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Furstenberg Transformations and
Approximate Conjugacy

Huaxin Lin

Abstract. Let α and β be two Furstenberg transformations on 2-torus associated with irrational num-

bers θ1, θ2, integers d1, d2 and Lipschitz functions f1 and f2. It is shown that α and β are approximately

conjugate in a measure theoretical sense if (and only if) θ1 ± θ2 = 0 in R/Z. Closely related to the clas-

sification of simple amenable C∗-algebras, it is shown that α and β are approximately K-conjugate if

(and only if) θ1 ± θ2 = 0 in R/Z and |d1| = |d2|. This is also shown to be equivalent to the condition

that the associated crossed product C∗-algebras are isomorphic.

1 Introduction

A celebrated result of Giordano, Putnam and Skau [5] states that two minimal Can-

tor systems are strongly orbit equivalent if (and only if) the associated crossed prod-

uct C∗-algebras are isomorphic, and this can also be described by their K-theory.

Moreover, two such Cantor systems are topologically orbit equivalent if (and only if)

certain parts of the K-theoretical information (namely the tracial range of the K0-

group) of the associated C∗-algebras are the same (up to unital order isomorphism).

This note is an attempt to explore the possible analogy of this result in the case when

the space is connected.

With the recent rapid development of the classification of amenable simple

C∗-algebras of stable rank one ([1–3, 9, 12, 13], to name a few), it has become pos-

sible to apply C∗-algebra theory to the study of minimal homeomorphisms of more

general spaces. Several versions of approximate conjugacy have been introduced and

studied recently (see [14–17, 20]). In [16, 17], minimal homeomorphisms of the

product of the Cantor set and the circle were studied. It was shown that if a certain

set of K-theoretical information for two minimal homeomorphisms on the product

of the Cantor set and the circle is the same, then they are approximately K-conjugate

(and the converse also holds).

One of the reasons that the work Giordano, Putnam and Skau was so successful

is that the Cantor set is totally disconnected. Perhaps orbit equivalence for Cantor

minimal systems may be viewed as something which lives between measure theory

and topology. When the space X is connected, the situation is very different. For ex-

ample, by a result of Sierpinski for connected spaces, two topological orbit equivalent

minimal homeomorphisms are in fact flip conjugate (see [19, Proposition5.5]). On
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the other hand, it is known (even in the case of the Cantor minimal systems) that

two minimal dynamical systems whose associated crossed product C∗-algebras are

isomorphic may not be flip conjugate. Therefore, for connected space, one should

not expect that two minimal homeomorphisms are topologically orbit equivalent if

their associated crossed product C∗-algebras have order isomorphic K-groups, or if

their associated crossed product C∗-algebras are isomorphic.

We are interested in the following two questions:

Question 1: Let X be a (connected) compact metric space and let α and β be two

minimal homeomorphisms of X. Let Aα and Aβ denote the associated crossed prod-

uct C∗-algebras. Suppose that the tracial range of K0(Aα) and that of K0(Aβ) are

(unitally) order isomorphic. What can one say about the homeomorphisms α and

β?

Question 2: Let X be a (connected) compact metric space and let α and β be two

minimal homeomorphisms of X. Let Aα and Aβ denote the associated crossed prod-

uct C∗-algebras. Suppose that Aα and Aβ are isomorphic in a way preserving the

additional K-theoretical information consisting of ( jα)∗ and ( jβ)∗ (associated with

the natural inclusions of C(X) in Aα and Aβ). What can one say about the homeo-

morphism α and β?

(For the definition of of jα and jβ , see Definition 2.6. A clarification of this ques-

tion will be discussed in Remark 2.11.)

Giordano, Putnam and Skau’s results answered both questions, namely, α and β
are topologically orbit equivalent in the case of Question 1 and α and β are strongly

orbit equivalent in the case of Question 2, under the assumption that X is the Cantor

set.

The results of [15–17, 20] suggest that the answer to Question 2 should be that α
and β are approximately K-conjugate, and for Question 1, that α and β are approx-

imately conjugate in a more measure theoretical sense. However, the spaces studied

in the above mentioned articles are not connected. It would be interesting to see

answers to Questions 1 and 2 for any connected spaces (other than T).

A classical example of minimal homeomorphisms on the 2-torus T
2 was stud-

ied by Furstenberg [4]. Let θ be an irrational number and let g : T → T be a con-

tinuous map. The Furstenberg transform α : T
2 → T

2 is defined to be α(ξ, ζ) =

(ξei2πθ, ζg(ξ)) for ξ ∈ T and ζ ∈ T with g being homotopically nontrivial. One may

write that α = (ξei2πθ, ζξdei2π f (ξ)), where d is an integer and f is a real continuous

function in C(T). Let us denote α by Φθ,d, f . It is known that α is always minimal if

d 6= 0 [4]. It is also known that if g satisfies the Lipschitz condition, then α is also

uniquely ergodic [4]. This example has in fact been rather intensively studied (for

example, [4, 6–8, 21, 24], to name a few).

It was conjectured by R. Ji [6] that Φθ,1,0 is conjugate to Φθ,1, f . By considering a

quasi-discrete spectrum, counter-examples have been constructed by Rouhani [24],

showing that Φθ,1,0 may not even be flip conjugate to Φθ,1, f .

Let α = Φθ1,d1, f and β = Φθ2,d2, f2
. In this note, we first show that if θ1 ± θ2 = 0

in R/Z, then α and β are approximately conjugate in a measure theoretical sense (see

Definition 2.1). We also show that the converse is true, i.e., if α and β are approx-
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imately conjugate in that sense, then θ1 ± θ2 = 0 in R/Z. Let Aα = C(T
2) ⋊α Z

and Aβ = C(T
2) ⋊β Z denote the associated crossed products. At least in the case

that f1 and f2 satisfy the Lipschitz condition, the ranges of K0(Aα) and K0(Aβ) under

the tracial map are the same, namely, Z + Z(θ1) (we still assume that θ1 ± θ2 = 0

in R/Z). This result seems closer to that of the topological orbit equivalence in the

Cantor minimal systems.

It has been recently proved [18] that in the uniquely ergodic cases, Aα and Aβ are

unital simple C∗-algebras with tracial rank zero. Therefore, by the classification of

unital simple amenable C∗-algebras with tracial rank zero (see [13]), Aα and Aβ are

isomorphic as C∗-algebras if and only if θ1 ± θ2 = 0 in R/Z and |d1| = |d2|. We will

show that α and β are approximately K-conjugate if and only if θ1 ± θ2 = 0 in R/Z

and |d1| = |d2|. In the process, we will also show that when f1− f2 is in a dense subset

of the real part of C(T), Φθ,d, f1
and Φθ,d, f2

are actually conjugate (see 4.3 below).

The results of this note are very special. However, it is our hope that this special

case will lead us to more interesting answers to Questions 1 and 2 and will serve as an

invitation to further exploration.

