introduction

Let J = (Jt : t ≥ 0) denote an irreducible Markov process with a finite state space E =
{1, . . . , m} and infinitesimal generator matrix Q = (qij )i,j∈E . We call Jt the phase at time t
and J the phase process. Choosing parameters µi ∈ R and σi ≥ 0 for all i ∈ E, we define
the level process X = (Xt : t ≥ 0) by Xt = X0 + ∫ t

0 µJs ds + ∫ t
0 σJs dWs for all t ≥ 0, where

W = (Wt : t ≥ 0) denotes a standard Wiener process that is independent of J. Then (X,J)
is called a Markov-modulated Brownian motion (MMBM). An MMBM is a Markov-additive
process (MAP—see [2, Chapter XI]) without jumps.

Now add an absorbing phase, say�, to the phase spaceE to obtainE′ = E∪{�} and assume
that this is entered from a phase i with a constant hazard rate ri ≥ 0. Denote the resulting
process by (X,J) again. Define the exit rate vector by r := (ri : i ∈ E). We shall assume
throughout that Q is irreducible and that ‖r‖ := ∑

i∈E ri > 0. Then the absorption time
τ� := min{t ≥ 0 : Jt = �} has a phase-type distribution PH(α,Q−�r)with αi := P(J0 = i)

for i ∈ E and �v denoting the diagonal matrix with entries taken from the vector v. We shall
say that the MMBM (X,J) terminates at time τ� and disregard any further evolution after this.
The values ri may be interpreted as state-dependent killing rates; see Section 3 of [7]. Similar
results on terminating MMBMs have been obtained in Chapter 7 of [6]; cf. Example 2 in the
present paper.

The present paper aims to determine the matrix of expected local times (at zero) for a
terminating MMBM. Based on this, the resolvent is given as a corollary. A particular application
of the resolvent is the determination of the transition probabilities over phase-type distributed
time distances. The next section contains some preliminary results, while the main result is
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Local time and resolvents for MMBMs 431

given in Section 3. Section 4 contains an application to insurance risk. The final section
contains an extension of the results to reflected MMBMs.

2. Preliminaries: first passage times

Define the first passage times τ+(x) := inf{t ≥ 0 : Xt > x} for all x ≥ 0, and assume that
X0 = 0. Consider an E-dimensional row vector r = (ri : i ∈ E) with nonnegative entries
ri ≥ 0 for all i ∈ E. Define E(exp[− ∫ τ+(x)

0 rJs ds]) as the (E ×E)-matrix with (i, j)th entry

Eij

(
exp

[
−
∫ τ+(x)

0
rJs ds

])
:= E

(
exp

[
−
∫ τ+(x)

0
rJs ds

]
; Jτ+(x) = j

∣∣∣∣ J0 = i, X0 = 0

)
.

In order to simplify the notation (and to ensure existence of the resolvent density later on),
we shall from now on exclude the case of a phase i ∈ E with µi = σi = 0. We distinguish the
phases by the subspaces Ep := {i ∈ E : σi = 0, µi > 0} as well as En := {i ∈ E : σi = 0,
µi < 0} and Eσ := {i ∈ E : σi > 0}. The same arguments as in [4, Section 3] yield

E

(
exp

[
−
∫ τ+(x)

0
rJs ds

])
=
(
Ia

A(r)

)
(eU(r)x, 0),

where Ia denotes the identity matrix on Ep ∪ Eσ and 0 the zero matrix on (Ep ∪ Eσ ) × En.
The matrices A = A(r) and U = U(r) can be computed as in Section 3.1 of [5].

Remark 1. The generalised Laplace transforms of the first passage times τ+(x) can be seen
as transition probabilities among the transient phases i, j ∈ E for the phase process J, i.e.

Eij

(
exp

[
−
∫ τ+(x)

0
rJs ds

])
= P(τ+(x) < τ�, Jτ+(x) = j | J0 = i, X0 = 0)

for i, j ∈ E andAij = P(τ+(0) < τ�, Jτ+(0) = j | J0 = i, X0 = 0) for i ∈ En, j ∈ Ep∪Eσ .

