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Abstract. A mixing transformation is constructed which has non-simple spectrum
of finite multiplicity. This example is based on a rank 1 mixing transformation and
is constructed by cutting and stacking. It can be made to be mixing of all orders.

1. Introduction
Let T be an invertible ergodic measure preserving transformation of a Lebesgue
probability space (X, /A), and let UT be the induced unitary operator on the complex
Hilbert space L2(X,fi); UTf(x)=f{Tx). The spectral multiplicity MT of T is the
maximal spectral multiplicity of UT as defined in terms of the spectral theorem (cf.
[10]). In this paper we consider the question of what values of MT are possible for
mixing transformations T.

It was proved some time ago by Oseledec [13] that non-simple spectrum of finite
multiplicity (i.e. 1 < MT < oo) occurs for certain weak mixing transformations T.
Later, the methods of Oseledec were refined in [15] to obtain, for any given positive
integer m, a weak mixing transformation T with MT = m. Since then, other techniques
have appeared for constructing different sorts of transformations with non-simple
spectrum of finite multiplicity (cf. [10], [16], [17], [6], [11]). Without going into
details we note that each of these fails in some fundamental way to be mixing.

Many mixing transformations have countable Lebesgue spectrum and therefore
do not have finite multiplicity. No transformation with positive entropy can have
finite multiplicity. On the other hand, there is a well known example of a mixing
transformation with simple spectrum; the Ornstein rank 1 mixing transformation.
In the present paper we apply the construction of Oseledec, mentioned above, to
a rank 1 mixing transformation. With sufficient care, the resulting transformation
is mixing (or even mixing of all orders), and admits an estimate of MT. Our main
result is the following:

THEOREM 1. There exists a mixing transformation Twith 2< MT<6. if is possible to
insure that T is mixing of all orders.

This theorem is proved in § 2.

Using a straightforward generalization of the ideas in this paper and a lemma
from [15], it is possible to obtain a more general result. Given an integer m >2, let
p(m) be the smallest prime number such that m divides p(m) — 1 (the number p(m)
exists: [15]).
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THEOREM 2. There exists a mixing (or mixing of all orders) transformation T such
that mS:Mr:£mp(m).

These results constitute a part of the author's 1983 University of Maryland Ph.D.
dissertation [16], written under the supervision of Professor A. Katok. The author
wishes to thank Professor Katok here for all of his help and encouragement. The
present much simplified version of this paper was written at the MSR1 in Berkeley,
California.

This research was supported in part by NSF Grants MCS820404024/8102790.

2. Proof of theorem 1
Let To be an invertible transformation of [0,1/6], preserving normalized Lebesgue
measure fi0. Denote by Z/m the cyclic group of order m, with additive notation
and identified in the usual way with the set {0, . . . , m -1}. Given a Borel function
r:[{U]^Z/2 we define T, on [0,g]xZ/2by

T1(x,y) = (Tox, y(z) + y).

The transformation T, is called the Z/2 extension of To with cocycle y. It preserves
a natural probability measure which we denote by fi{.

The construction of Tt from To is a special case of a construction known as
compact abelian group extension (cf. [10]). We apply this construction a second time.
Let <p:Z/2-»Z/3 be defined by <p(0) = l and ^>(l) = 2. Define the transformation T
on[0 , | ]xZ/2xZ/3by

T(x, y,z) = ( Tox, y(x) + y, <p{y) + z).

Clearly, T is a Z/3 extension of Ti. We denote the natural probability measure
which T preserves by /it.

The transformation T has a special property first discovered by Oseledec [13].

LEMMA 1. For any To and y, MTz2.

Proof (cf. [16]). There exists a UT invariant orthogonal decomposition

L2([0, | ] xZ/2 xZ/3, n) = HJ&H&H2,

where

Hk = {xk(z)f(x, y):fe L2([0, | ] xZ/2, Ml)},

and

Xk(z) = exp 2nikz/3.

It follows from a straightforward computation that V° UT\Hi = UT\H2° V, where

This symmetry implies that MT >2. •

The next two lemmas will be helpful in establishing mixing for T.

LEMMA 2. If T, is weak mixing and T is ergodic, then T is weak mixing.

