
J. Austral. Math. Soc. Ser. B 41(2000), 386-400

THE GENERALIZED SHANNON SYSTEM IN WAVELET SPACE

HONG OH KIM1 and JONG HA PARK1

(Received 2 January 1997; revised 24 November 1997)

Abstract

The Shannon system is generalized and the expansion of a function in the generalized
Shannon system is considered. No study of a wavelet expansion exists without the assump-
tion of 'fast' decay of wavelets. The wavelet f which is associated with the generalized
Shannon system has a 'slow' decay. The expansion of a function in the system is shown
to converge at a point which satisfies the Lipschitz condition of order a > 0. On the other
hand, there is a continuous function whose wavelet expansion in the generalized Shannon
system diverges. An observation of Gibbs* phenomenon is also given.

1. Introduction

The Shannon system is a prototype of wavelet systems. In the theory of signal
and image processing, digital communications etc., the Shannon function plays an
important role, since it enables one to recover an analog signal from its sampled values
at a discrete set for a band limited signal [12]. The Shannon system is a multiresolution
analysis which is associated with the scaling function (p whose Fourier transform is
the characteristic function of the interval [—n, it], that is, (p(w) = X{-n.n]{w) [9, 15].

It is of interest to consider the scaling functions (p with cp(w) = XM(W), the char-
acteristic function of the set M. Such scaling functions are called unimodular scaling
functions and are studied in [6]. The multiresolution analysis which is generated
by such a scaling function cp will here be called a generalized Shannon system. For
example, if

M = [a - 2n, -n] U [-or, a] U [n, In - a],

where 2n/3 < a < n, then the function <p with <p(w) = XM(U>) is a scaling function
and it generates a generalized Shannon system.
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A multiresolution analysis {Vj} is translation invariant if each space Vj is invariant
under translation by arbitrary numbers. In [7], it is proved that all such multiresolution
analyses have scaling functions whose Fourier transforms are characteristic functions.
So the generalized Shannon system is the only translation invariant multiresolution
analysis.

In this paper, the expansion of a function in the generalized Shannon system
is considered. There are many results for the pointwise convergence of wavelet
expansions [5, 13, 14]. But 'fast' decay conditions are usually assumed in these
previous works. It is noted that the scaling function cp and the wavelet ty in the
generalized Shannon system have a 'slow' decay in the time domain. That is, <p(t) =

In Section 2, some examples are given of the symmetric set M which gives scaling
function <p with <p(w) = XM (U>). The projection and its kernel in generalized Shannon
systems is observed in Section 3. In Section 4, the kernel function is shown to
generate a delta sequence. In Section 5, for a piecewise continuous function with
a jump discontinuity which satisfies the left and right side Lipschitz condition of
order a > 0, the behavior of a wavelet expansion in generalized Shannon systems is
studied. The pointwise convergence at a point which satisfies the Lipschitz condition
of order a > 0 follows. In contrast to Walter's work in [14], it is shown that there
is a continuous function whose wavelet expansion in generalized Shannon systems
diverge. Finally it is shown in Section 6 that a Gibbs phenomenon occurs in the
wavelet expansion of a function with a jump discontinuity in generalized Shannon
systems.

2. Some examples

In [6], it is known that if M is a finite disjoint union of closed intervals and it
satisfies

(Dl) {Jk€Z(M + 2kn) = R (disjoint union except for end points),
(D2) M c 2M,
(D3) M contains a neighborhood of zero,

then the function cp with (p(w) = XM(W) is a scaling function for a generalized
Shannon system. Some examples of such intervals M are given in [6].

We immediately see that the scaling function <p with <p(w) — XM(W) is real-
valued if and only if M is symmetric. We now give some examples of such a
symmetric M.