Now define the downward first passage times τ−(x) := inf{t ≥ 0 : Xt < x} for all x ≤ 0
and assume that X0 = 0. Let (X+,J) denote the original MMBM, and define the process
(X−,J) d= (−X+,J), where ‘

d=’ denotes equality in distribution. The two processes have the
same generator matrixQ for J, but the drift parameters are different. Denoting the variation and
drift parameters for X± by σ±

i andµ±
i , respectively, this means that σ−

i = σ+
i andµ−

i = −µ+
i

for all i ∈ E.
The generalised Laplace transforms for τ−(x) can of course be obtained by considering

the upward first passage times for the process (X−,J). Let A± = A±(r) and U± = U±(r)
denote the matrices that determine the first passage times of X±. Furthermore, let Id denote
the identity matrix on Eσ ∪ En and 0 the zero matrix on (Eσ ∪ En)× Ep. Then

E

(
exp

[
−
∫ τ−(x)

0
rJs ds

])
=
(
A−(r)
Id

)
(0, e−U−(r)x) for all x ≤ 0.

Note that Remark 1 holds for τ−(x) and A−(r) analogously.
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432 L. BREUER

3. The resolvent and expected local times for terminating MMBMs

Denote the indicator function of a set A by IA. Define the r-resolvent of (X,J) as the
matrix-valued function S(r)(x), x ∈ R, with entries

S
(r)
ij (x) = lim

ε↓0

1

2ε
E

(∫ τ�

0
I{|Xt−x|<ε, Jt=j} dt

∣∣∣∣ X0 = 0, J0 = i

)

= lim
ε↓0

1

2ε

∫ ∞

0
P(t < τ�, Xt ∈ (x − ε, x + ε), Jt = j | X0 = 0, J0 = i) dt

for i ∈ E and j ∈ Eσ , and

S
(r)
ij (x) = 1

|µj |E(C({t < τ� : Xt = x, Jt = j}) | X0 = 0, J0 = i) (1)

for i ∈ E and j ∈ Ep ∪ En, where C(A) denotes the number of elements in a set A. We
shall also write more briefly S(r)(x) dx = ∫∞

0 P(Xt ∈ dx) dt . Note that the exponential time
devaluation, which is the usual notion in the definition of a resolvent for Lévy processes, is
now replaced by the phase-dependent termination rates contained in the vector r . Regarding
existence and basic properties of local times, see Chapter 5 of [3] for Lévy processes and
Chapter 7 of [6] for MAPs.

Remark 2. Since the termination rates do not depend on the level process, we can use the
resolvent to determine the transition probabilities over a phase-type time distance. More
precisely, P(Xτ� ∈ dy | X0 = x) = αS(r)(y − x)r dy for all x, y ∈ R, where r is seen as a
column vector and αi = P(J0 = i) for all i ∈ E. This property can be made more amenable to
applications in the following way. Given a phase-type distributed time distance Z ∼ PH(α, T )
of order m and an MMBM (X,J) with generator matrix Q for J and phase space E, we
construct a phase space E′ := E × {1, . . . , m} and a generator matrixQ′ := Q⊕ T +�1E⊗η,
where ‘⊕’ and ‘⊗’ denote the Kronecker sum and product, respectively, η = −T 1m, and 1m
and 1E denote the column vectors on {1, . . . , m} and E, respectively, with all entries being 1.
Set further µ(i,j) := µi and σ(i,j) := σi for all i ∈ E and j ∈ {1, . . . , m}, and denote the
MMBM defined therewith by (X′,J′). Then

P(XZ ∈ dy, JZ = j | X0 = x, J0 = i) = (e
i ⊗ α)S′(y − x)(ej ⊗ η) dy

for all i, j ∈ E and x, y ∈ R, where ei denotes the ith canonical base column vector, e
i denotes
its transpose, and S′ denotes the (1E ⊗ η)-resolvent of (X′,J′). This identity is an application
of the famous occupation density formula; see, e.g. Equation (V.2) of [3]. For an example of
how to use it in a stochastic model, see Section 4.

