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ON A DUAL RELATION FOR ADDITION FORMULAS

OF ADDITIVE GROUPS II

TOSHIHIRO WATANABE

Chapter 2. Sheffer Polynomials

Introduction

This paper is a continuation of our previous memoir [28], hereafter
referred to as I, and constitutes the second chapter of this series. As
stated in I, our aim in this series is to examine properties of a polynomial
sequence with several variables satisfying an addition formula by means
of the down-ladder, and to give a generalization of so called classical poly-
nomials. In the present article, we study the two kinds of polynomial
sequences:

(i) sequences sa(x) of polynomials satisfying the identities

sa(x+y) = Σ sβ(x)pγ(y),
a = β + γ

where pa(x) is a given sequence of binomial type defined in I,
(ii) doubly indexed sequences pψ(x) of polynomials satisfying

P?+μ\χ + y) = Σ Pψ(*)p\μ\y).
a = β+γ

In the case of one variable (cf. [11], [22]), the addition formula (i) or
(ii) holds for many well known polynomials, for example, Hermite, La-
guerre, Euler, Bernoulli, Poisson-Charlier, Krawtchouk, and Stirling
polynomials etc.. In Section 8, some of these polynomials are generalized
to the case of several variables.

Let us give a brief description of contents of this paper.
Section 1 deals with fundamental properties of a polynomial sequence

sa(x) to satisfy the addition formula (i), that is called a Sheffer set. In
this section, we have a relation between the Sheffer set sa(x) and the
polynomial sequence pa(x) of binomial type. Also, an expansion formula
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in the Sheίfer set sa(x) is given.
Section 2 deals with a unipotent representation of a delta set defined

in I on a Sheίfer set. This representation uniquely determines a Sheffer
set.

Section 3 deals with a recurrence formula of the Sheffer set sa(x)
with respect to the parameter a. Conversely, a class of difference systems
resulting from the recurrence formula characterizes the Sheffer sets.

Section 4 deals with the umbral calculus. This gives a solution
of so called "problem of connection constants" in the case of several
variables.

SectionΊS constructs a differential system of a Sheffer set as its eigen-
functions.

Section 6 deals with some properties of a polynomial sequence
pL

a

λl(x) satisfying the addition formula (ii). The polynomial sequence p^Xx)
turns out to be a special Sheffer set.

Section 7 deals with some special generating function associated with
a Sheffer set. In the case of one variable, this concludes generating
functions of some of classical polynomials examined by Carlitz [10].

Section 8 deals with a generalization of Hermite, Euler, Bernoulli
and Laguerre polynomials.

Let us enumerate symbols and notations in this paper. The symbol
Z\ is the subset in the n dimensional integral lattice Zn, in which each
point has all non-negative entries. Let the Greek letters a, β, be
vectors in Zn and, for example, the components of a be written in the
form

a = (al9 , an) ,

The polynomial sequence pa(x) is a set of polynomials with the variable

x = (xu ---,xn) depending on the parameter α in Zn

+. For convenience

of calculation, we regard pa(x) as vanishing for a $ Z%. The symbol P is

the vector space of all polynomials with n variables. The origin is denoted

by the notation 0. Let {eu , en} be a unit coordinate system, that is,

β ι = (l,0, . . . ,0) , . . . , e n = (0, " . , 0 , 1 ) .

The inner product X!*-i**y* is written by (x,y}. We use e((x,y}) instead

of exp <x, y>. For a e Z\ and the variable x — (xu , xn), the length

ax + + an of a is denoted by \a\, and the polynomial xa\a\ is xlx\ax\

• xa

n

n\an!. Instead of the partial differential operators 3/3xi, , 3/3#n,
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we use the symbol du , dn. Also, the vector (3/3^, , djdxn) is denoted

by the symbol 3. Let {Pl9 , Pn} be translation invariant operators.

Then the multiple P j 1 ,: Pa

n

n is denoted by P \ The notation δaβ is a

generalization of the Kronecker's delta symbol 3^ such that

i f a = J8

iίaφβ

§ 1. Definitions and fundamental properties

A polynomial sequence sa(x) is called a Sheffer set or a set of Sheffer

polynomials for the delta set {Pl9 , Pn} if

(i) so(x) = c ^ O ,

(ii) for each ί — 1, , n,

Ptsa(x) = sβ_β<(x).