(a) The case where M consists of one interval: in [6], it is known that M =
[a, a + 2TT] where — 2n < a < 0 if M consists of one interval. So the symmetric M
is [—it, 7t]. It generates the well-known Shannon system.
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(b) The case where M consists of three intervals: we see from [6] that M is of the
form

M = [-Y, -/3] U [-a, 2n - y] U [2n - p,2n - a],

where 0 < a < fi < y < 2a < An. If M is symmetric about the origin then
2n — a + y and ft = n. Hence it should be of the form

M = [a - 2JT, -n] U [-a, a] U [n, 2n - a],

where 2n/3 < a < n.
(c) The case where M consists of five intervals: since M is symmetric and satisfies

the condition (D3), M is of the form

M = [-n, -S] U [-Y, -)8] U [-a, a] U [/3, y] U [8, nl

From the condition (Dl), the intervals should match nicely:

[-i,, -8) + 2n - [a, /3],

[8, r,]-2n = [-/?, -a].

We leave the routine and tedious calculations as seen in [6] to the interested reader.
Thus M should be of the form

M = [a - 2n, /? - 2n] U [-n, -/?] U [-a, a] U [£, n] U [2n -/5,2n - a],

where n/2 < a < ft < 2n/3. The restrictions on a and fi follow from the condition
(D2).

REMARK. It is seen in [6] that the associated wavelet in the generalized Shannon
system is the unimodular wavelet and the support of its Fourier transform is given by
2M-M.

3. Wavelet expansion in the generalized Shannon system

Let <p be a scaling function with <p(w) — XM(W)- The generalized Shannon
system is the multiresolution analysis Vj, where {<Pj,k(t) = 2i/2(p(2Jt — k) : k e Z}
is an orthonormal basis. The wavelet \jr € L2(R) based on <p gives rise to the
o r t h o n o r m a l b a s i s {^j,k} o f L2(R), w h e r e fj,k(t) = 2il2f(2't - k),j,k e Z . F o r

each j,f e L2(R) has the representation/ (t) = fj (t) + rj (t), where
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and

n=j keZ

The convergence is in the sense of L2. The function fj e Vj is in fact the orthogonal
projection of/ onto Vj [1, 2, 8, 9].

Suppose / is a compactly supported continuous function of bounded variation.
Then we know that the following "Poisson Summation Formula" holds [1,4]:

1 / f°° \
= —Y( f(r,)eik"dr,)f(r,)eik"dr,)e-ik', Vt e R.

/

The orthogonal projection / , of a function / in the dense subspace C%°(R) of
L2(R) onto Vj in the generalized Shannon system can be written as

fPJk)Pjdt) We/?.

Since

we have

fj (w) = —- Y(f, <pJk)<Pjk(w)
2n T^

(/ ) w)

2; (2~J w + 2kjr))$(2-Jw + 2kii)1p{2-> w) (by P. S. F)
k€Z

f(w + 2j+ik7i)<p(2-Jw + 2kn)v(2~i w)
keZ

= f(w)\<p(2-jw)\2=f(w)XVM(w).

We applied the Poisson summation formula to the function / (2; r])<p(r)), which is a
piecewise smooth function, so the above equalities hold except for the finitely many
end points of M. Since {<p(t — &)}*eZ is an orthonormal basis for Vo, £ \(p{w +
2nk)\2= 1. So the infinite sum of the above reduces to only one term, since #Tis a
characteristic function.
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By the above observation and the Fourier inversion formula, we now have a wavelet
expansion of a function/ e C™(R) in the generalized Shannon system

fj (0 = — f f(w)e'wl dw
2ix J21M

/»OO 1 /*OO

= / fWj-\ X»M(w)eiw('-z)dwdr.
J—oo ^K J-oo

Since the projection operator is continuous, the wavelet expansion in the dense sub-
space C%°(R) can be extended to the space L2(R). The projection kernel onto the
subspace Vj is

It converges to the Dirac delta distribution 8(t) as j -> oo in the sense of tempered
distributions, since 2' M / R asj —>• oo. So it is a delta sequence.