Define the cumulant functions κi(β) := β2σ 2
i /2 + βµi for all i ∈ E and the cumulant

matrixK(β) := �κ(β) +Q, where�κ(β) denotes the diagonal matrix on E with entries κi(β).
A first observation is ∫

R

eβxS(r)(x) dx =
∫ ∞

0

∫
R

eβxP(Xt ∈ dx) dt

=
∫ ∞

0
e(K(β)−�r )t dt

= (�r −K(β))−1 (2)

for suitable values β; see Proposition 2.2 of [2] for the second equality or Theorem 7.11 of [6]
for the whole statement.
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The local time L(r) at zero of the terminating MMBM (X,J) may then be defined as
the resolvent at zero, i.e. L(r) := S(r)(0). The spatial homogeneity of the level process X,
conditional on the phase process J, further leads to the obvious relation

S(r)(x) =

⎧⎪⎪⎨
⎪⎪⎩

(
Ia

A+

)
(eU

+x, 0)L(r), x > 0,(
A−

Id

)
(0, e−U−x)L(r), x < 0,

(3)

between the resolvent and the local time; see Remark 1. Thus, the resolvent is continuous in
x �= 0, and, therefore, uniquely determined by its transform equation (2) on the one hand and
by the local time on the other hand. Write

L(r) =

⎛
⎜⎜⎝
L
(r)
pp L

(r)
pσ L

(r)
pn

L
(r)
σp L

(r)
σσ L

(r)
σn

L
(r)
np L

(r)
nσ L

(r)
nn

⎞
⎟⎟⎠

in obvious block notation and use the same notation for A± = A±(r) and U± = U±(r).
Furthermore, write �2/σ 2 for the diagonal matrix on Eσ with entries 2/σ 2

i , �p1/µ for the
diagonal matrix onEp with entries 1/µi , and�n−1/µ for the diagonal matrix onEn with entries
−1/µi .

Theorem 1. The block entries of the matrix L(r) of expected local times are given by

L(r)pp = [Ip − A−
pnA

+
np + (A−

pσ + A−
pnA

+
nσ )(U

+
σσ + U−

σσ + U−
σnA

+
nσ )

−1(U+
σp + U−

σnA
+
np)]−1

×�
p
1/µ,

L(r)σp = −(U+
σσ + U−

σσ + U−
σnA

+
nσ )

−1(U+
σp + U−

σnA
+
np)L

(r)
pp ,

L(r)np = A+
npL

(r)
pp + A+

nσL
(r)
σp,

L(r)pσ = (Ip − A−
pnA

+
np)

−1(A−
pnA

+
nσ + A−

pσ )L
(r)
σσ ,

L(r)σσ = −[U+
σp(Ip − A−

pnA
+
np)

−1(A−
pnA

+
nσ + A−

pσ )+ (U+
σσ + U−

σσ )

+ U−
σn(In − A+

npA
−
pn)

−1(A+
npA

−
pσ + A+

nσ )]−1�2/σ 2 ,

L(r)nσ = (In − A+
npA

−
pn)

−1(A+
npA

−
pσ + A+

nσ )L
(r)
σσ ,

L(r)nn = [In − A+
npA

−
pn + (A+

nσ + A+
npA

−
pσ )(U

+
σσ + U−

σσ + U+
σpA

−
pσ )

−1(U−
σn + U+

σpA
−
pn)]−1

×�n−1/µ,

L(r)σn = −(U+
σσ + U−

σσ + U+
σpA

−
pσ )

−1(U−
σn + U+

σpA
−
pn)L

(r)
nn ,

L(r)pn = A−
pnL

(r)
nn + A−

pσL
(r)
σn.

Proof. We verify that the resolvent as proposed solves the transform equation∫
R

eβxS(r)(x) dx = (�r −K(β))−1.

The same arguments as for Equation (5) of [4] yield

�r

(
Ia

A+(r)

)
= �σ 2/2

(
Ia

A+(r)

)
U+(r)2 −�µ

(
Ia

A+(r)

)
U+(r)+Q

(
Ia

A+(r)

)
,
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where Ia denotes the identity matrix on Ep ∪ Eσ (use the function Eij (exp[− ∫ τ+(x)
0 rJs ds])

instead of fij (x) as defined in Section 3 of [4]). Note that Ia is denoted by Iσ in [4] and there is
a typo in Equation (6) of [4], where it should state −�µ instead of +�µ. The cumulant matrix
can be written as K(β) = �σ 2/2β

2 +�µβ +Q, whence we obtain

(K(β)−�r)

(
Ia

A+

)
=
(
�σ 2/2

(
Ia

A+

)
(βIa − U+)+�µ

(
Ia

A+

))
(βIa + U+).

