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1. INTRODUCTION

The purpose of surveys of amoebae or other organisms is the estimation of the
carrier rate in a population, that is, of the proportion of persons who carry a given
parasite. As a rule, the tests do not infallibly detect the presence of the organism in
a known carrier. Thus simple estimation from a single examination of each member
of a sample is not applicable.

Some progress has been made by Lancaster (1950), who defined a measure, the
demonstrability, as the probability of a carrier being detected in one examination.
His results indicated that this demonstrability varied between organisms and
between persons, but remained constant over a period of time. Lancaster (1950)
showed that the results of surveys could be misinterpreted if the demonstrability
was assumed constant over the population of carriers. As examples he constructed
mathematical models in which the demonstrability had the beta distribution. It
was clear from such models that other authors had made inappropriate inferences
from data collected from surveys. Lancaster (1950) reconsidered a number of
surveys and showed that the estimates of carrier rates should be increased.

Here, procedures for the estimation of carrier rate are proposed, based on the
assumption that the demonstrability is constant for any person between examina-
tions, but is a random variable with some beta distribution over the population of
carriers. The methods are applied to the published data of Boeck & Stiles (1923),
McCoy (1936) and Andrews (1934). The expected numbers of positives in each
examination and a chi-square goodness of fit statistic are calculated. Although no
test of significance is available for the increase in goodness of fit due to assuming
variability in the demonstrability, it is clear in many of the examples that an
increase has been achieved. This indicates that better estimation of the carrier rate
has been achieved by the methods proposed for the model with varying demon-
strability. Finally, a simulation experiment has been performed under the models
assumed, to determine the order of errors inherent in the estimation procedure.

2. METHOD OP ESTIMATION

Consider a large population with a proportion p of carriers of some parasite. A
sample of N is taken from the population and each member of the sample is
examined. If they are found positive they are not re-examined. Of those not found
positive there may be a number of withdrawals and the remainder are re-examined
and some found positive at this second examination. This process is continued until
some predetermined number of examinations has been carried out.
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We will consider some simpler cases which are useful preliminaries to the dis
cussion of the solution of this general problem.

2-1. No withdrawals

In this section it will be assumed that each individual of the sample is examined
either until an examination is positive or until he has been examined a given
number of times.

2-1-1. Equal demonstrability

Suppose all carriers have an equal probability P of giving a positive result in any
one examination. Let Xt (i = 1, ...,t) be the number of positives in the ith examina-
tion. Then the probability of an individual being found positive in the ith exami-
nation is pPQ*'1, where Q = 1—P, since he must be a carrier, he must obtain
negative results in the first i — 1 examinations and then a positive result in the ith
examination. The probability of an individual not being found positive in the first
t examinations is q +pQl. The results of a survey and the expectations given by the
model to be fitted under the assumptions of this section may be easily seen in
tabular form (Table 1).

Table 1

Examination

1
2

t

No.
examined

2V
N-X1

t-i
N-XXt

7 = 1

No. of
positives

x,
X2

xt

Expected no.
of positives

NpP
NpPQ

NpPQ'-1

t
The number with no positives is N — £ X{ and its expectation is N[ 1 — p( 1 — Q1)].

i=i

Approximations to the maximum likelihood estimates of p and P may be obtained
using an iterative procedure. The formulae used for this calculation and a brief
description of the method are given in the appendix. The procedure is a simple one
using a computer but it would be somewhat laborious with a desk calculator.

A test of goodness of fit may be obtained by using the statistic

as a chi-square variate with t — 2 degrees of freedom, where we have used the same
notation for the parameters p and P, and their estimates. No contribution is
obtained from the frequency of negatives since the maximum likelihood solution
equates this to its expectation.

2-1-2. Unequal demonstrability

Now assume that each carrier in the population has a fixed probability P of
giving a positive result in any examination, but that P varies between carriers.
Further, assume that the frequency function of P is of the form

Pr-\l-Pf^lB{r,s). (2)
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It was suggested by Bailey (1956), who considered a similar problem with a chain
binomial model, that the parameters r and s be replaced by the parameters
P = r/(r + s) and Z = l/(r + s). Then Table 1 may be replaced by Table 2.