The representation of the wavelet expansion in the generalized Shannon system is
given by

/•OO />OO

/ / ( ' ) = / f(T)Sj(t-r)dr= f(t-z)Sj(r)dr V/ e L2(R).
J—oo J— oo

That is,

fj(t)=f(t)*Sj(t) or fJ(w)=f(w)XvM(w). (3.1)

4. The delta sequences

In this section, some examples and properties of the delta sequence in the general-
ized Shannon system will be given. The delta sequence Sj in the generalized Shannon
system is a real-valued function if and only if M is symmetric. The delta sequence <5;

corresponding to the symmetric M given in Section 2 is real-valued and the explicit
form for 80 can be calculated.

(a) If M = [-7T, n], then the delta sequence <50 is of the form

*,(,) f e d W .
In JM nt

Thus is the well-known Shannon function and generates the Shannon system,
(b) If M = [a - 2n, -n] U [-a, a] U [n, 2n - a], where 2TT/3 < a < n, then the

delta sequence <50 is given by

S0(t) = (2cos(^ - oc)t - 1).
nt
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(c) If M = [a - 2n, P - 2n] U [-n, -0] U [-a, a] U [0, n] U [2ic - £, 2n - a]
where n/2 <a<fi< 2TT/3, then the delta sequence So is given by

S0(t) = (2cos(7r - a)t - 2cos(n - fi)t + 1).
Tit

We now summarize some properties of the delta sequence in the generalized Shan-
non system which will be used to analyze the behavior of the pointwise convergence
of a wavelet expansion in the generalized Shannon system in the next section.

PROPOSITION 1. The delta sequence

is Riemann integrable as an improper integral and satisfies

(1) 8j{t) = 2'80(2h),
(2) f^o8j(t)dt = l,forallj e Z ,
(3) l im^o oy; i | < 1«>(0^ = 1.
(4) lim^oo/,00 ^ (*)</* = 0,
(5) lim^/J^

PROOF. The proofs are routine. For example, to show (3), we note that

f 8j (t)dt = I — [ eiwl dw dt
J-\ J-\ 2?T J-2JM

JVM

Hence

This completes the proof.

PROPOSITION 2. / / / e L\R), then

r0 0

/ / (t)t8j (0 dt ->• 0 as j• ^ oo.
J — oo

PROOF. Let M = [a\, b{] U [a2, b2] U • • • U [an, bn]. Then by direct calculation

tSj(t) = 2it80(2
jt) = 2>t— I eiw2''dw =—.Y] [ea'bkt - ei2iat'].

2n JM 2ni k=l
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As an example, let M be the Shannon scaling function, that is, M = [—n, rr]. Then

tSj(t) = — \ea'*' - e-i2i"'] = sin2'nt.
iTti

We must note that 2J bk and 2' ak go to either oo or — oo as j —> oo, since bk ^ 0 ^ ak

for all 1 <k<n. By using the Riemann-Lebesgue lemma, we have

/»o

/

oo n

i, {t)dt = w- I f ( 0 J2 [ei2ibt> - ei2>akl] dt
- o o k=l

n /.ooi n /.oo

= y~J2 if ^ei2'bt' ~ f We'2'""] dt -* 0 asy -+ oo.

This completes the proof.

5. Pointwise convergence

In this section, we will consider the pointwise convergence of the wavelet expansion
in the generalized Shannon system at a jump discontinuous point x0 which satisfies
the left and right side Lipschitz condition of order a > 0. For a point which satisfies
the Lipschitz condition of order a > 0, the behaviors of the expansions of the regular
wavelet, which assume certain 'fast' decay conditions, differ according to the position
of the points [13]. But the behavior of the wavelet expansions in the generalized
Shannon system is not affected by the position of points, since the generalized Shannon
system is translation invariant [6, 7].

THEOREM 3. Let f e C(R) n Ll(R) n L2(R) have its Fourier transform f in
L'(/?). Thenfj converges uniformly to f on R as j ->• oo.