Proof. We note that UT\Ho is equivalent to UTt. If T is not weak mixing then there
is an eigenfunction g for UT with eigenvalue A # l . Since Tx is weak mixing, the
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projection of g to Ho is trivial. It follows that g has a non-trivial projection g' in
either Hx or H2 which is also an eigenvector for A. Suppose g'e H,. Then Vg'e H2

is another eigenfunction with eigenvalue A. This implies that g'/ Vg' is a non-constant
invariant function, contradicting the ergodicity of T. •

Given y, let y = y - 1 and let f, denote the transformation constructed using y
instead of y in the definition of T,. The next lemma is a special case of a theorem
of Jones and Parry [7].

LEMMA 3. / / To is weak mixing and both Tx and T, are egodic, then both T, and T,
are weak mixing.

Proof. Consider the UTl invariant orthogonal decomposition

where Hk = {xk(y)f(x): f e L2([0,|], Mo)} and Xk(y) = txp mky. Here, t/TJH« is
equivalent to UTo. Thus, given any eigenfunction g with eigenvalue A # 1, the
projection of g to H° is trivial, and consequently g(x, y) = X\(y)fix)- This implies
*.(?(*))/(7"ox) = A/(x) and /2(rox) = A2/2(x).

Since To is weak mixing, A2=l and f2(x) = c = constant ju.0-a.e. The ergodicity
of T, rules out A = 1. On the other hand, if A = - 1 , let ij/ be a Z/2-valued measurable
function such that C~lf(x) = exp 2m>lf(x). Then the eigenvalue equation for g implies
that

or, in other words,

One can easily verify that this contradicts the ergodicity of ?,. •

Now we will show how to construct To, T, and T. Note that by definition, Tx and
T will be determined by To and y. In fact, we will construct all three of these
transformations simultaneously by cutting and stacking. We refer to [5] for the
details of this method of construction.

Recall that a transformation T is said to be rank r (cf. [8]) if there exists a cutting
and stacking construction for T with r towers at each step, and no construction
with fewer towers. Such a construction will be called a rank r construction. A special
case of a rank r construction is what we will call a homogeneous rank r construction.
It may be described as follows:

After construction step n we assume that there are r n-towers ty",..., *&?, of
equal width and equal height. In step n +1, each tower <3/£ is cut into pn columns
'S'fc.i • • • ^k,Pn, of equal width. Then, for fc = 1 , . . . , r and j; </>„, we stack tnJ > 0
spacers on top of the column "3/^ to obtain an augmented column #£, .

Next we describe the stacking. For each j < pn let o-" be a given permutation of
the set { 1 , . . . , r}. Then, for each k = 1 , . . . , r and j < pm we stack the column & %](k)J+l

on top of the column #£,. In this manner we obtain r new towers, which we number
in such a way that the base of I3'J!+1 is a subset of the base of Wl- This completes
step (n + 1).
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Of course, the numbers pn and tnj must be chosen in such a way that the total
measure is finite (cf. [12]). This being the case, the resulting transformation T
denned by the construction has a certain rank 1 transformation as a factor (i.e. the
transformation constructed with a single tower at each step, using pn and tnJ). It is
well known that rank 1 transformations are ergodic (cf. [5]). We will now give a
sufficient condition for the ergodicity of the transformation obtained from a
homogeneous rank r construction, r> 1.

Let k, I = 1 , . . . , r and define

g£, = (/>„-1)"1 #{;</>„:<(*) = /}.

Let G" be the rxr matrix with entries gn
Kl. For J^{\,...,r}, let Jc denote the

complement of J. Assuming J, Jc ^ 0 , let us define

EAG")= I glj,
keJ
1<EJC

E(G") = min Ej(G").

We will say that G" is 8-ergodic if E(G")>8>0.
The 5-ergodicity of G" can be interpreted in terms of stacking during step n +1.

Namely, if the n -towers are divided into any two collections, then a fraction at least
8 of the columns from one collection will be stacked on top of columns for the
other during stacking in step n + 1.

It follows from a standard argument (cf. [8] or [16]) that if G" is 8-ergodic for
infinitely many n, then the transformation T obtained from the construction is
ergodic.

In the case r = 2 these considerations are particularly simple. Suppose To is rank
1 and let t3/n be the n-tower for To. Let us define $" to be the tower obtained from
°yn by removing the top level. A Z/2-valued Borel function y will be called rank 1
if for each n it is constant on every level of &". One can easily see that in this case
the transformation 7", constructed from To and y will admit a homogeneous rank
2 construction. Furthermore, every homogeneous rank 2 construction is of this type.