For the negative process (X−,J), we obtain in the same way

�r

(
A−(r)
Id

)
= �σ 2/2

(
A−(r)
Id

)
U−(r)2 +�µ

(
A−(r)
Id

)
U−(r)+Q

(
A−(r)
Id

)
,

where Id denotes the identity matrix on Eσ ∪ En, and, hence,

(K(β)−�r)

(
A−

Id

)
=
(
�σ 2/2

(
A−

Id

)
(βId + U−)+�µ

(
A−

Id

))
(βId − U−).

Equation (3) yields (for small enough |β|)∫
R

eβxS(r)(x) dx =
∫ ∞

0
eβx

(
Ia

A+

)
(eU

+x, 0) dxL(r) +
∫ ∞

0
e−βx

(
A−

Id

)
(0, eU

−x) dxL(r)

=
(
Ia

A+

)
(−(βIa + U+)−1, 0)L(r) +

(
A−

Id

)
(0, (βId − U−)−1)L(r).

Hence, we obtain

(�r −K(β))

∫
R

eβxS(r)(x) dx

=
(
�σ 2/2

(
Ia

A+

)
(βIa − U+)+�µ

(
Ia

A+

)
, 0
)
L(r)

−
(

0,�σ 2/2

(
A−

Id

)
(βId + U−)+�µ

(
A−

Id

))
L(r)

=
⎛
⎜⎝

�
pp
µ −�ppµ A−

pσ −�ppµ A−
pn

−�σ 2/2U
+
σp −�σ 2/2(U

+
σσ + U−

σσ ) −�σ 2/2U
−
σn

�nnµ A
+
np �nnµ A

+
nσ −�nnµ

⎞
⎟⎠L(r). (4)

The facts thatL(r)nσ = A+
npL

(r)
pσ+A+

nσL
(r)
σσ andL(r)pσ = A−

pnL
(r)
nσ+A−

pσL
(r)
σσ follow from Remark 1.

It now simply remains to verify that L(r) as given in the statement yields the result.

Example 1. The case of a Brownian motion with variance σ 2 and drift µ is covered by
Exercise 2 of [3, Section VII]. There the resolvent density is given by uq(x) = 	′(q)e−	(q)x
for x > 0, where	(q) is the positive inverse of the cumulant function ψ(β) := β2σ 2/2 +βµ.
Thus, 	(q) = −σ−2(µ−√

µ2 + 2qσ 2) and because of U±(q) = σ−2(±µ−√
µ2 + 2qσ 2)

we obtain 	(q) = −U+(q). Since further U+(q) + U−(q) = −2/σ 2
√
µ2 + 2qσ 2 and,

hence,	′(q) = (
√
µ2 + 2qσ 2)−1 = −2σ−2(U+(q)+U−(q))−1, we obtain Lq = 	′(q) and

Sq(x) = uq(x) according to Theorem 1 and (3), respectively.
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Example 2. For the case En = ∅, the matrix L(r) plays a role in the investigation of the
scale function as in Section 7.5 of [6]. In particular, Section 7.7 therein states that in this case
L(r) = �−1, where

� = �µ(�
+ −�−�+−)− 1

2�
2
σ (�

+(
+ − αI)+�−(
− + αI)�+−)

in the notation of [6]. This translates for the case En = ∅ as �+ = Ia , �− = (
A−
Iσ

)
, �+− =

(0, Iσ ), and 
± = U±. Thus, in our notation

� = �µ

(
Ip −A−
0 0

)
−�σ 2/2

(
0 0
U+
σp U+

σσ + U−
)

=
(

�
p
µ −�pµA−

pσ

−�σ 2/2U
+
σp −�σ 2/2(U

+
σσ + U−

σσ )

)
,

since En = ∅ implies that A− = A−
pσ and U− = U−

σσ . This is the upper left-hand part of the
matrix in (4).

4. An application to insurance risk

The authors of [1] considered a compound Poisson model, which is observed at the times
of a renewal process with Erlang-distributed renewal intervals. We shall consider a
compound Poisson model with phase-type claim sizes and interobservation times. The rate of
the exponential interclaim times is denoted by λ > 0. Let T ∼ PH(α(o), T (o)) denote a generic
observation interval and C ∼ PH(α(c), T (c)) a generic claim size. Denote the dimensions
of α(o) and α(c) by m(o) and m(c), respectively. Furthermore, denote the exit rate vectors by
η(o) := −T (o)1 and η(c) := −T (c)1, where 1 denotes column vectors of appropriate dimension
with all entries being 1.