2 The Main results

Definition 2.1 Let X and Y be two compact metric spaces and let α : X → X

and β : Y → Y be two minimal homeomorphisms. Denote by Tα and Tβ the sets

of α-invariant and β-invariant normalized Borel measures, respectively. Let us say

that α, β are approximately conjugate in the sense of M1 if there exist two sequences

of homeomorphisms σn : X → Y and γn : Y → X and affine homeomorphisms

Λ1 : Tα → Tβ and Λ2 : Tβ → Tα such that

lim
n→∞

sup
ν∈Tβ

ν({y ∈ Y : dist(σnα ◦ σ−1
n (y), β(y)) ≥ a}) = 0,(2.1)

lim
n→∞

sup
µ∈Tα

µ({x ∈ X : dist(γn ◦ β ◦ γ−1
n (x), α(x)) ≥ a}) = 0(2.2)

for all a > 0, and

(2.3) Λ1(µ)(S) = µ(σ−1
n (S)), and Λ

−1
2 (ν)(G) = ν(γ−1

n (G)) n = 1, 2, . . .

for all Borel sets S ⊂ Y , G ⊂ X and for all µ ∈ Tα, ν ∈ Tβ .

A couple of remarks are in order.

(i) Suppose that there exists a homeomorphism σ : X → Y such that σ◦α◦σ−1
=

β. Define Λ : Tα → Tβ by Λ(µ)(S) = µ(σ−1(S)) for all Borel sets S ⊂ Y . It should

be noted that

Λ(µ)(β(S)) = µ(σ−1 ◦ β(S))

= µ(σ−1 ◦ β ◦ σ ◦ σ−1(S))

= µ(α ◦ σ−1(S)) = m(σ−1(S)) = Λ(µ(S))
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for all Borel sets S ⊂ Y . So Λ(µ) ∈ Tβ . In particular, conjugate homeomorphisms

are approximately conjugate in the sense of M1.

In general, a sequence of homeomorphisms {σn} does not preserve measures even

though both (2.1) and (2.2) hold. One could have limn→∞ µ(σn(S)) = 0. Here we

require that {σn} has some consistent information on measure spaces. So in Defi-

nition 2.1, one should note that the conditions in (2.3) are an important part of the

definition.

(ii) In Definition 2.1, put

En(a) = {y ∈ Y : dist(σnα ◦ σ−1
n (y), β(y)) ≥ a}

for a > 0. Put Sn(a) = {x ∈ X : dist(σn ◦ α(x), β ◦ σn(x)) ≥ a}. Then

σ−1
n (En(a)) = Sn(a).

By (2.1) and (2.4), limn→∞ supµ∈Tα
µ(Sn(a)) = 0.

(iii) It is an easy exercise that approximately conjugacy in the sense of M1 is an

equivalence relation among minimal homeomorphisms.

Definition 2.2 Let θ be an irrational number and let g : T → T be a continuous

function with degree d 6= 0 (the winding number d 6= 0). A Furstenberg transform

is a map α : T
2 → T

2 defined by α((ξ, ζ)) = (ξei2πθ, ζg(ξ)) for ξ ∈ T and ζ ∈ T.

There is a real function f ∈ C(T) such that g(ξ) = ξd exp(i2π f (ξ)) for ξ ∈ T. The

map α is called the Furstenberg transform associated with the irrational number θ,

integer d and function f . It will also be denoted by Φθ,d, f .

We are interested in the case that (T
2, α) is uniquely ergodic. It is known that α

is always minimal (see [4]). It is also shown in [4] that (T
2, α) is uniquely ergodic

if g has Lipschitz property (or f is Lipschitz). The unique invariant measure is the

product of the normalized Lebesgue measure m2 = m × m. We fix the following

metric on T
2:

dist((ξ, ζ), (ξ ′, ζ ′)) =

√

|ξξ ′ − 1|2 + |ζ ′ζ ′ − 1|2,

where ξ, ξ ′, ζ, ζ ′ ∈ T.

We will keep these notation throughout this note.

Theorem 2.3 Let α = Φθ1,d1, f1
, β = Φθ2,d2, f2

: T
2 → T

2 be uniquely ergodic Fursten-

berg transforms. Then the following are equivalent:

(i) |θ1 ± θ2| = 0 in R/Z;

(ii) α and β are approximately conjugate in the sense of M1.

In this case, one can make

lim
n→∞

sup{dist(σnα ◦ σ−1
n (y), β(y)) : y ∈ Y )} = 0,

lim
n→∞

sup{dist(γn ◦ β ◦ γ−1
n (x), α(x)) : x ∈ X} = 0,

if one does not insist that σn and γn to be continuous everywhere. More precisely, we

have the following.

https://doi.org/10.4153/CJM-2008-008-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-008-2


Furstenberg Transformations and Approximate Conjugacy 193

Theorem 2.4 Let α = Φθ1,d1, f1
, β = Φθ2,d2, f2

: T
2 → T

2 be uniquely ergodic Fursten-

berg transforms. Then each condition (i) or (ii) in Theorem 2.3 is also equivalent to the

following:

(iii) There are sequences of Borel equivalences {σn} and {γn} such that

lim
n→∞

sup{dist(σn ◦ α ◦ σ−1
n (y), β(y)) : y ∈ Y )} = 0,

lim
n→∞

sup{dist(γn ◦ β ◦ γ−1
n (x), α(x)) : x ∈ X} = 0,

and for each n there exists a closed subset Fn ⊂ T and Kn ⊂ T such that m(Fn) = 0

and m(Kn) = 0, and σn and γn are continuous on T × (T \ Fn) and on T × (T \ Kn)

respectively. Moreover,

(2.4) m(σn(S)) = m(S), m(γn(G)) = m(G), n = 1, 2, . . .

for all Borel sets S ⊂ T
2.

Definition 2.5 Let A be a stably finite unital C∗-algebra and let T(A) be the tra-

cial state space. Denote by Tr the usual (non-normalized) trace on Mk. Define

ρ : K0(A) → Aff(T(A)) by ρ([p]) = τ (p) for projections in Mk(A), where τ = t ⊗Tr

and t ∈ T(A).

Definition 2.6 Let X be a compact metric space and let α : X → X be a minimal

homeomorphism. Then the transformation group C∗-algebra, the crossed product,

C(X) ⋊α Z will be denoted by Aα. We will use jα : C(X) → Aα for the natural

embedding.

For a unital C∗-algebra A, we let ad u(a) = u∗au for all a ∈ A. We fix a unitary uα

so that ad uα ◦ jα( f ) = jα( f ◦ α) for all f ∈ C(X). It should be noted that there are

other choices for such uα. For example, if z ∈ C(X) is a unitary, then w = uα jα(z) is

another choice. In fact,

(2.5) ad w( jα( f )) = jα(z)∗u∗
α( jα( f ))uα jα(z) = jα(z∗( f ◦ α)z) = jα( f ◦ α)

for all f ∈ C(X).