PROOF. Since/ e Ll(R) and fj e Ll(R) by (3.1), the error of the approximation
is given by

/ (0 - /, (0 = — / [f(w) ~ fj(w)] eilw dw = -i- / f(w)eilw dw.

Hence we have

1/(0—/>(01 < — / | /(ty)| dw,

which must converge to zero as j —> oo. This completes the proof.
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THEOREM 4. Letf € Ll (/?) be piecewise continuous. Iff has a jump discontinuity
at x0 which satisfies the left and right side Lipschitz condition of order a > 0, then

fj (x0) -> (1 - ©)/ (xo+) + Qf (JCO-) as j -> oo,

where ® = /0°° S0(ri)dr].

PROOF. By Proposition 1, we have that for any j e Z,

/

oo /«oo /»0 /»0

Sj(T)dz= / <50(r)dr = e and / &j{x)dz = / So(T)rfr = l - 8 .
Jo J-oo J-oo

The following expression is possible by Proposition 1,

[(1 - 0 ) / (*„+) + 6 / (x0-)] - / , (JCO) (5.1)
/»OO

= [(1 - ©)/ (xo+) + &f (JCO-)] - / / (Jc0 - r)5y (T) dx
J — OO

= f[f (xo+) - / (JO - T)] 5, (r) dr+ f[f (x0-) -f(x0- r)] Sj (r) dr.
J-oo Jo

We show that the first integral of (5.1) converges to zero as j —> oo. For this purpose,
we write

f
J-oc

\f(.xo+)-f(xo-r)]Sj(T)dz

= I lf(xo+)-f(xo-T)]Sj(r)dr+ I
J — 1 J —,

U (*o+) -f(x0- z)] Sj (r) dx + I f (xo+) Sj (T) ,

- i

' - O O

= h + h + h.

We want to show that /,--»• 0 as j -*• oo for i — 1, 2, 3. Indeed, we have

/. =
[°[f(XQ+)-f(Xo-T)-\/ ,

1L—r^—J (-̂ -
Since / satisfies the Lipschitz condition of order a > 0 at the right-hand side of x0,
there is a constant Ca such that

(»-,) ( . 1 < t < 0 ) .

Since ( - r ) 0 " 1 is an L'-function in [ -1 ,0 ] , [/(*o+/rff°~r)](-T)g~'X[-i,o] 6
By Proposition 2, we have I{ ->• 0 as 7 -> c».
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From Proposition 1, we immediately have

/•OO

h=f (xo+) / Sj(r)dx -+ 0 as j -»• oo.

Since £^x[_00.-i,€

- t)5; (r)rfr = /" / f a ~ T ) r ^ (r)rf

tends to zero as ; -» oo by Proposition 2. Therefore we have seen that the first
integral of (5.1) converges to zero as j -> oo.

By the same reason, the second integral of (5.1) also converges to zero as j —• oo,
so we have the following convergence:

• / (xo+) / 80(n) dri+f (xo-) / 50(r?) drj
J-oo J0

where 0 = /0°° 80(r)) dr] = 1 — f_oo 80(r)) dr\. This completes the proof.

COROLLARY 5. Suppose f e L{(R) satisfies the Lipschitz condition oforder a > 0
at XQ. Then

f
fj (*o) = /

f
fj (*o) = / / M8J (*o - r ) rfr - • / (x0) «5 y - • oo.

THEOREM 6. Let M = [au bx] U [a2, b2] U • • • U [an, bn] and 0 be given as in
Theorem 4. Then the real and imaginary parts of® are

m(®) = ^- and %(®) = --logblb2'"b"and 3 ( 0 ) ^
2 2JT

PROOF. We have that

axa2 • • -an

(A. r f ^d d \
\27T Jo JM J

1 f°° f
= — / / cos wndwdr)

2?r JO JM

sina.rA
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Since M contains a neighborhood of zero, there is one interval [a^, fe^J such that
a^ < 0 < b^. Thus the end points of the other intervals [a,-, fe,], with i ^ i0, have the
same sign. Since for any c > 0,