If the delta set {Pl9 , Pn} is normal (as for the definition, see [28] § 1.),

sa(x) is called a normal Sheffer set or a seί o/ normal Sheffer polynomials.

The following lemma is fundamental.

LEMMA 2.1.1. A set of Sheffer polynomials sa(x) is a base for the vector

space P.

Proof. By a change of the coordinate, we have only to prove the

lemma in the case of a normal Sheffer set sa(x). To prove the lemma,

we use the induction on the parameter a of sa(x). For each unit vector

ej9 set

Sej(x) = Σ a^af/al, j = 1, , n .

Since the normal delta set {Pl9 , Pn} has the following expressions:

Pi = di + Σ Ci(«)3β, i = l, ••-,»,

the homogeneous polynomial of the highest degree of Ptsej{x) is

Σ ajWxr-'Ka - et)l.

On the other hand, the definition of the Sheffer set gives

PίSej(x) = διMχ) = diJc > i,j =l,- -9n.

Therefore we obtain
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Sej(x) = CXj + aj9 j = 1, . . . , Λ ,

for some constants as. By induction, we assume that for |α |<m, the only

monomial of the highest degree in sa(x) is cxaja\. Set, for \a\ = m,

sa(x)= Σ
and operate Pt on sa(x). Using the same argument in the case of \a\ — 1,

we, also, see that for \a\ = m, the only monomial of the highest degree

in sa(x) is cxa/al Q.E.D.

Remark. The only monomial of the highest degree in a normal

Sheffer polynomial sa(x) is cxa/a\.

A Sheffer set relative to a delta set {Pl9 , Pn} is related to a set

of basic polynomials for {Pu , P J by the following.

PROPOSITION 2.1.2. Let {Pu - , P J be α cίeZfo set with basic poly-

nomials pa{x). Then sa(x) is a Sheffer set relative to {Pu , Pn} if and only

if there exists an invertible translation invariant operator S such that

(2.1.1) sa(x) = S-!pβ(*).

Proof. Suppose first (2.1.1). Then by Proposition 1.1.2 [28], S'Ψj =

PjS-1 and

PjSa(x) = PjS-'pXx) = S-ψjpAx) = S-!pβ-β/x) = s.-β/*), i = 1, , n.

Further, since S is invertible, S"1! = c Φ 0, so that

S^l = c .

Thus 5a(x) is a Sheffer set.

Conversely, to prove (2.1.1), we may assume that sa(x) is a normal

Sheffer set. Define S by setting

S; sa(x) >Pa(x),

and extending S to all polynomials by the linearity and Lemma 2.1.1.

Since, by Remark of Lemma 2.1.1, and Proposition 1.1.3 [28], the only

monomial of the highest degree in sa(x) and pa(x) is cxa\a\ and xa\a\y

respectively, S is invertible. It remains to show that S is translation

invariant. To this end, note that S commutes with each Pj9 j = 1, , n.

Indeed,

SPά8a(x) = Ssa.e.(x) = pa-ej{x) = PjPa(x) = PjSsa(x), j = 1, , n,
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whence SPa = PaS. By the First Expansion Formula in [28], we conclude

tfrat S is translation invariant. Q.E.D.

By Proposition 1.1.4 [28], we see that every delta set has a unique

sequence of basic polynomials. Hence every Sheffer polynomials sa(x) is

uniquely defined by a delta set {Pu , Pn} and an invertible translation

invariant operator S. So we call sa(x) a Sheffer set or a set of Sheffer

polynomials relative to {Pl9 , Pn; S}.

Now we get an expansion formula in the Sheffer polynomials.

THEOREM 2.1.3. (Second Expansion Formula). Let sa(x) be a set of

Sheffer polynomials relative to {Pu - , P n ; S}. If T is any translation

invariant operator, and f(x) is any polynomial, the following identity holds:

Tf(x + y) = Σ sa(y)P"STf(x),

for every vectors x and y.

Proof. Let pa(x) be basic polynomials for the delta set {Pu , Pn).