Remark 2.7 Let X = T
2 and let α = Φθ,d, f be a Furstenberg transformation with

Lipschitz f . Then Aα is a unital simple C∗-algebra with a unique tracial state.

It is computed (see [23, Example 4.9]) that K0(Aα) ∼= Z⊕Z⊕Z with ρ(K0(Aα)) =

Z ⊕ Z(θ) ⊂ R and

K0(Aα)+ = {m1 + m2 + m3 ∈ Z
3 : m1 + m3θ > 0 or m1 = m2 = m3 = 0},

where the first two copies of Z are identified with the image of K0(C(T
2)) under the

embedding ( jα)∗0, and K1(Aα) ∼= Z ⊕ Z ⊕ Z/dZ ⊕ Z, and where Z/dZ ⊕ Z is the

image of K1(C(T
2)) under ( jα)∗1. Let z1, z2 : T

2 → T be the functions defined by

z1((ξ, ζ)) = ξ and z2((ξ, ζ)) = ζ (ξ, ζ ∈ T). Then ( jα)∗1([z1]) is the standard

generator of Z/dZ and ( jα)∗1([z2]) is the standard generator of Z.
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Let X be a compact metric space and let α, β : X → X be two minimal home-

omorphisms. It is desirable to have two sequences of homeomorphisms {σn} and

{γn} on X so that

lim
n→∞

sup{dist(σn ◦ α ◦ σ−1
n (x), β(x)) : x ∈ X} = 0,(2.6)

lim
n→∞

sup{dist(γn ◦ β ◦ γ−1
n (x), α(x)) : x ∈ X} = 0.(2.7)

However, when a sequence of maps (such as {σn} and {γn}) is involved, one also

expects that the maps have something in common. At least, in the Cantor set case,

without any consistency on the conjugating maps {σn} and {γn}, (2.6) and (2.7) are

not so interesting (see [15]). Even though one should not expect these maps will

converge in any meaningful way, one hopes that some information about these maps

is independent of n. For example, one would like to require that both sequences pre-

serve the measures as in Definition 2.1 as well as in Theorem 2.4(iii). To be more

topologically interesting, one may require that both sequences preserve some topo-

logical data. For example, in [15], approximate K-conjugacy requires that both se-

quences preserve K-theory (in the crossed products). We use the following definition

in this note.

Definition 2.8 Let X be a compact metric space, and let α, β : X → X be two mini-

mal homeomorphisms. Two homeomorphisms α and β are said to be approximately

K-conjugate if there exist two sequences of homeomorphisms {σn} and {γn} on X

such that (2.6) and (2.7) hold, and there exist an isomorphism φ : Aα → Aβ and

sequences of unitaries un ∈ Aβ and vn ∈ Aα such that

lim
n→∞

‖ ad un ◦ φ( jα( f )) − jβ( f ◦ σ−1
n )‖ = 0

for all f ∈ C(X), and limn→∞ ‖ ad un ◦ φ(uα) − uβzn‖ = 0, for some zn ∈ U (Aβ)

such that limn→∞ ‖zn jβ( f ) − jβ( f )zn‖ = 0 for all f ∈ C(X); and

lim
n→∞

‖ ad vn ◦ φ( jβ( f )) − jα( f ◦ γ−1
n )‖ = 0

for all f ∈ C(X) and limn→∞ ‖ ad vn ◦ φ(uβ) − uα yn‖ = 0, where yn ∈ U (Aα) such

that limn→∞ ‖yn jβ( f ) − jα( f )yn‖ = 0 for all f ∈ C(X).

Remark 2.9

(1) In Definition 2.8 one can choose zn = u∗
β(u∗

n uαun). From the discussion that

leads to (2.5), one sees that the unitaries zn and yn can not be omitted.

(2) The existence of the unitaries {un} and {vn} implies that {σn} and {γn}
preserve the invariant measures. Note also if p ∈ Mk(C(X)) is a projection, then

[ jβ(p ◦σ−1
n )] = [ jβ(p)] in K0(Aβ) for all large n. In fact, {σn} and {γn} preserve the

ordered K-theory (independent of n) and beyond.

Condition (i) in Theorem 2.3 implies that ρ(Aα) and ρ(Aβ) are (unitally) order

isomorphic. In the case that X is the Cantor set, by a theorem of Giordano, Put-

nam, and Skau, the condition that ρ(Aα) and ρ(Aβ) are unitally order isomorphic is
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equivalent to the condition that α and β are topologically orbit equivalent. A similar

conclusion is not possible for a connected space, for as mentioned earlier, two topo-

logically orbit equivalent minimal homeomorphisms on connected spaces are flip

conjugate. As we stated in the introduction, topological orbit equivalence for min-

imal Cantor systems seems to be something between measure theory and topology.

The conclusion of Theorem 2.3 also has both topological and measure theoretical

flavor. However, one cannot require maps {σn} and {γn} in Theorem 2.4(iii) to be

homeomorphisms in general. As mentioned in Remark 2.7, without the assump-

tion that maps {σn} and {γn} preserve the measure, the approximate conjugacy in

the sense of (2.6) and (2.7) is a rather weak relation for minimal a Cantor system

(see [15]). However, it seems that it plays a completely different role for homeomor-

phisms on the connected spaces.

It is was recently proved [18] that for a uniquely ergodic Furstenberg transforma-

tion α, the associated crossed product Aα has tracial rank zero. So the classification

theorem (see [12, 13]) can be applied. In particular, if α = Φθ1,d1, f1
and β = Φθ2,d2, f2

,

then Aα
∼= Aβ if and only if θ1 ± θ2 = 0 in R/Z and |d1| = |d2|.

Theorem 2.10 Let α, β : T
2 → T

2 be two uniquely ergodic Furstenberg transforms

associated with irrational numbers θ1, θ2 and integers d1, d2 ∈ Z \ {0}, respectively.

Then the following are equivalent.

(i) Aα
∼= Aβ .

(ii) |θ1 ± θ2| = 0 in R/Z and |d1| = |d2|.
(iii) α and β are approximately K-conjugate.

(iv) (K0(Aα), K0(Aα)0, [1Aα
], K1(Aα)) ∼= (K0(Aβ), K0(Aβ)+, [1Aβ

], K1(Aβ)).

(v) There exist two sequences of homeomorphisms {σn} and {γn} on T
2 such that

lim
n→∞

sup{dist(σn ◦ α ◦ σ−1
n (x), β(x)) : x ∈ T

2} = 0,

lim
n→∞

sup{dist(γn ◦ β ◦ γ−1
n (x), α(x)) : x ∈ T

2} = 0,

m2(σn(S)) = m2(S) and m2(γn(S)) = m2(S)

for all Borel subsets S ⊂ T
2.