Let us define yn = y\ *n+1\^n. The functions yn have disjoint support (in the obvious
sense) and y = £^=2 In- Furthermore, y is rank 1 if and only if yn is rank 1 for each
n. For a rank 1 y, yn determines how the columns from the two n -towers are
exchanged in building the (n + l)-towers during the homogeneous rank 2 construc-
tion for Tx. In particular, the 2 x2 matrix G" is determined by yn, and it can always
be made 1-ergodic by an appropriate choice of yn. It follows that for any rank 1 To

there is a rank 1 y so that T, is ergodic.
Let N be a set of positive integers and let yN = I n e J V T«- Observing that y is rank

1 if and only if y is, we are led to the next lemma.

LEMMA 4. Suppose To is rank 1 and weak mixing. Let N be an arbitrary infinite set
of positive integers. Then there exists a choice of a rank 1 yN such that for any choice
of rank 1 yN\ ify=zyN + yN' then the Z/2 extension T, of To with cocycle y is weak
mixing.
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Proof. Since N is infinite, it contains two disjoint infinite subsets N, and N2. The
steps we JVi are used to make 7\ ergodic and the steps ne N2 are used to make Tj
ergodic. An application of lemma 3 implies that 7\ is weak mixing. •

In a similar way, if y is rank 1 then T will admit a homogeneous rank 6 construction.
(We will consider the details of this construction in the proof of lemma 7 below.)
It follows that in this case, the rank of T is at most 6. Chacon [4] has proved that
for any rank r transformation T, MT < r. This provides the desired estimate for MT:

LEMMA 5. IfT0 and y are rank 1, then 2<M T <6 .

Our next task is to show that this construction can be carried out so that T is mixing.
We observe that since To is a factor of T, T cannot be mixing (or mixing of all
orders) unless To is. D. Ornstein [12] has shown that rank 1 mixing transformations
exist, and D. Rudolph [19] has generalized the argument to show that there exist
rank 1 transformations which are mixing of all orders. From now on we will assume
that To is of this type.

Remark. It turns out that this assumption probably entails no loss of generality.
S. Kalikow [9] has shown that any rank 1 mixing transformation (2-fold mixing in
Kalikow's terminology) is actually 3-fold mixing. It is likely that the proof can be
strengthened to obtain mixing of all orders.

The next lemma was proved by J. P. Thouvenot (unpublished) for fc = 2 and
D. Rudolph [20] for k > 2. It is used to 'lift' the mixing property.

LEMMA 6. A weak mixing compact abelian group extension of a k-fold mixing transfor-
mation is k-fold mixing.
Note. We are using the terminology wherein 2-fold mixing is identical to mixing.

Remark. Similar lemmas are true for some stronger mixing properties: the K -property
[14] and the Bernoulli property [18].

The final step in the proof of theorem 1 is the following lemma:

LEMMA 7. There exists an infinite set M of positive integers with the following property.
For any infinite subset Mx of M there exists a choice of a rank 1 yM' such that for
any choice of rank 1 yM< the transformation T constructed from To and y = yMl + yM'
is ergodic.

Proof. Note that To and T share the parameters pn and tnJ. Let us define

K = #{j<pn:tnJ>0}.

Since To is assumed to be mixing, \imsupn^ookn/(pn-l) = 2d>0, and />n-»°o as
n -> oo (i.e. there are both necessary conditions for a rank 1 transformation to be
mixing). We define

M = {n:kn>e(pn-l)>\2}

and note that M is infinite.
We will show that if ne M, there exists a rank 1 yn such that the 6x6 matrix G"

for T is 8-ergodic. We begin with the following observation. Let a and /? be the
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permutat ions of { 1 , . . . , 6 } defined by a(k) = k + 3 (mod 6), (where 0 and 6 are 
identified), and 

f f c + 1 if k is odd, 
(. k — 1 if k is even. 

Let a n = #{j<p„:<rj = a or a 2 } and b„ = #{j<p„: o-" = Ba or Ba2}. Then G" is 
S-ergodic for any S < (p„ - 1 ) - 1 min (am bn). This can easily be seen by identifying 
G" with a graph and observing how a, a2, Ba and Ba2 contribute to the edge weights. 