In order to determine the values of interest, we employ the construction described in Remark 2
and consider an MMBM with phase space E = Ep ∪ En, where Ep = {1, . . . , m(o)} and
En = {(i, k) : i ∈ Ep, 1 ≤ k ≤ m(c)}. The positive drift phases from Ep simply store the
phase of the observation period. The second variable in a negative drift phase from En stores
the phase of the claim size distribution, while the first variable remembers the phase of the
observation period into which to jump back after the claim is paid out. Thus, the generator
matrix of the phase process is given as the block matrix

Q =
(−λI + T (o) +�η(o) λI ⊗ α(c)

I ⊗ η(c) I ⊗ T (c)

)
.

The phase-dependent parameters are given as µi = c and σi = 0 for i ∈ Ep, where c > 0
denotes the rate of premium income. For i ∈ En, we set µi = −1 and σi = 0.

Let p(x, y) := P(XT ∈ dy | X0 = x) denote the transition densities between observation
points. Setting ri := η

(o)
i for all i ∈ Ep and ri := 0 for all i ∈ En, and noting that we observe

only phases in Ep (for which µi = c), we can evaluate those as

p(x, y) = α(o)S(r)pp (y − x)η(o)

=

⎧⎪⎨
⎪⎩

1

c
α(o)eU

+·(y−x)(Ip − A−
pnA

+
np)

−1η(o), y ≥ x,

1

c
α(o)A−

pneU
−·(x−y)A+

np(Ip − A−
pnA

+
np)

−1η(o), y < x,

for all x, y ∈ R, where we write U± = U±(r) and A± = A±(r).
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In particular, if the claim sizes and the interobservation times are exponential with parameters
ν > 0 and γ > 0, respectively, then we obtain E = {1, 2} and

Q =
(−λ λ

ν −ν
)

as well as r = (γ, 0). Example 3 of [5] with β = ν yields

A−(r) = ν + U−(r)
ν

, A+(r) = ν

ν − U+(r)
,

and U±(r) = 1

2c
(±(cν − γ − λ)−

√
(cν − γ − λ)2 + 4cνγ ).

Since α(o) = 1 and η(o) = γ , we obtain

p(0, y) =

⎧⎪⎨
⎪⎩
γ

c
eU

+x ν − U+

−U+ − U− , y > 0,

γ

c
eU

−y ν + U−

−U+ − U− , y < 0.

Setting δ = 0 in [1], we see from (13) therein that the notation translates as U+(r) = −ργ and
U−(r) = −Rγ . Noting that in [1] the authors considered the net claim process, the increments
of which are the negative increments of the risk reserve, we find that the result for the density
function above coincides with gδ(y) as given in Section 3.1 of [1].

Coming back to the more general setting of phase-type claim sizes and interobservation times,
we now consider the expected number of ruin events between observation times. This may be
considered as a risk measure in order to determine a suitable distribution for the interobservation
times. Given that the risk reserve starts with x > 0 at the beginning of an observation interval,
denote this as R(α(o), T (o) | x). Recalling (1) and |µi | = 1 for all i ∈ En, we obtain
R(α(o), T (o) | x) = α(o)A−

pneU
−x(Ip − A+

npA
−
pn)

−1 for all x > 0.

5. The resolvent and the local times at zero for reflected MMBMs

Now we consider an MMBM that is reflected upwards at zero. Define the infimum process
I = (It : t ≥ 0) by It := infs≤t Xs ∧ 0 for all t ≥ 0, and the reflected process by Y := X − I.
Again, we assume throughout that X0 = 0. Define the r-resolvent of (Y,J) as the matrix-
valued function R(r)(x) with entries limε↓0(2ε)−1

E(
∫ τ�

0 I{|Yt−x|<ε, Jt=j} dt | Y0 = 0, J0 = i)

for x > 0 and i, j ∈ E. Note that the (scalar) local time at zero, say l(r)(0), can be defined as
the absolute infimum before τ�, i.e. l(r)(0) = −Iτ� ; cf. Chapter IX.2 of [2].