Table 2

No. No. of Expected no.
Examination examined positives of positives

1 N Xt NjpP
2 N-Xi X2 NpPQ/(l+Z)

t
The number with no positives after t examinations is N — £ Xt and its expecta-

tion is _ _ _
N{l-p[l-Q(Q + Z)...(Q + (t-l)Z)l(l + Z)...(l + (t-l)Z)]}.

Here the likelihood equations become intractable so it is proposed that another
iterative procedure be used. This procedure consists of using as an estimate of p the
maximum likelihood estimate of p under the assumption that Pand Z are known.
This is given by the formula

P = -kxtIN[l-Q(Q+Z)...{Q + (t-l)Z)l(l + Z)...(l + {t-l)Z)]. (3)

The estimates of P and Z are obtained by minimizing the chi-square goodness of fit
statistic

= [ X i N p P Q . . . _ ( Q + ( i 2 ) Z ) l ( l + Z ) . . . ( l + ( i l ) Z ) T
0 t N p P Q ( Q + ( i 2 ) Z ) l ( l + Z ) ( l + ( i l ) Z ) ' *

The iterative procedure is as follows: Take Z± = 0 as a first approximation for Z,
and estimate p and P by the methods of section 2-1 • 1. Then take these values of p,
P as plt P1( the first approximations for p, P. Now consider a grid of 25 points
(P, Z), where P takes the values Pv P1 ± dv Px ± 2§x and Z takes the values 0, A1(

2A1; 3A1; 4AX. Sx and Ax are chosen so that the grid covers a suitable range of values
of (P,Z). For every point of the grid calculate first p using the formula (3) and then
XI using the formula (4), then take, as the next approximation (p2, P2, Z2), those
points which minimized X% among the 25 points of the grid. Now take 82 = \8± and
A2 = JA^ and take as the next refinement of the grid the 25 points (P, Z), where
P takes the values P2, P2 ± d2, P2 ± 2S2 and Z takes the values Z2, Z2±A2,Z2± 2A2, if
Z2 4= 0, and the values 0, A2, 2A2, 3A2, 4A2 if Z2 — 0. Now the procedure above is
repeated and the next approximation, (p3, P3, Z3) is obtained. The iterative pro-
cedure is continued until di and At- are of a specified size. Here 8X and At were chosen
to be 0-02 and 0-25 respectively.

2-2. Withdrawals—treatment by life tables

In practice in most surveys there are withdrawals resulting in incomplete data.
However, if it is assumed that withdrawals are independent of the probability of
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detecting a parasite in any examination, then life tables may be constructed in the
way shown in Table 3.

An illustration of a constructed life table is given in Table 4 from the data of
Boeck & Stiles (1923, p. 20).

Approximate estimates in the case of equal demonstrability can be obtained as
in section 2-1-1 by using the life tables in the place of the data. However, the
chi-square goodness of fit statistics in this case should be obtained from Table 5.

Table 3

Data Life table

Examination No. examined No. positive No. examined No. positive

1 n1 xx N Xt = x1N/nl

2 Mo Xa N-X1

t-\ l t-i \ I
N-J^X, Xt = xt [N-^Xi) nt

i=l \ i=l / /

Table 4. The data of Boeck & Stiles (1923, p. 20) treated by
life-table methods. Entamoeba coli

Examination No.

1
2
3
4
5
6

No. positive

Data
A

examined

8,029
1,441
1,050

912
791
623

No. positive

1,269
155
73
44
27
13

Table 5

Expected no. positive
with constant P

Life table
A

No. examined No

100,000
84,195
75,138
69,915
66,541
64,270

Expected no. positive
with varying P

. positive

15,805
9,056
5,224
3,373
2,271
1,341

-NpPQ —=rNp-

xt e, = J^J

Then the goodness of fit statistics are

= ^ _ NvF Q-

Jjf (\+Z

when the demonstrability is constant, and
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0
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for unequal demonstrability. Estimates in the latter case are obtained by using the
same procedure as in section 2-1*2 to minimize X%. A test of goodness of fit may be
obtained by using the statistics X2, as a chi-square variate with t — 3 degrees of
freedom when P is assumed to vary and X2 as a chi-square variate with t — 2 degrees
of freedom when P is assumed constant.