By the First Expansion Formula in [28],

Applying S~\ regarding y as the variable and x as a parameter, this

becomes

Now, again, regarding y as the constant and x as the variable, and

applying S followed by T, we obtain the second expansion formula.

Q.E.D.

In the preceding theorem, setting y = 0 and T = S~\ we obtain

COROLLARY 1. If sa(x) is a set of Sheffer polynomials relative to

{Pu...,Pn;S}9 then

Let T be the identity operator and f(x) be the Sheffer polynomial

8a(x) relative to {Pu , Pn; S}. Then,
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COROLLARY 2. The Sheffer polynomials sa(x) satisfies

sa(x + y) = Σ sβ(x)pτ(y).

Using the symbol of translation invariant operators defined in [27],

we derive a generating function for the Sheffer polynomials.

COROLLARY 3. Let {pϊι(ξ), '9Pn\ζ)} be the formal inverse of the

symbol {Pι(ξ), , pn(f)} /w *Λe cfe/ta se£ {P1? , Pn}. Then the generating

function for the Sheffer set sa(x) is given by

(2.1.2) Σ ^

where S(ξ) is the symbol of the operator S.

In the case of one variable, a polynomial sequence defined by the

generating function (2.1.2) has been studied from of old (cf. [1], [6], [11]

vol. 3, [23], [24], [26]).

The following converse of the Second Expansion Formula is proved.

PROPOSITION 2.1.4. Let T be an invertible translation invariant oper-

ator, let {Pl9 , Pn} be a delta set, and let sa(x) be a polynomial sequence.

Suppose that

(2.1.3) f(x + a) = Σ sa(a)P"Tf(x)
a

for all polynomials f(x) and all vectors a. Then the set sa(x) is the Sheffer

set relative to {Pl9 , Pn; T}.

Proof. Operating with T~ι and then with T after permuting variables,

we have, from (2.1.3),

Setting f(x) = pa(x), where pa(x) is the basic set of the delta set {Pu , Pn}>

we obtain

/>«(* + α ) = Σ Tsp(a)pr(x).
a = β + γ

Putting x = 0, this yields pa(a) = Tsa(a) for every vectors α. Q.E.D.

In the above proposition, setting f(x) = sa(x), we obtain the following

result from Corollary 2 in Theorem 2.1.3.
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COROLLARY. A polynomial sequence sa(x) is a Sheffer set associated

with a basic set pa(x) if and only if

sa(x + y) = ^Σ + sβ(x)p7(y).

As referred to the introduction, in the case of one variable, this

addition formula holds for many classical polynomials.

§ 2. £L unipotent representation of a delta set on a Sheffer set

In this section, we shall be concerned with a unipotent representation

of a delta set on a set of Sheffer polynomials. Then, this representation

uniquely determines a set of Sheffer polynomials as follows:

THEOREM 2.2.1. Let sa(x) be a polynomial sequence with sQ(x) = 1.

Then:

(i) If sa(x) is a Sheffer set, for every translation invariant operator T,

there uniquely exists a sequence of constants ca such that

(2.2.1) Tsa(x) = Σ sβ(x)cr.

(ii) Let {Pu , Pn} be a delta set. For a e Z*, let {c^a), . . •, cn(a)} be

a set of sequences such that the determinant |ct(e,)| does not vanish. If it

holds the identities

(2.2.2) PjSa(x) = Σ+ sβ(x)Cj(r), j - 1, , n ,

then sa(x) is a Sheffer set.

Proof of (i). Let pa(x) be a basic set associated with the Sheffer set

3a(x). Corollary of Proposition 2.1.4 gives

sa(x + y)= Σ + 8β(x)pr(y) .

Applying T, regarding y as the variable and x as a parameter, this becomes

Tsa(x + y) = α_Σ r sβ(x)Tpr(y).

Setting y = 0 gives

Tsa(x) = βΣr8β(x)Tprφ).

Defining

Tpr(0) = Cr ,

we obtain (2.2.1). Q.E.D.
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Proof of (ii). By a change of the coordinate, we have only to prove

(ii) in the case of a normal delta set {Pu , Pn}. To prove (ii), we use

the induction on the parameter a of sa(x). Putting a = et in (2.2.2), we

have

(2.2.3) PjSei(x) = so(x)cXe,) + ββ<(x)c,(0), i,i = 1, , n.