In order to state the result, we first introduce some abbreviations to simplify the notation.
Define the matrices

C+ :=
(

0 Iσ
A+(r)

)
and C− :=

(
A−(r)
Iσ 0

)
of dimensionsEd×Ea andEa×Ed as well as the matrixW− := (

A−(r)
Id

)
of dimensionE×Ed .

Denote the first exit time from the interval [0, x] by τ := inf{t ≥ 0 : Xt /∈ [0, x]}. Define
the matrices �+

r (x) := P(τ < τ�, Xτ = x | X0 = 0, J0 ∈ Ep) and �−
r (x) := P(τ < τ�,

Xτ = 0 | X0 = 0, J0 ∈ Ep) of dimensions Ep × Ea and Ep × Ed , respectively. According
to [7], we obtain for these the expressions

�+
r (x) = (Ip, 0)(eU

+x − C−eU
−xC+eU

+x)(I − C−eU
−xC+eU

+x)−1
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and

�−
r (x) = (A− − (Ip, 0)eU

+xC−eU
−x)(I − C+eU

+xC−eU
−x)−1.

Theorem 2. The r-resolvent of the reflected MMBM (Y,J) for x > 0 and ‖r‖ > 0 is

R(r)(x) =
(
�+

r (x)−�−
r (x)Gr(x)

−1Hr(x)

−Gr(x)
−1Hr(x)

)
(Ia + C−eU

−xGr(x)
−1Hr(x))

−1

× (Ia − C−eU
−xC+eU

+x)L(r)(a,.),

where we write

Gr(x) = (U−e−U−x + C+eU
+xU+C−)(e−U−x − C+eU

+xC−)−1

and

Hr(x) = (C+U+ + U−C+)(C−eU
−xC+ − e−U+x)−1.

The distribution of the local time at zero is given by P(l(r)(0) > y | Y0 = i) = e
i W−eU
−y1

for all y ≥ 0.

Proof. We first observe that, starting at x > 0, the local times of (Y,J) at x before hitting the
zero level coincide with the local times of the free MMBM (X,J) before τ−(0). Considering
that the level x must have been reached from below, i.e. in an ascending phase, these are given
by the term (I − C−eU

−xC+eU
+x)L(r)(a,.); cf. Equation (7.4) of [6]. Using the results from

Theorem 1 of [5] (adapted to the present reflection at the infimum), we can determine the
probabilities to go from level x (in an ascending phase) to level 0 and then back to x before
τ� as −C−eU

−xGr(x)
−1Hr(x). Thus, the expected number of such down and up crossings

is given by (Ia + C−eU
−xGr(x)

−1Hr(x))
−1. Premultiplying by the probabilities of reaching

level x from X0 = 0 before τ� for the first time, namely by −Gr(x)
−1Hr(x) if J0 ∈ Ed and

by�+
r (x)−�−

r (x)Gr(x)
−1Hr(x) if J0 ∈ Ep, yields the stated formula for the resolvent. The

statement for the local time at zero follows immediately from the definition l(r)(0) = −Iτ� .

Example 3. We consider a Brownian motion with variation σ 2 and drift µ that is reflected at
zero. In this case, r is a number, U± are given as in Example 1, and

Gr(x) = U− + U+e(U
++U−)x

1 − e(U++U−)x

as well as

Hr(x) = −(U+ + U−)eU+x

1 − e(U−+U+)x .

Thus,

−Gr(x)
−1Hr(x) = U+ + U−

U− + U+e(U++U−)x eU
+x

and

1 + eU
−xGr(x)

−1Hr(x) = U− 1 − e(U
−+U+)x

U− + U+e(U−+U+)x .
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Furthermore, L(r) = −U+U−/(U+ + U−)r−1 and, hence,

R(r)(x) = (U+ + U−)eU+x

U− + U+e(U++U−)x
U− + U+e(U

−+U+)x

U−(1 − e(U−+U+)x)

U+U−(1 − e(U
−+U+)x)

−r(U+ + U−)

= −U+eU
+x

r
.

Thus, a reflected Brownian motion observed at an exponential time has an exponential
distribution with parameter −U+ = (

√
µ2 + 2qσ 2 − µ)/σ 2. This result is part of the statement

in [2, Problem 3.3, Chapter IX].
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