Now for w = (x,y, z ) e [ 0 , g ] x Z / 2 x Z / 3 , let 7r ,(w) = x, 7T 2 (W) = (y, Z) and 
7r(vt>) = _y + 2z + l . Let L, and L 2 be any pair of levels of such that TLX = L2. 
As long as L2 is not the top level of $>\Pn, nxLx and TT,L 2 are levels of in the con­
struction of T 0 . Because it is rank 1 , y is constant on each of them. It follows 
from the definition of T that for w = (x, y, z ) e Lx, if c=y{irxLx), then 
TT2(TW) = (c+y, <p(y) + z). Moreover, 

( « ) if c = 0, 

l /3«( t ( 7TW) if C = 1. 

In other words, if y = 0 on the top level of $k,j, we stack < ^ k + i i a ( j ) on top of it. If 
y = 1 on the top level of W^j, we stack $£+1,8*0) on top of it. 

By induction, moving u p the columns, one finds that each permutation a]„, j < pm 

belongs to the group generated by a and B. Since a and B satisfy the relations 
a2 = B3 = aBaB = 1, this group is isomorphic to the symmetric group 5 3 . 

Now for j < pm let Lu L2, and L 3 be the top three levels of %"Kj, T2LX = TL2 = L 3 , 
and assume tnJ > 0. Then TT,!^ and 7 r , L 3 are in the support of yn, and oj 1 = (a^a^ 
where 

if y„ = 0 o n 7T!L3 

if y„ = 1 on 7 r j L 3 , 

if y„ = 0 on 7 r , L 2 

d)2 = s 
if y n = 1 on 7T,L 2 , and co 3 e S 3 . It follows that by varying the value of yn on 77, L 3 and 7 r , L 2 , a" can 

be made equal to any of : o>,« 2 w 3 , /3<u1o>2o>3, wxBa)2o}3 or B<oxB(o2a)3. It is easy to 
check that one of these is always a or a 2 and one is always Ba or Ba2. 

We have assumed for this that tnJ > 0. If ne M, this happens k„ times, so that 
for an appropr ia te choice of y„, an + b„ = k„ and \a„ - b„\ < 1. Thus, 

a„,bn>kn/3>-(pn-l)>4 

and 

(pn-l)-1min(a„,bn)>e/3. 

This implies that G" is 0 /3 ergodic. • 

3. Discussion 
The weak mixing results in [15] together with the results in this paper make the 
following conjecture plausible. 
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CONJECTURE. For any given m there exists a mixing transformation T with MT = m.

The conjecture would follow, for example, from the existence of a transformation
T with simple Lebesgue spectrum. In that case one would have, MT™ = m, where
Tm denotes the m'th iterate of T. Although a complete solution to the Lebesgue
spectrum problem does not seem close at hand, Mathew and Nadkarni [11] have
recently made some encouraging progress by constructing a mixed spectrum example
with a Lebesgue component of multiplicity 2 in the spectrum.

To see why the mixing construction in this paper is not enough to prove the
conjecture, it is informative to see how it can be modified to obtain a weak mixing
example. The modification is interesting in its own right because it provides an
explicit cutting and stacking construction for a weak mixing transformation with
MT = 2. With suitable changes, one can also obtain arbitrary finite MT. (The examples
obtained are essentially the same as those in [15].)

Let pn -» oo and define:

{0 if n is even and j < pn,
1"J 11 otherwise.

The rank 1 transformation constructed with these parameters is weak mixing (cf.
[3]). Furthermore, if we choose y rank 1, and having the additional property that
for infinitely many construction steps, most of the top of one of the two towers for
T, is mapped into the base of the other, then it follows from [1] that 7\ is rank 1.
In a similar way, it is possible to guarantee simultaneously that T is rank 2. Applying
the same arguments as in the mixing case, we can obtain a weak mixing T with
MT = 2.

Now we show that in the mixing case, T cannot be rank 2. K. Berg [2] has proved
that any rank 1 mixing transformation is prime. This implies that 7\ cannot be rank
1 since it has To as a factor. Recent work by D. Ullman (U.C. Berkeley dissertation)
shows that if a rank 2 mixing transformation has a factor, it is unique and is rank
1 mixing. Therefore, T cannot be rank 2 and mixing. Of course this does not imply
that MT > 2, but it suggests that the techniques needed to estimate MT more exactly
in the mixing case are more difficult than simple rank considerations.
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