Comparing the homogeneous polynomials of the highest degree of the

both sides of (2.2.3), and noting

(2.2.4) P, = d* + Σ ^ W ,

we have from SQ(X) = 1,

(2.2.5) ββi(x) = Σ^Φdxj + 6* , i = 1, , n ,

for some constants bif and

(2.2.6) c,(0) = 0 .

For |αr|<τn, we assume that the homogeneous polynomial of the highest

degree of sa(x) is (Cx)ala\, where

n

(Cx)i = Σ cj(ei)χj y i = 1, , n .

For \a\ = m, set

sa(x)= Σ aa(β)xηβl.

By (2.2.4) and (2.2.6), the homogeneous polynomials of the highest degree

of the both sides in (2.2.2) are

(2.2.7) Σ a.(β)x>-(β-ejV ,
\β\=M

and

(2.2.8) tcj(ek)(Cxy-e*l(a-ek)\,
k = l

respectively. Hence, comparing (2.2.7) and (2.2.8), we have m = M, and

Σ
\β\=m

Thus, we see that the homogeneous polynomial of the highest degree of

sa(x) is (Cx)a/al. Therefore we conclude that the polynomial sequence sa(x)

https://doi.org/10.1017/S0027763000021279 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021279


ADDITION FORMULAS 103

generates all polynomials. Define a set of linear operators Qj by

QjSa(x) = sa_e/x), j = 1, , n.

To prove that {Ql9 , Qn} is a delta set, first we show that each Qt is
translation invariant. Note that

Σ sβ(χ)Cj(r) = PjSa.ei(χ) = P}QMχ)

Since s«(x) generates all polynomials, this implies

whence

Using the First Expansion Formula in [28], we see that each Q* is trans-
lation invariant. Hence, each Q* has a differential expression by Propo-
sition 1.1.2 in [28];

Since it holds

we have, from (2.2.5), α<(0) = 0 and

Σ «f(β*)cfc(βj) = 3^ , i, j = 1, , n .

Therefore, the set of operators {<&, , Qn} is a delta set. Now, we
conclude that sa(x) is a Sheffer set. Q.E.D.

§ 3. Recurrence formula

In this section we treat a partial difference system of Sheffer poly-
nomials sa(x) with respect to the parameter a, that is called a recurrence
formula. In the theory of orthogonal polynomials with one variable [27] >
the recurrence formula holds for any three consecutive orthogonal poly-
nomials. On the other hand, in the case of Sheffer polynomials, we can
take the formula for any finite consecutive polynomials. Also we see
that this recurrence formula determines a unique Sheffer set. For this
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purpose, we need an elementary theory of a completely integrable system

of first order [20].

LEMMA 2.3.1. Let αίv/(f) be a formal power series with respect to ξ =

(£i> * •> f«) for each i,j = 1, , n. Let Xt be a vector field defined by

where dk is a partial derivation with respect to ξk. Then the partial

differential system of first order

(2.3.1)

is completely integrable if and only if

(2.3.2) ± dnc{ξ)dkan{ξ) - aj1c(ξ)dkau{ξ) = 0 .
J l

Proof. Let Xt be a prolongation of the vector field Xt to a space of

variables (£„ fn, qu , gn) such that

where 3& is the partial derivation with respect to the variable qk;

dk = djdqk, A = 1, . . . , Λ .

As well known, if the complete solutions of (2.3.1) are given by the

implicit functions

Vj(ξu --,ξn,qu ",Qn) = c, , j = 1, , n

for some constants cj9 to have the non-vanishing Jacobian

the system (2.3.1) is equal to

(2.3.3) Xt(pj) = 0, i,j = l, . . . , n .

Hence, (2.3.3) is a completely integrable system if and only if

(2.3.4) [Xu Xj] = 0 m o d ( X u •••,Xn).

Since
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+ δjj^φauiξβt +

Σ
fci l

the condition (2.3.4) is equal to (2.3.2). Q.E.D.