3. APPLICATION TO PUBLISHED DATA

The data of Boeck & Stiles (1923, pp.20 and 25), McCoy (1936) and Andrews
(1934) have been put in appropriate form and estimates of the proportion of carriers
have been made by the methods described in section 2. In all these cases, except
for that of Boeck & Stiles (1923, p. 25), the data suffered from withdrawals. The
data of Boeck & Stiles (1923, p. 25) were not subject to withdrawals since their
surveys were of persons in institutional life. In fact here six examinations were made
on each person. However, the data were in a form such that details of the number of
positive examinations per person were not available and so estimation of the propor-
tion of carriers has been done using only information on first positive examinations.

Table 6 gives the final results for all cases where estimates were made and it is
clear that in some cases a considerable improvement in goodness of fit has resulted
from using the model assuming variability of the demonstrability. An appropriate
test for the existence of variability of the demonstrability would be a test of the
hypothesis that Z = 0. However, no estimates of the variance of Z are available, so
it is not possible to perform this test. Even so, if Z is large and Xjj is considerably
less than Xz, it is clear that the demonstrability is not constant. Estimates of p
based on the assumption that Z = 0 are biased down, so estimates of carrier rate
based on this assumption will be, in general, too low.

Table 7. The data of Boeck & Stiles (1923, p. 20). Endolimax nana

Estimated no. positive Estimated no. positive
assuming constant assuming variable

No. examined No. positive • demonstrability demonstrability

8029
1441
1050
912
791
623

855
82
43
40
25
13

P
P

X"1

744-1
103-3
55-2
34-5
21-6
12-2

0-30
0-31

25-1**

P
P
Z
Y2

847-6
94-8
47-8
30-9
21-3
13-7

0-46
0-23
0-38
5-6

It is interesting to notice that estimates of P, the mean demonstrability, vary
quite markedly for the different parasites and surveys.

It seems worth while for the purpose of illustration to consider some cases in
detail. Four have been chosen and these are set out in detail in Tables 7-10. In
Tables 7 and 8, Z is reasonably large and an improvement in goodness of fit, due to
fitting the model with the assumption of variability of the demonstrability, is
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evident, not only in comparisons of X2 and X% but also in a direct consideration of
the tables themselves. In Table 9 the results are not so clear. There seems to be little
increase in goodness of fit, but Z is not small and the increase in the estimate of p is
still marked. In table 10, Z is small, there is little difference in goodness of fit and the
estimates of p are not markedly different. Consideration of the two tables, 9 and 10,
indicates that the appropriate measure of improvement in estimation is Z and not
a comparison of X2 and X2,.

Table 8. The data of Andrews (1934). G. intestinalis

No.

No.

No.