Remark 2.11 It should be pointed out that, in general, (i) or (iv) does not imply

that α and β are approximately K-conjugate. See, for example, [16, Example 9.2].

Let X be a connected compact CW-complex and let α, β : X → X be two minimal

homeomorphisms such that (X, α) and (X, β) are uniquely ergodic. The right condi-

tion in this case, at least when ρ(K0(Aα)) is dense in K0(Aα), should be the following:

there is an order isomorphism

κ : (K0(Aα), K0(Aα)+, [1Aα
], K1(Aα)) → (K0(Aβ)), K0(Aβ)+, [1Aβ

], K1(Aβ))

and a sequence of isomorphisms λn : C(X) → C(X) such that [κ ◦ jα ◦ λn)] =

[ jβ] in KL(C(X), Aβ) and limn→∞ τ ◦ jα( f ◦ λn) = τ ◦ jα( f ), where τ is the unique

tracial state of Aα (for a more general case, see [14]).
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3 Measure Theoretical Approximate Conjugacies

The following is taken from [19, p. 299] (see also [18, Theorem 2.3]).

Theorem 3.1 Let X be an infinite compact metric space, and let h : X → X be a

minimal homeomorphism. Let Y ⊂ X be closed and have nonempty interior. For y ∈ Y

set r(y) = min{n ≥ 1 : hn(y) ∈ Y}. Then supy∈Y r(y) < ∞. Let n(0) < n(1) <
n(2) < · · · < n(l) be the distinct values in the range of r, and for 0 ≤ k ≤ l set

Yk = {y ∈ Y : r(y) = n(k)} and Y ◦
k = int({y ∈ Y : r(y) = n(k)}).

Then

(i) the sets h j(Y ◦
k ) for 0 ≤ k ≤ l and 1 ≤ j ≤ n(k) are disjoint;

(ii)
⋃l

k=1

⋃n(k)
j=1 h j(Yk) = X;

(iii)
⋃l

k=0 hn(k)(Yk) = Y .

Lemma 3.2 Let α : T → T be a minimal homeomorphism. Let n > 1 be an integer.

Then there are finitely many pairwise disjoint open arcs { Ji = (ci , di) : i = 1, 2, . . . , k}
of T such that

(i) α j( Ji) are pairwise disjoint for 0 ≤ j ≤ h(i) − 1 and i = 1, 2, . . . , k;

(ii) n ≤ h(i), 1 ≤ i ≤ k;

(iii) T \
⋃k

i=1

⋃h(i)−1
j=0 α j( Ji)) is a set of finite many points.

Proof Fix x ∈ T and fix an integer n > 1. Since α is minimal, there is a closed arc

Y containing x such that α j( J) are pairwise disjoint for 0 ≤ j ≤ n. Set

r(y) = min{m ≥ 1 : αm(y) ∈ Y}.

Applying Theorem 3.1, we obtain n(0) < n(1) < · · · < n(l), Y0,Y1, . . . ,Yl, and

Y o
0 ,Y o

1 , . . . ,Y o
l as in Lemma 3.1. Note that n(0) ≥ n.

Let Xk = {y ∈ Y : r(y) = n(k)}, k = 0, 1, 2, . . . , l and let Ω = int Y . Note

that X0 = Y0. Let V1 = αn(0)(Ω) ∩ Ω. Since Ω is a nonempty arc, so is V1. Set

S1 = α−n(0)(V1). Then S1 is an open sub-arc of Y . Note that S1 = Y o
0 .

Let V2 = αn(1)(Ω) ∩ Ω. Then V2 is a nonempty open arc. Set S2 = α−n(1)(V2).

Then Y o
1 = S2 \ X0. This shows that X1 is a union of finitely many arcs (possibly

neither open nor closed).

Let V3 = αn(2)(Ω) ∩ Ω. Then V3 is a nonempty open arc. Set S3 = α−n(2)(V3).

Then Y o
2 = S3 \ (X1 ∪ X2). So X2 is a union of finitely many arcs.

By induction, we conclude that all Xk are unions of finitely many arcs. It follows

that Y o
k is a union of finitely many open arcs and Yk is the closure of Y o

k . Note that

T \
⋃l

k=0

⋃n( j)
j=0 Y o

k contains only finitely many points. The lemma then follows.

A similar lemma to the one below for the Cantor set appeared in the proof of

[20, 4.4]. The following is a version of that for the circle. Note the function ω cannot

be made to be continuous on the whole space as in the Cantor set case.

https://doi.org/10.4153/CJM-2008-008-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-008-2


Furstenberg Transformations and Approximate Conjugacy 197

Lemma 3.3 Let {I1, I2, . . . , Ik} be finitely many disjoint open arcs of T and let

α : T → T be a homeomorphism such that α j(Ii) are pairwise disjoint for 1 ≤ i ≤ k

and 0 ≤ j ≤ h(i) − 1. Let F, G : T → T be continuous maps. Then, for any ε > 0

and for each i, there are I(s)
i ⊂ Ii s = 1, 2, . . . , m(i) disjoint open arcs and there is a

continuous map ω : S → T, where S =
⋃h(i)−1

j=0

⋃k
i=1

⋃m(i)
s=1 α j(I(s)

i ), such that

(i) ω(x) = 0 if x ∈
⋃

s,i I(s)
j ;

(ii) |[F(α j (x)) + ω(α j(x))] − [ω(α j+1(x)) + G(α j(x))]| < 1
h(i)

for all x ∈ I(s)
i , s =

1, 2, . . . , m(i), j = 0, 1, . . . , h(i) − 2 (we identify T with R/Z);

(iii) in R/Z, |[F(αh(i)−1(x))+ω(αh(i)−1(x))]−[G(αh(i)−1(x))]| < 1
h(i)

for all x ∈ I(s)
i ,

s = 1, 2, . . . , m(i), i = 1, 2, . . . , k;

(iv) Ii \
⋃m(i)

s=1 I(s)
i contains only finitely many points.

Moreover, on the closure of each I(s)
i , ω can be extended to be a continuous function

and (i), (ii) and (iii) remain true for x in the left-closed arcs of I(s)
i if inequalities are

replaced by ≤.

Proof We identify T with R/Z. Define κ(x) =
∑h(i)−1

i=0 (F(α j(x)) − G(α j(x))) for

x ∈ Ii , 1 ≤ i ≤ k.

Let K =
∑k

i=1 h(i). One can break Ii into a disjoint union of finitely many arcs so

that the image of κ on each sub-arc is a subset of a proper closed subset of T. Thus,

there are for each i, pairwise disjoint open sub-arcs I(s)
i ⊂ Ii , s = 1, 2, . . . , m(i),

such that κ|
I(s)

j

has image contained in a proper subset of T such that Ii \
⋃m

s=1(s)I(s)
i

contains only finitely many points, i = 1, 2, . . . , k. So (iv) now holds.