Let {<2Ί(?), , qn(ξ)} be a formal inverse of the symbol {Pl(ξ), , pn(f)}

of the normal delta set {Pl9 , Pn}, that is,

(2.3.5) Qj(p(ξ)) = ξj, j = l , •• , n .

Operating with 34 on the both sides of (2.3.5), we obtain

(2.3.6) ± ( d k q j ) ( p ( ξ ) ) d i P k ( ξ ) = dij9 ί, = 1, , n ,

and, so

(2.3.7) ± (diPk)(qm^qj(S) = δtj9 i, j = 1, , n.

Since {P^ , Pn} is a normal delta set, we have the following expansion

(2.3.8) (dtPjXq(ξ)) = δtJ Σ
ι«ι>i

for some constants Cij(a). Here, we treat the system (2.3.1) in the case

of the following:

(2.3.9) σti(f) = δtJ+ Σ dj(<x)ξa, i,; = 1, , n

for some constants cί}(a). Then:

LEMMA 2.3.2. The condition (2.3.2) is βgwαZ to

{a, + ϊ)Cjl(a + et) + Σ Σ(Jk + l)cik(β)c3l{ϊ + ek)
(2.3.10) a=β+rk-1

= (aj + ΐ)cn(a + e3) + Σ Σ (β* + ΐ)cjk(T)cu(β + ek\

ί, J, Z = 1, , 71.

The proof is a direct verification. Secondly, we treat the other

differential system.

LEMMA 2.3.3. Let {Pι(ζ), •••,/>»(£)} be a symbol of the normal delta
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set {Pu , Pn} given by (2.3.8). Then the partial differential system

(2.3.11) (3,/X?) = Σ bMp"® , i = 1, , n
a

is completely integrable if and only if the coefficients b^a) satisfy

n

(2.3.12) a=β+r k=1 lk

= β_Σ ΣfjtiW* + Wi(β + ek), ij = 1, , n,

where eί;(0) = δίj and c^(α) are defined by (2.3.8).

Proof. As well known, the system (2.3.11) is completely integrable if

and only if it holds

(2.3.13) dj Σ bi(a)p (ξ) = dt Σ bj(a)pa(ξ), i, j = 1, , n .

Inserting (2.3.8) into (2.3.13), we obtain (2.3.12). Q.E.D.

Now, we shall determine the form of a recurrence formula for a

normal Sheffer set sa(x). Since the homogeneous polynomials of the

highest degree in sa+ei(x) and sa(x) are the monomials cxa+ei/(a + e*)! and

cxa/a\, respectively, by Remark of Lemma 2.1.1, the recurrence formula

must be the following shape:

(2.3.14) (a, + l)sa+ei(x) = x.s^x) - Σ b^a; β)sβ(x) , / = ! , . . . , * ,

for some constants bt(a; β) depending on the parameters a and β. To

determine the constants b^a; β) in (2.3.14), we use the generating function

of sa(x) in Corollary of Theorem 2.1.3,

(2.3.15) Σ sa(x)pa(ξ) = S^)"1 e((x, ζ)).
a

Operating with the partial derivation dt with respect to ξ{ on the both

sides of (2.3.15), we have

(2.3.16)

Setting ξt = q^η) in (2.3.5) gives

Σ Σ
(2.3.17) " k=ι
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Using (2.3.15), we get

Σ Σ (3*
(2.3.18) - *-»

= (*, - (3,
a

Taking the expansions (2.3.8) and (2.3.11) with f(ξ) = log S(ξ), and the

coefficients of the both sides of (2.3.18), we obtain

(ai + ΐ)sa+ei(x)+ Σ Σc
(2.3.19) β - ' + ' k=1

= *«*«(*)- Σ &<(j3)*r(*)
a = β + γ

Thus we arrive at the final form of the recurrence formula of Sheffer

sets:

(at + ΐ)sa+βt(x)

(2.3.20) = χ M χ ) _ Σ Λ i { a __β) + f:Cik{a_β +

i = 1, , n ,

where b^a) and ci5(oc) are defined on Z+, and

c^(0) = 0, /,; = 1, . .-, n.

Conversely, we see that the difference system (2.3.20) characterizes a

Sheffer set as follows:

THEOREM 2.3.4. Let sa(x) be a polynomial sequence with so(x) = c Φ 0.