/

°° sin en n sin(—en) sin en
dr\ = — and dr\ = an,

n 2 n n

we have

f
0 ^

The imaginary part is given by

3(6) = 3 (T So(n) dri
1 r f •

2n Jo JM

J^ J™ j eiw" dw drA

2TT Jo j ^ \ T) r] )

cosatf —cosbtr)

If we set

then F is differentiable and

_ , /cos an — cos fen\
e ' I I dr\, t

\ n y

/•OO

F'(t)= / e-]'(cosbr)-cosari)dr) =
Jo

0,

- e(ia-')r>) dt)

t - i b t - i a

Therefore

and

Hence we have

Jo

— cosZ7n
dn = lim

!

27T " &
a i a 2 • •

log

•*»
•an

b
a

This completes the proof.
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By Theorems 4 and 6, we see that

It is well known that the Fourier series expansion of /(x) converges to j{f (xo+) +
f (*o—)} at the jump discontinuity x0 [16]. If the delta sequence in the generalized
Shannon system is real-valued then we can derive a similar result.

COROLLARY 7. Suppose the delta sequence 8j in the generalized Shannon system
is a real-valued function and f is a function as in Theorem 4. Then

fj(x0) -> ~{/(-*o+) + / (*o - )} asj - • oo.

REMARK. We consider a convergence problem of continuous functions: is it true
that for every continuous function / the wavelet expansion of/ converges to / (t) at
every point tl It is known that the expansion of a function in regular wavelets converges
uniformly on compact subsets of intervals of continuity [14]. Things are not so nice in
the generalized Shannon system. The wavelet \/r in the generalized Shannon system
has slow decay. By the standard argument using the uniform boundedness theorem,
we can show that there is a continuous function whose wavelet expansion diverges in
the generalized Shannon system.

Let X be the space of continuous functions supported in [—1, 1]. Then X is a
Banach space relative to the supremum norm ||/ W^, for/ e X. Let A ; / = fj (0) for
all / € X. It can be written as

r.A,/ =/,-«))= I f(-r)Sj(r)d
J -00

It can be shown that

II A; || = / \8j(r)\dr =2j+l.

Then the uniform boundedness theorem asserts that there is a continuous function
/ G X such that

>oo a sy ->oo;

so the wavelet expansion of/ (t) in generalized Shannon system diverges at t = 0.

https://doi.org/10.1017/S0334270000011310 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011310


[12] The generalized Shannon system in wavelet space 397

6. On Gibbs' phenomenon

In this section, we will look at a Gibbs phenomenon on the wavelet expansion
of a function in the generalized Shannon system. When a Fourier series is used to
approximate a function with a jump discontinuity, an overshoot or an undershoot at
the jump discontinuity occurs. If Sn denotes the nth partial sum of the Fourier series
expansion of the 2n -periodic function defined by

for 0 < x < 1

- 1 for - 1 <x < 0,

then, of course, Sn(x) —>• 1 for all 0 < x < 1. However, there is a sequence [xn]
of positive numbers converging to 0 such that Sn(xn) converges to a number greater
than 1. Indeed

lim Sn(a/n) = - / dt,

so that

lim 5B(l/«) = - / —idt = 1.17898... > 1.
i-"00 n Jo t

This phenomenon was noticed by A. Michelson [10] and explained by J. W. Gibbs [3]
in 1899. It has been shown that a Gibbs phenomenon occurs in the wavelet expansion
of a function with a jump discontinuity for a wide class of wavelets [5, 11, 13].

To begin with looking for Gibbs effects in the generalized Shannon system, we
will first study a function / which has a jump discontinuity at zero. We remark
that fj (x — a) = gj (x) if g(x) — f (x — a) for a given number a e R. Since the
generalized Shannon system is translation invariant [6, 7], gj (x) and/; (x) belong to
the same resolution space Vj if g(x) = f (x —a).