Define κ̃(x) as follows κ̃(x) = κ(x) + Z and −1 ≤ κ̃(x) ≤ 1 for x ∈ I(s)
i , 1 ≤ s ≤

m(i), 1 ≤ i ≤ k.

Put S =
⋃k

i=1

⋃m(i)
s=1 I(s)

i . Define η : S → T as follows:

η(α j(x)) = −
j

h(i)
κ̃(x) + Z

for x ∈ I(s)
i , j = 0, 1, . . . , h(i) − 1, 1 ≤ i ≤ k. Since the image of κ on each I(s)

i is a

proper subset of T, we see that η is continuous.

Put Ω0 =
∑k

i=1

⋃m(i)
s=1 I(s)

i . Define ω : S → T as follows: ω(x) = 0 if x ∈ Ω0, and

ω(α j(x)) = η(α j(x)) +

j−1
∑

l=0

[F(αl(x)) − G(αl(x))]

for x ∈ I(s)
i , j = 1, 2, . . . , h(i) − 1, 1 ≤ s ≤ m(i), 1 ≤ i ≤ k.

If x ∈ I(s)
i , then

|[F(x) + ω(x)] − [ω(α(x)) + G(x)]|

≤
∣

∣

∣
F(x) −

[ 1

h(i)
(κ̃(x) + (F(x) − G(x)) + G(x)

]
∣

∣

∣
<

1

h(i)
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for 1 ≤ s ≤ m(i) and 1 ≤ i ≤ k.

If x ∈ α j(I(s)
i ) for j = 1, 2, . . . , h(i) − 2, then

|[F(α j (x))+ω(x)]−[ω(α j+1(x))+G(α j (x))]| ≤ |η(α j (x))−η(αk+1(x))| <
1

h(i)

for 1 ≤ i ≤ k.

We verify that in R/Z,

|[F(αh(i)−1(x)) + ω(αh(i)−1(x))] − [G(αh(i)−1(x))]|

= |κ(x) −
h(i) − 1

h(i)
κ̃(x)| <

1

h(i)

for all x ∈ Ii , 1 ≤ i ≤ k.

We also note that the last statement follows easily since F and G are continuous

functions.

Lemma 3.4 Let σ((ξ, ζ)) = (σ1(ξ, ζ), σ2(ξ, ζ)) be a Borel equivalence from T
2 to T

2

such that m2(σ(S)) = m2(σ(S)) for all Borel set S.

(i) Then for any Borel set S1, S2 ⊂ T,

m(σ1((S1, ζ)) = m(S1) and m(σ2((ξ, S2)) = m(S2)

for almost all ζ ∈ T and almost all ξ ∈ T,

(ii) If there exists a closed subset F ⊂ T with m(F) = 0 such that σ1(−, ζ) is continu-

ous on T for all ζ ∈ T, then for each ζ ∈ T \ F,

σ1(ξ, ζ) = ξg1(ζ) for all ξ ∈ T(3.1)

or

σ1(ξ, ζ) = ξg1(ζ) for all ξ ∈ T.(3.2)

(iii) If σ is continuous, then there are continuous maps g1 : T → T such that

σ1(ξ, ζ) = ξg1(ζ) for all ξ, ζ ∈ T

or

σ1(ξ, ζ) = ξg1(ζ) for all ξ, ζ ∈ T.

Proof (i) Let S1 ⊂ T be a Borel subset. Suppose that there exists a measurable

subset E1 ⊂ T with positive measure such that
∫

S1
σ1(ξ, ζ)dξ 6= m(S1) for all ζ ∈ E1.

Put

E+
1 =

{

ζ ∈ E1 :

∫

S1

σ1(ξ, ζ) dξ > m(S1)
}

,

E−
1 =

{

ζ ∈ E1 :

∫

S1

σ1(ξ, ζ) dξ < m(S1)
}

.
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If m(E+
1 ) > 0, then

m2(S1 × E+
1 ) =

∫

S1×E+
1

σ1(ξ, ζ) dξdζ >

∫

E+
1

m(S1) dζ = m2(S1 × E+
1 ).

If m(E−
1 ) > 0, then

m2(S1 × E−

1 ) =

∫

S1×E−

1

σ1(ξ, ζ) dξdζ <

∫

E−

1

m(S1) dζ = m2(S1 × E−

1 ).

Neither could be true. The proof for the variable ζ is the same.

(ii) Applying part (i), we have a measurable set E ⊂ T with m(E) = m(T) = 1

such that

(3.3) m(σ1((S, ζ))) = m(S)

for all Borel subsets S ⊂ T and ζ ∈ E. Thus, if ζ ∈ E ∩ (T \ F), by (3.3), it is well

known that either σ1(ξ, ζ) = ξg1(ζ) for all ξ ∈ T and for some g1(ζ) ∈ T or

σ1(ξ, ζ) = ξ̄g1(ζ)

for all ξ ∈ T and for some g1(ζ) ∈ T.

(iii) This part follows immediately from (ii). By considering the subset

{(1, ζ) : ζ ∈ T}

and applying (3.1) and (3.2), we conclude that σ1(1, ζ) = g1(ζ) is a continuous

function. Then, by continuity of σ, (ii) follows.

Proof of Theorem 2.4 Let σ((ξ, ζ)) = (ξ̄, ζ). Then σ : T
2 → T

2 is a homeomor-

phism and σ−1
= σ. One has

σ−1 ◦ Φθ,1,0σ((ξ, ζ)) = σ−1((ξei2πθ, ζξ))

= (ξe−i2πθ, ζξ−1)

for all ξ, ζ ∈ T. It follows that Φθ,1,0 and Φ−θ,−1,0 are conjugate.

We will show that if θ1 ± θ2 = 0 in R/Z, then Theorem 2.4(iii) holds. For con-

venience, we will say α and β are approximately conjugate in the sense of M2 if (iii)

holds. In this part of the proof, we will identify T with R/Z.

Let θ ∈ (0, 1) be an irrational number. Since Φθ,1,0 and Φ−θ,−1,0 are conjugate

as shown above, it suffices to show that α and β are approximately conjugate in the

sense of M2 if α = Φθ,d1, f1
and β = Φθ,d2, f2

.

Let ε > 0. Choose n > 0 so that 1/n < ε. Let J1, J2, . . . , Jk be the open arcs

provided by Lemma 3.2 with the integer n (and α(t) = t + θ for t ∈ R/Z). Put

F(ξ) = ξd1 exp(i2π f1(ξ)) and G(ξ) = ξd2 exp(i2π f2(ξ)) for ξ ∈ T. Let ω be the

function in Lemma 3.3 with α(t) = t + θ and Ii = Ji , i = 1, 2, . . . , k. By extending ω
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continuously on the left-side closed arcs J(s)
i for each s and i, as the last part of Lemma

3.3, one has

(3.4) |[F(x) + ω(x)] − [ω(x + θ) + G(x)]| ≤ ε

for all x ∈ R/Z. Define σ((x, t)) = (x, t + ω(x)) for t, x ∈ R/Z. Therefore,

m2(σ(S)) = m2(S)

for all Borel set S ⊂ T
2. Moreover, σ is continuous except finitely many circles (with

the form of B × T, where B is a finite subset of T).