Suppose sa(x) is a base for the vector space P.

Then, for some given constants bi(ά) and Cij(ά) on Z\ to satisfy

sa(x) satisfies the difference system (2.3.20) if and only if sa(x) is a Sheffer

set. Then the differential systems (2.3.7) with (2.3.8) and (2.3.11) with f(ξ) =

log S(ξ) are completely integrable. Take the formal inverse {p^ξ), , pn(ξ)}

for the formal power series solution {q^ξ), , qn(ξ)} of (2.3.7) with (2.3.8)

such that

So, the sequence sa(x) is a Sheffer set relative to {Pι(d), -,pn(d); S(d)}.

Proof. Our previous discussion has shown the necessary condition.
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So, we have only to prove the sufficient condition. Assume that a poly-

nomial sequence sa(x) satisfies (2.3.20) for some given constants b^a)

and Cij(a) on Z\ to hold

CijiO) = 0, ij = 1, . - . ,τ ι .

We calculate the compatibility condition for (2.3.20).

Firstly, we regard sa+e.+e.(x), i Φj, as a string of transformations:

8a(x) >sa+ei(x) >sa+ei+ej(x) .

Then it holds

= (*J + I ) " 1 *,ββ + β <(*) - £ bj(β)Sr(x)

- Σ Σ cJk(β)(rk + ΐ)sr+et(χ)}
k=i a+ei = β+r J

/ i / i Cίk\P)\' k ι~ *-)Sγ + ejc\X) ( ~~~ \P^j "T" •*•) \ / i

- (aj + i)-»|g <+Σί+rcίt(j8χr» + i)βr+.,(χ)}

X { Σ+ 6i(j8)ί(^ + l)sr+«/*) + Σ+ b}(μ)sXx)

+ g Z / ί ^ X " . + iK+.»(χ)}} - («i + i)-^* + i)"1

U = i a=β+r

 Z I r j k

n

Σ
9

Arranging the above identity, we have

sa+ei+e.(x) = (oίj + l ) - 1 ^ + ly'XjXiSaix)

- (aj + l)-*(α* + I ) " 1 ! Σ rjbt(β)sr(x)}
la+ej=β+r J
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- (a, + l)-\ai + l H Σ
la=β+μ+v

- (a, + l)-'(α< + D- ' fΣ Σ v»64(j8)cίtC«)8,(*))

(2.3.21) - (α, + ly ' fa + 1 ) - ' { Σ Σ ^ - «ί*)c«*(j3)βr(*))
U = l a+ej+ek = β + r J

- (a, + l)-'(α« + I ) - 1 ! ! ] Σ C"* + «»)6jO<)c«*(iS)s.(x))

l)-υ \- v-Σ
8

X cik{β)cu(μ)sXx)} - (ccj + I ) " 1 ! Σ b,(β)sjx)

- (μ, + D-'ίέ Σ r*cjk(β)sr(χ)} •
{.k = l a+ei+ek = β+r J

On the other hand, sa+ei+ej(x) may be regarded as the string of the

transformations:

Then, by permuting i and j in (2.3.21), we obtain the identity:

s«+*ί+e/x) = («t + l)~Vy + lY'XiXjSXx)

- (α< + l)-'(α, + I ) " 1 ! Σ rtbά(β)8r(x)}
l<χ+ei = β+r J

- (cct + l)-«(«, + l

- (α4 + l)-'(α, + 1 ) - ' ( Σ ΣΣ
5

(2.3.22) - («4 + l)-](α, + υ - ' ί Σ Σ r4(Γ, -
U=i α+ei+eft = ̂ +r

- (α< + I)-1**, + I)- 1 ! Σ Σ viiμ* + v* - «*«)

X c<tO<)cίlt0S)β,(x)} - (α4 + I)" 1 ! Σ bt(β)sr(x)}

- (oct + ly^t Σ rkcik(β)sr(χ)}
U = i a+ej+ejc = β+r )

Eliminating the symmetric terms in (2.3.21) and (2.3.22) with respect to

the permutation (i,j), and multiplying (at + ϊ)((Xj + 1) to (2.3.21) and

(2.3.22), we obtain the identity
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+ Σ Σ v*btφcjt(μ)8,(x)