35

examined

1713
1560
1093
459
301
236

Table 9

examined

1176
876
670
558
454
202

Table

examined

8029
1441
1050

912
791
623

No. positive

194
71
29

6
4
4

Estimated no. positive
assuming constant

demonstrability

1641
94-5
38-9

9-4
3-5
1-6

p 0-22
P 0-44

A'2 18-9**

. The data of McCoy (1936)—Hotel X

No. positive

203
123

56
33
32

8

Estimated no. positive
assuming constant

demonstrability

197-2
116-2
69-2
41-6
23-8

7-5

p 0-49
P 0-34

X2 7-7

10. The data of Boeck & Stiles (1923,

No. positive

1269
155

73
44
27
13

Estimated no. positive
assuming constant

demonstrability

12341
159-4
78-8
44-6
24-6
12-2

p 0-39
P 0-39

X2 1-8

Estimated no. positive
assuming variable
demonstrability

195-4
71-7
29-2

8-3
4 0
2-4

p 0-32
P 0-36
Z 0-79
XI 1-7

. E. histolytica

Estimated no. positive
assuming variable
demonstrability

206-0
1100
64-2
4 0 1
24-9

8-9

p 0-58
P 0-30
Z 016
XI 6-0

p. 20). E. coli

Estimated no. positive
assuming variable
demonstrability

1268-5
152-6

74-6
43-7
2 6 0
14-3

p 0-41
P 0-38
Z 009
XI 0-2

Hyg. 66, 4
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In many cases the models have enabled a very good fit to the data to be made.
This suggests, at least, that the model and estimates are realistic. It is worth noting
that in all cases the estimates of carrier rate are higher than those suggested in the
past. A comparison of two of the estimates of the carrier rates of E. histolytica,
0-57 for McCoy (1936) and 0-18 for Boeck & Stiles (1923, p. 20), with the minimum
estimates of the carrier rates proposed by Lancaster (1950) for these two surveys,
0-52 and 0-12 respectively, shows agreement of these estimates with his con-
ditions.

4. SIMULATION EXPERIMENTS

The methods used in the estimation procedures do not enable us to evaluate the
standard errors of the estimates, so the accuracy of the methods is uncertain. To
ascertain the order of accuracy involved, two simulation experiments were per-
formed and empirical means and standard errors of the estimates were calculated.
The first experiment was performed assuming the model of equal demonstrability
and in the second experiment the demonstrability was supposed to be a random
variable with a specified beta distribution. In each of these cases the expected
values and the variances and covariances of the number of positives at each examina-
tion were calculated. Random normal variables with zero expectations and vari-
ances and covariances equal to the calculated values were added to the calculated
expected values. These values were then used as the simulated data of a survey and
analysed in the same way as actual survey data. This process was repeated 20 times
for each experiment and empirical means and standard errors were calculated.

In the first experiment the parameters were taken to be JV = 10,000, p = 0-3 and
P — 0-3. The empirical means of the estimates of the two parameters j? and P were
0-3011 and 0-3008 respectively and the empirical standard errors per experiment of
the estimates of these two parameters were 0-0069 and 0-0087 respectively. These
standard errors are quite small, as could be expected from the large numbers in the
simulated samples.

In the second experiment the parameters were taken to be N = 10,000, p = 0-3,
P = 0-3 and Z = 0-4. The empirical means of the estimates of the parameters #, P
and Z were 0-2943,0-3075 and 0-3856 respectively and the empirical standard errors
per experiment of the estimates of these three parameters were 0-0195, 0-0211 and
0-0593 respectively. The methods are still fairly efficient in this case, but the
efficiency has been considerably reduced from that of the case of equal demon-
strability. This drop in efficiency is to be expected, since there is, in this case, a large
number of carriers with very low demonstrability and it is clearly difficult to
separate these carriers from persons not infected.

These experiments have demonstrated that the estimates given by these
methods are unbiased but that, when the demonstrability has large variation
between carriers, the efficiency of the estimation procedure is lowered. Thus quite
large sample numbers are necessary to ensure accurate estimation of the carrier
rate when the demonstrability varies between carriers.

I wish to thank Prof. H. O. Lancaster for his suggestion of this problem and
for his help in the preparation of this paper.
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APPENDIX

The likelihood function for the numbers of positives at each examination is

±v — 2J -"-1

Now using the logarithm of this likelihood function we may use the so-called
'method of scoring' (see, for example, Rao (1966, pp. 302-309)) to obtain approxi-
mations to the maximum likelihood estimates by an iterative procedure.

Formulae are required for the values of the first and second derivatives of the
logarithm of the likelihood function, L = log P, with respect to p and P, and these
are set out below for p = p} and P = Pj.

(8L\ SX, _ (N - S Z , H I - Qj)

" \8) 1 ( l Q } ) '

.,, (8L\ SJff 2(i-l)Xf (N-ZXf) tpjQ'r1

~pp W) P)

8pdP)PhP}

pp ~ \ 8 P * ) - P ?

(N--

First estimates of p and P were taken to be px = ZXJN and P, = X1/SXi. The
iterative procedure consists of calculating 8pj and dPj from the equations

and putting P;+1 — Pj + SPj and pi+1 — p^ + 8p}. The iteration may be stopped when
a predetermined level of approximation is obtained.

35-2

https://doi.org/10.1017/S0022172400028278 Published online by Cambridge University Press

https://doi.org/10.1017/S0022172400028278