Now, by (3.4),

dist(α ◦ σ((x, t)), σ ◦ β((x, t))) ≤ |[F(x) + ω(x)] − [ω(x + θ) + G(x)]| < ε

for all x, t ∈ R/Z. For the converse, let θ1 and θ2 be two irrational numbers such that

|θ1 ± θ2| 6= 0 in R/Z.

Since we have shown that Φθ1,d1, f1
and Φθ1,1,0 are approximately conjugate in the

sense of M2 above, and Φθ2,d2, f2
and Φθ2,1,0 are approximately conjugate in the sense

of M2 above, respectively, it suffices to show that Φθ1,1,0 and Φθ2,1,0 are not approxi-

mately conjugate in the sense of M2.

Put α = Φθ1,1,0 and β = Φθ2,1,0. Put

(3.5) a = |e2π(θ1−θ2) − 1| > 0 and b = |e2π(θ1+θ2) − 1| > 0.

Let ε > 0 such that ε < min{a/2, b/2}. Suppose that there exists a Borel equivalence

σ : T
2 → T

2 which is continuous on T × (T \ F) for some closed subset F ⊂ T with

µ(F) = 0 such that

(3.6) sup{dist(α ◦ σ(x), σ ◦ β(x)) : x ∈ T
2} < ε

and m2(σ(S)) = m2(S) for all Borel sets S ⊂ T
2.

By Lemma 3.4, there exists a Borel set E ⊂ T such that m(T \ E) = 0 and for each

ζ ∈ E, σ1((ξ, ζ)) = ξg1(ζ) or σ1((ξ, ζ)) = ξ̄g1(ζ), for all ξ ∈ T. Thus, for ζ ∈ E, by

(3.6), we have either

|ξg1(ζ)ei2πθ1 − ξg1(ζξ)ei2πθ2 | < ε, |ξg1(ζ)ei2πθ1 − ξg1(ζξ)e−i2πθ2 | < ε,

|ξg1(ζ)ei2πθ1 − ξ̄g1(ζξ)e−i2πθ2 | < ε, or |ξg1(ζ)ei2πθ1 − ξg1(ζξ)ei2πθ2 | < ε

for all ξ ∈ T.

Choose ξ = 1 for all ζ ∈ E. One computes that either

a = |g1(ζ)e2iπθ1 − e2iπθ2 g1(ζ)| < ε or b = |g1(ζ)e2iπθ1 − e−2iπθ2 g1(ζ)| < ε.

By (3.5), neither is possible.
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Proof of Theorem 2.3 (i) ⇒ (ii): We will modify the relevant part of the proof of

Theorem 2.4. Let ε > 0. By the proof of Theorem 2.4, there exists a finite subset

B ⊂ T and a function ω : T → T which is continuous on T \ B such that

dist(σ ◦ α((x, t)), β ◦ σ((x, t))) < ε

for all x, t ∈ R/Z, where σ((x, t)) = (x, t + ω(x)) for all x, t ∈ R/Z. There is

an open subset G ⊂ T such that B ⊂ G and m(G) < ε. There is a continuous

function ω0 from T to R/Z such that ω0(x) = ω(x) for x ∈ T \ G. Now define

σ0((x, t)) = (x, t + ω0(x)) for x, t ∈ R/Z. Then

{(x, t) : dist(σ0 ◦ α((x, t)), β ◦ σ0((x, t))) ≥ ε} ⊂ T × G.

It follows that m2({(x, t) : dist(σ0 ◦ α((x, t)), β ◦ σ0((x, t))) ≥ ε}) < ε. This proves

(i) ⇒ (ii).

To see (ii) ⇒ (i), let θ1 and θ2 be two irrational numbers such that |θ1 ± θ2| 6= 0

in R/Z.

Since we have shown that Φθ1,d1, f1
and Φθ1,1,0 are approximately conjugate in the

sense of M1, and Φθ2,d2, f2
and Φθ2,1,0 are approximately conjugate in the sense of M1,

respectively, it suffices to show that Φθ1,1,0 and Φθ2,1,0 are not approximately conjugate

in the sense of M1.

Put α = Φθ1,1,0 and β = Φθ2,1,0. Suppose that σ : T
2 → T

2 is a homeomorphism

such that m2(σ(S)) = m2(S). Write σ((ξ, ζ)) = (σ1(ξ, ζ), σ2(ξ, ζ)). It follows from

Theorem 3.4(iii) that either σ1(ξ, ζ) = ξg1(ζ) or σ1(ξ, ζ) = ξ̄g1(ζ) for all ξ, ζ ∈ T,

where g1 : T → T is a continuous map. Put

a = |e2π(θ1−θ2) − 1| > 0 and b = |e2iπ(θ1+θ2) − 1| > 0.

Let 0 < ε < min{1/4, a/4, b/4}. Let z ∈ C(T) be defined by z((ξ, ζ)) = ξ for

ξ ∈ T. If α and β are approximately conjugate in the sense of M1, then there exists

σ described above such that
∫

T

∫

T
|z(α ◦ σ(ξ, ζ) − z(σ ◦ β(ξ, ζ))| dξdζ < ε4/4. One

then computes that
∫

T
|z(α ◦ σ(ξ, ζ) − z(σ ◦ β(ξ, ζ))| dξ < ε2 for all ζ ∈ E, where E

is a measurable set such that m(E) > 1 − ε.

We now assume that σ1(ξ, ζ) = ξg1(ζ) for all ξ, ζ ∈ T.

For ζ ∈ E,

ε2 >

∫

T

|ξg1(ζ)ei2πθ1 − ξei2πθ2 g1(ζξ)| dξ =

∫

T

|g1(ζ)ei2π(θ1−θ2) − g1(ζξ)| dξ.

By considering the constant function F1(ξ) = g1(ζ)ei2π(θ1−θ2) and the function

F2(ξ) = g1(ζξ) and by translating by ζ̄ , we obtain

(3.7)

∫

T

|g1(ζ)ei2π(θ1−θ2) − g1(ξ)| dξ < ε2

for all ζ ∈ E. Fix ζ0 ∈ E and let

Eζ0
= {ξ ∈ T : |g1(ζ0)ei2π(θ1−θ2) − g1(ξ)| < ε}.
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Then by (3.7), we compute that m(Eζ0
) > 1 − ε. Therefore m(Eζ0

∩ E) > 0. If

ζ1 ∈ Eζ0
∩ E, by (3.7), we have that

ε2 >

∫

T

|g1(ζ1)ei2π(θ1−θ2) − g1(ξ)| dξ

≥ |g1(ζ0)ei2π(θ1−θ2) − g1(ζ0)ei4π(θ1−θ2)| − |g1(ζ0)ei4π(θ1−θ2) − g1(ζ1)ei2π(θ1−θ2 )|

−

∫

T

|g1(ζ0)ei2π(θ1−θ2) − g1(ξ)| dξ

> |ei2π(θ1−θ2) − 1| − ε − ε2 > a/2.