+ Σ Σ rj(rk - δjk)cik(β)φ)
k = l a + ej+ek = β + r

+ Σ Σ iμ* + vt)b^μ)cttφχx)

+ Σ Σ μ^ιCik(μ)Cjι(μ)8Xx)
k,ί = l a+ek+eι = β + μ + v

(2.3.23) + (α« + l){ Σ b}(β)sr(x)} + (cct +

= Σ Λ W ) s r ( x ) + Σ Σ vtbj(
+ β + k l β

+ Σ Σ r^r, - δlk)cjk(β)sr(x)
k = l a + ei + ejc — β + ΐ

Σ
k = l

+ Σ Σ μkVιCu(μ)cjk(β)sv(x) + (α, +

Σ rkclk(β)sr(χ)) .
1 a+ej+ejc = β+r )

Note that sα(x) is a base for the vector space P. Hence the coefficients

of sa-β(x) in (2.3.23) give

(as - βjbtiβ + e3) + Σ Σ («* - β*)bi(μ)cύk(v)
k = l β+ejc = μ + v

+ Σ (a, - β})(ak - βt- δjk)cik(β + e, + ek)
k = l

+ Σ Σ («» + i - vJb&Mv)

+ Σ Σ ^(« ; - βι)cik(μ)clι(V)
k,l = l β+βfc+eι = μ + v

(2.3.24) + (α4 + 1)6,03 + β4) + (αt + l ) { g (α» - j S ^ ^ +

= (α« - jί^OS + e«) + Σ Σ («* - βt)bj(μ)cit(f>)
k = l β + ek = μ + v

+ Σ(ai- βt)(ak - βk - δik)cJk(β + et + ek)
fc = l

+ Σ Σ («* + 1 - »*)bt(μ)cit(»)
fc l 5

Σ
fc,i=l j
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+ (μ, + 1)6,08 + es) + (α, + l){έ («* - βjct*(β + e, + eκ)}.
U=i )

Arranging (2.3.24), we obtain

(βj + l)bt(β + ej) + ± Σ μkbt(μ)cJkfy)

+ Σ (βj + 1 + ίj*X«*

- Σ Σ v,(α«
(2.3.25) *.»-iί+.i+.,-,+.

= (/5, + 1)6,03 + et) + Σ Σ
k l β

+ Σ («» - ^Λi3* + 1 + ^ ^ . O S + β, + β»)
A = l

- Σ
k l l
Σ Σ

k,l=l p+ei,+eι=

Eegarding aι as variables and replacing β + et with jS, we get the follow-

ing identity for the coefficient of at:

(β, + ΐ)cu(β + e,) - Σ Σ
(2.3.26) »-iί+«-M.

= 08, + l)c,;(j3 + et) - Σ Σ v,cJ,0")c«(>') •

This is exactly the completely integrable condition (2.3.10). Comparing

the coefficient of the constant term, we have

(βj + 1)6,08 + e3) + ± Σ μ*bt(μ)cjk(»)
fc = l β+eie = μ + »

- Σ i3*(j3ί + 1 + δjk)cik(β + e} + ek)

k=i

+ Σ Σ βιV*Cιk{μ)cn(v)

= (βt + ΐ)bj(β + e,) + t Σ
k l β

(2.3.27)
=

- Σ β*(βi + 1 + ίf.JCi.OS + et + ek)
k = l

+ Σ Σ βιVkC3k(μ)cu(v) .
k,l=l β+ek+eι=μ+v

Inserting (2.3.26) into (2.3.27), we obtain
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(βj + 1)6,03 + e,) + Σ Σ μJ>
(2.3.28)

e4) + Σ ΣΣ
i β+ejc = μ

This is, also, the completely integrable condition (2.3.12) with f(ξ) —

log S(ξ). Therefore we get a unique set of formal solutions {q^ξ), , qn(ξ)}

and S(f) of (2.3.1) with initial conditions qs($S) = 0, j = 1, , n, and

(2.3.11) for f(ξ) = log S(£) with the initial condition S(0) = c Φ 0, respec-

tively. We easily see that {qi(d), , ^(δ)} is a delta set. Let us give

the formal inverse {Pi(f), ,/>„(?)} of {(&(£), , g»(?)}. Let sα(x) be a

Sheffer set relative to {p^d), ,pn(d); S(3)}. Since the partial difference

system (2.3.20) with the initial conditions so(x) = c has a unique polyno-

mial solution, we obtain sa(x) = sa(x). Q.E.D.