To study the Gibbs phenomenon of functions with a jump discontinuity at zero, it
suffices to look at wavelet expansions of the function

f(x) =
1, 0 <x < 1,

- 1 , - l < ; c < 0 , (6.1)

0, otherwise,

since other functions with a jump discontinuity at zero can be written in terms of /
plus a function which is continuous at the origin.

THEOREM 8. Let Sj be a real-valued delta sequence in the generalized Shannon
system. For f defined in (6.1), there is a Gibbs phenomenon at the right-hand side of
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0 if there exists an a > 0 such that

2 f 80(r])dr)> 1.
Jo

PROOF. In the generalized Shannon system, the orthogonal projection of/ defined
in (6.1) onto Vj is given by

/,(')= [ f(r)Sj(t-r)dr= [ 8j(t-x)dx.
J-oo J-l

If we take t = 2~ja, we have

fj (2~j a)= I Sj (2~j a-x)dx- f Sj {2~j a-x)dx
Jo J-\

= 2j [ 80(a - T x) dx - 2> [ 80(a-2Jx)dx
Jo J-\

/

a pa+2'

80(r))dr)- / 80(r))drj.
-2> Ja

Since M is symmetric, we have

fj(2-Ja)= f 8o(r,)dri- f
J—a J—aa+2i

Thus

\imfj(2-ia)= I
J~+°° J-a

If the value lim, -xx, / , (2 ' a) is greater than one then there exists a Gibbs phenomenon
in the sense that/ , (2~; a) converges to a number greater than one for a positive number
a. This completes the proof.

Theorem 8 gives a criterion for the existence of Gibbs phenomenon in the general-
ized Shannon system: a Gibbs effect occurs near the right-hand side of the origin if
there is a number a > 0 such that

f 1
/ 80(r))dr) > -.

Jo z

It is known that there is a Gibbs phenomenon for the Shannon system.
In the case where M = [a — 2n, —n] U [—a, a] U [n, 2n — a], we observe the

numerical values of

F(a)= I ^^-(2cos(n-a)t-l)dt
Jo nt
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TABLE 1. The numerical values of F(a) and G(a).

399

a

¥

\*

§ *

0.482284

0.528236

0.550002

0.561960

0.569216

0.573943

0.577193

0.579522

G(a)

0.611170

0.555786

0.522794

0.502766

0.489946

0.481318

0.475262

0.470859

and

rt ^ r s i

Jo

SHUT/:(2cos(7r -a)t - \)dt

in Table 1.
We can guess that F{a) is increasing and G{a) is decreasing in 27T/3 < a < n.

We now show that this guess is actually true.

THEOREM 9. In the generalized Shannon system which has the scaling function <p
with cp = XM> where M is symmetric and consists of three intervals, the corresponding
wavelet expansion shows a Gibbs phenomenon.

PROOF. This will be proved by showing that F(a) is increasing and G(a) is decreas-
ing in 27T/3 < a < n. We show that F'(ot) > 0 and G'(a) < 0 in 2^ /3 < a < n.

F is differentiable and

—a)tdt
1 /"'

?'(«) = - / 2 sir
7T Jo
1 f1

= — I (cos at — COS(2JT — a)t)dt
7T Jo
1 / s in a sin(2jr — a)
n \ a 2n

r - « ) \
-a )'

Since 2^/3 < a < 2n - a < 4n/3, (sina)/a > (sin(27r - a))/(2jr - a). Thus
F'(a) > 0. Therefore F(a) is increasing in 27T/3 < a < n.
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Now G is differentiable and

1 f2

G'(a) = — / 2sinntsin(n—a)tdt
x Jo

f21 r
= — I (cos at — cos(27r — a)t) dt

K Jo
_ 1 /sin2a sin2(27r -o t ) s

For 27T/3 < a < n, (sin2a)/(2a) < 0 and (sin2(27T - a))/(2(2n - a)) > 0. So
G'(a) < 0 in 2^/3 < a < n. Therefore G(a) is decreasing in 2^/3 < a < n. This
completes the proof.
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