By the choice of ε, this is impossible.

Now we assume that σ1(ξ, ζ) = ξg1(ζ) for all ξ, ζ ∈ T. As above, one has

ε2 >

∫

T

|ξg1(ζ)ei2πθ1 − ξe−i2πθ2 g1(ζξ)| dξ =

∫

T

|g1(ζ)ei2π(θ1+θ2) − g1(ζξ)| dξ.

The same argument used above leads us to ε2 > |ei2π(θ1+θ2) − 1| − ε − ε2 > b
2
. This

would violate the choice of ε.

4 Approximate K-Conjugacy

Lemma 4.1 Let θ ∈ [0, 1] be an irrational number and let

V = {a sin kt + b cos mt : a, b ∈ R, k, m ∈ Z, t ∈ [0, 2π]}.

Then, for every f ∈ V, there exists g ∈ C(T) such that

f (t) = g(t) − g(t + θ) for all t ∈ [0, 2π].

Proof Put V0 = { f (t) = g(t) − g(t + θ) : g ∈ C(T)}. It is clear that V0 is a (real)

vector space.

One has two elementary inequalities: for any integer n > 1,

∣

∣

∣

n
∑

k=1

sin kθ
∣

∣

∣
=

| cos θ
2
− cos(n + 1

2
)θ|

2 sin θ
2

≤
1

sin θ
2

,

and similarly

∣

∣

∣

n
∑

k=1

cos kθ
∣

∣

∣
≤

1

sin θ
2

.
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Now, for any integer m ∈ Z,

∣

∣

∣

n
∑

k=0

sin(mt + kθ)
∣

∣

∣
=

∣

∣

∣
cos mt

(

n
∑

k=0

sin kθ
)

+ sin mt
(

n
∑

k=0

cos kθ
)∣

∣

∣

≤
∣

∣

∣

n
∑

k=0

sin kθ
∣

∣

∣
+

∣

∣

∣

n
∑

k=0

cos kθ
∣

∣

∣

≤ 1 +
2

sin θ
2

for all t ∈ R. Now, since t 7→ t + θ (t ∈ R/Z) is a minimal homeomorphism on

T, by a lemma of Furstenberg [4, Lemma 5.2], there is g ∈ C(T) (real) such that

sin mt = g(t) − g(t + θ) (for t ∈ [0, 2π]). It follows that sin mt ∈ V0. Similarly,

cos mt ∈ V0. Since V0 is a real vector space, V ⊂ V0.

The above lemma can be proved directly by some trigonometric identities and the

function g in the proof may be chosen to be in V .

Lemma 4.2 Let θ ∈ [0, 1] be an irrational number and let f ∈ C(T) be a real

function. Then for any ε > 0, there exists a continuous map g : T → T such that

| exp(i2π f (ξ))g(ξ)g(ξ · ei2πθ) − 1| < ε

for all ξ ∈ T. Moreover, if d 6= 0 is an integer, g may be chosen to have the form

g(ξ) = ξkd exp(i2πg0(ξ)),

where k ∈ Z and g0 ∈ C(T) is a real function.

Proof Note that Z+Z(θ) is dense in R. Thus [Z+Z(θ)]/Z is dense in R/Z. Therefore,

for any a ∈ R, there exists an integer k ∈ Z such that |ei2πae−i2πkθ − 1| < ε. Hence

|ei2πaei2πkt e−i2πk(t+θ) − 1| = |ei2πae−i2πkθ − 1| < ε

for all t ∈ [0, 1].

Let V be as in the proof of Lemma 4.1 and let f0 ∈ V . Apply Lemma 4.1 and

choose a real g0 ∈ C(T) such that f0(t) = g0(t + θ) − g0(t) for all t ∈ R/Z. Let

f = a + f0 and g(t) = exp(i2π(kt + g0(t))) for t ∈ R/Z. Then

| exp(i2π f (t))g(t)g(t + θ) − 1|

= | exp{i2π f (t)} exp{i2π(kt + g0(t))} exp{−i2π[k(t + θ) + g0(t + θ)]} − 1|

= | exp{i2π(a + f0)} exp{i2π(−kθ + g0(t) − g0(t + θ))} − 1|

= | exp{i2π(a − kθ)} − 1| < ε
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for all t ∈ R/Z.

By the Stone–Weierstrass theorem, the set of real trigonometric polynomials is

dense in the real part of C(T). Thus the first part of the lemma follows.

To see the last part of the lemma, we only need to note that dθ is also an irrational

number and Zdθ is dense in R/Z.

Proof of Theorem 2.10 That (ii) ⇔ (iv) follows from the computation in [23, Ex-

ample 4.9] (see Remark 2.7) and (i) ⇔ (iv) follows from the classification theorem in

[13] as mentioned at the end of Remark 2.9. It is also clear that (iii) ⇒ (v).

It remains to show (ii) ⇒ (iii) and (v) ⇒ (ii).

We will first show (ii) ⇒ (iii).

As in the proof of Theorem 2.3, Φθ,d,0 and Φ−θ,−d,0 are conjugate. Put σ((ξ, ζ)) =

(ξ, ζ). Then σ : T
2 → T

2 is a homeomorphism and σ−1
= σ. One checks that

σ−1 ◦ Φθ,d,0 ◦ σ((ξ, ζ)) = σ−1((ξe2iπθ, ζξd))

= (ξe2iπθ, ζξ−d) = Φθ,−d,0((ξ, ζ))

for all ξ, ζ ∈ T. Therefore Φθ,d,0 and Φθ,−d,0 are conjugate. So Φ−θ,−d,0 and Φ−θ,d,0

are conjugate. Combining this with the fact which was mentioned above, that Φθ,d,0

and Φ−θ,−d,0 are conjugate, we conclude that Φθ,d,0 and Φ−θ,d,0 are conjugate. Thus,

to complete the proof, it suffices to show that α = Φθ,d, f1
and β = Φθ,d, f2

are approx-

imately K-conjugate for any real continuous Lipschitz functions f1 and f2.

It follows from [18, Theorem 4.6] that both Aα and Aβ have tracial rank zero. By

the K-theory computation in Remark 2.7, there is an order isomorphism

κ : (K0(Aα), K0(Aα)+, [1Aα
], K1(Aα)) → (K0(Aβ), K0(Aβ)+, [1Aβ

], K1(Aβ))

such that κ([uα]) = [uβ]. By the classification theorem [13], there exists a unital

isomorphism φ : Aα → Aβ such that [φ] = κ.

Let f (ξ) = f2(ξ) − f1(ξ) for ξ ∈ T. Fix δ > 0. By applying Lemma 4.2, we obtain

g(ξ) = ξkd exp(2iπg0(ξ))

for ξ ∈ T, where g0 ∈ C(T) is a real function such that

(4.1) | exp(2iπ f (ξ))g(ξ)g(ξe2iπθ) − 1| < δ

for all ξ ∈ T. Define σ((ξ, ζ)) = (ξ, ζg(ξ)) for all (ξ, ζ) ∈ T
2. Then

σ ◦ α((ξ, ζ)) = (ξe2iπθ, ζξde2iπ f1(ξ)g(ξe2iπθ)),

β ◦ σ((ξ, ζ)) = (ξe2iπθ, ζg(ξ)ξde2iπ f2(ξ))

for all ξ, ζ ∈ T. Using (4.1), we estimate that dist(σ ◦ α((ξ, ζ)), β ◦ σ((ξ, ζ))) < δ
for all (ξ, ζ) ∈ T

2.
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Note that σ is homotopic to Φθ,kd,g0
. As the computation in [23, Example 4.9] (see

Remark 2.7), we have σ∗0 = id∗0 on K0(C(T
2)) and σ∗1 on K1(C(T

2)) ∼= Z ⊕ Z is

represented by the matrix
(

1 kd

0 1

)

.

It induces the identity map from Z/dZ ⊕ Z onto Z/dZ ⊕ Z. Therefore

h∗i = (φ ◦ jα)∗i = ( jβ)∗i , i = 0, 1,

where h : C(T
2) → Aβ is defined by h( f ) = φ ◦ jα( f ◦ σ) for f ∈ C(T

2). Since

Ki(C(T
2)) is free, we in fact have that

(4.2) [h] = [φ ◦ jα] = [ jβ] in KL(C(T
2), Aβ).

We also note that

(4.3) τ ◦ h( f ) = τ ◦ φ ◦ jα( f ) = τ ◦ jβ( f )

for all f ∈ C(T
2), where τ is the unique tracial state on Aβ .

Let F1 = F ∪ { f ◦ σ−1 : f ∈ F} ∪ { f (σ ◦ ασ−1) : f ∈ F}. By (4.2) and (4.3),

and by [14, Theorem 3.4], there exists a unitary W ∈ Aβ such that

W jβ( f )W ∗ ≈ε/3 φ ◦ jα( f ◦ σ) on F1.

In particular, if f ∈ F,

W ∗φ ◦ jα( f )W ≈ε/3 jβ( f ◦ σ−1),

W ∗φ ◦ jα( f (σ ◦ α))W ≈ep/3 jβ( f (σ ◦ α ◦ σ−1)).

Therefore

W ∗φ(u∗
α)W jβ( f )W ∗φ(uα)W ≈ε/3 W ∗φ(u∗

α)φ ◦ jα( f ◦ σ)φ(uα)W

= W ∗φ ◦ jα( f ◦ σ ◦ α)W

≈ε/3 jβ( f ◦ σ ◦ α ◦ σ−1)

for all f ∈ F. It follows that, with sufficiently small δ,

ad (W ∗φ(uα)W ) ◦ ( jβ( f )) ≈ε jβ( f ◦ β)

for all f ∈ F. Put z = (W ∗φ(uα)W )u∗
β . Then, z ∈ U (Aβ) and jβ( f )z ≈ε z jβ( f ) for

all f ∈ F. This shows that α and β are approximately K-conjugate.

Now we consider (v) ⇒ (ii). Suppose that α = Φθ1,d1, f1
and β = Φθ2,d2, f2

are

two Furstenberg transformations. Suppose that there exist sequences of homeomor-

phisms {σn} and {γn} on T
2 such that for all Borel sets S ⊂ T

2,

lim
n→∞

sup{dist(σn ◦ α ◦ σ−1
n ((ξ, ζ)), β((ξ, ζ))) : (ξ, ζ) ∈ T

2} = 0,

lim
n→∞

sup{dist(γn ◦ β ◦ γ−1
n ((ξ, ζ)), α((ξ, ζ))) : (ξ, ζ) ∈ T

2} = 0,

m2(σn(S)) = m2(S), m2(γn(S)) = m2(S).
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It follows from Theorem 2.3 that θ1 ± θ2 = 0 in R/Z.

Write σn((ξ, ζ)) = (G(n)
1 ((ξ, ζ)), G(n)

2 ((ξ, ζ)) for all (ξ, ζ) ∈ T
2. It follows from

Lemma 3.4 that there are continuous maps g1, g2 : T → T such that G(n)
1 ((ξ, ζ)) =

ξ̃g(n)
1 (ζ) and G(n)

2 ((ξ, ζ)) = ζ̃g(n)
2 (ξ) for all ξ, ζ ∈ T, where ξ̃ = ξ for all ξ ∈ T or

ξ̃ = ξ for all ξ ∈ T, ζ̃ = ζ for all ζ ∈ T or ζ̃ = ζ for all ζ ∈ T. We have

σn ◦ α((ξ, ζ)) = (ξ̃e±2iπθ1 g(n)
1 (ζξd1 e2iπ f1(ξ)), ζ̃ξ±d1 e±iπ f1(ξ)g(n)

2 (ξe2iπθ1 )),

β ◦ σn((ξ, ζ)) = (ξ̃g(n)
1 (ζ)e2iπθ2 , ζ̃g(n)

2 (ξ)ξ±d2 g(n)
1 (ζ)d2 e2iπ f2(ξ̃g(n)

1 (ζ)))

for all ξ, ζ ∈ T.

We compute that for all sufficiently large n,

(4.4) |ξ±d1±d2 e2iπ( f2(ξ̃g(n)
1 (ζ))± f1(ξ))g(n)

2 (ξ)g(n)
2 (ξe2iπθ)g(n)

1 (ζ)d2 − 1| < 1/2

for all ξ, ζ ∈ T. Fix ζ ∈ T and let ξ vary in T. It follows that for fixed ζ ∈ T,

ξ±d1±d2 e2iπ( f2(ξ̃g(n)
1 (ζ))± f1(ξ))g(n)

2 (ξ)g(n)
2 (ξe2iπθ)g(n)

1 (ζ)d2

is homotopically trivial as a unitary in C(T). Since g(n)
2 (ξ)g(n)

2 (ξe2iπθ) is homotopically

trivial, (4.4) implies that ξ±d1±d2 is homotopically trivial. However, that can only

happen when |d1| = |d2|.

Corollary 4.3 Let

V1 = {m1θ + m2 + a cos m2t + b sin m4t : m1, m2, m3, m4 ∈ Z, a, b ∈ R, t ∈ [0, 2π]}.

Let α = Φθ,d, f1
and β = Φθ,d, f2

such that f1 − f2 ∈ V1. Then α and β are conjugate.

Note that V1 is dense in the real part of C(T).
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