Remark, (i) The recurrence formula for a Sheffer set is obtained

from the generating function (2.1.2).

(ii) If the coefficients b^a) and ciό(a) in (2.3.8) and (2.3.11) with

f(ξ) = log S(ξ), respectively, vanish without only finite terms, the con-

secutive Sheffer polynomials in the recurrence formula are finite.

§4. Umbral calculus

In its most primitive form, umbral notation or symbolic notation

called in the past century is an algorithmic device for treating a sequence

al9 α2, α3, as a sequence of powers α, α2, α3, .. Computationally,

this technique turned out to be very effective in the hands of Bilssard

[5], Bell [4], and some invariant theorists [14] etc. In [21] and [22],

G.C. Rota etc. built up a unified theory of this technique by considering

the sequence an as defined by a linear functional on the space of poly-

nomials: an = L(xn). In this section, we see that it is easy to generalize

the unified theory in the case of several variables.

If a polynomial sequence aa(x) is a base for the vector space P, there

exists a unique linear operator L on P such that L(xala\) = aa{x). We

call L the umbral representation of aa(x). We develop the umbral device

in a form leading to a useful identities.

An umbral operator is an operator T which maps some basic sequence

pa(x) into another basic sequence g«(x), that is, Tpa(x) — qa(x). To motivate

this definition, we require another definition, the umbral composition of
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two polynomial sequences:

aa(χ) = ΣΦ;β)*βlβi,
β

and ba(x). This is the sequence of polynomials ca(x) defined by

ca(x) = Σa(a;β)bβ(x).
β

We use for this umbral composition the notation

ca(x) = aa(b(x)).

There is a simple connection between umbral operators and the umbral

composition of basic sets. For, if T maps xaja\ to ba(x), then

= Taa(x).

We give some fundamental properties of the umbral operator.

PROPOSITION 2.4.1. Let T be an umbral operator. Then, T1 exists

and

( i ) the map S-+TST'1 is an automorphism on the algebra Σ of

translation invariant operators;

(ii) T maps every sequence of basic polynomials into a sequence of

basic polynomials;

(iii) if {Ru - ,Rn} is a delta set, then {TRXT\ -,TRnT
x} is a

delta set;

(iv) T maps every Sheffer set into a Sheffer set;

( v ) if S = s(Q) where Q = (Qu , Qn) and s(ξ) is a formal power

series with n variables, then TST1 = s(TQT% where TQT1 = {TQXT\

. . . , TQnT'} is as in (iii).

Proof. Let Tpa(x) — qa(x) for two basic polynomials pa(x) and qa(x).

Since a basic set is a base for the vector space P (cf. Proposition 1.1.1

[28]), it is clear that T is invertible. To prove (i), l e t ^ , ••-,/>„} and

{Qu -"y Qn} be delta sets for pa(x) and qa(x), respectively. For each ί,

we have

(2.4.1) TP.pXx) = Tpa.ei(x) = qa-ei(x) = QtTpa(x), i = 1, , n.

Hence TPt = QtT, whence TPa = QaT. Let S be any translation invariant

operator and let the expansion of S in terms of {Pu , Pn} be
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Then

(2.4.2) TST-1 = Σ aaTPaT~ι = Σ <*«Qa

a a

Thus TST~X is a translation invariant operator. Also it is clear that

S-+TST'1 is onto. Therefore the map is an automorphism, as claimed.

Let {Ru , Rn} be a delta set. Set the expansion of Rt in terms

of {Pu . . . , P J such that

Since {Λj, , J8n} is a delta set,

0,(0) = 0, £ = 1, - . . , n

and the determinant |α*(£j)| does not vanish. From the identities similar

to (2.4.2), we easily see that {TRXT~\ ,TRnT
1} is a delta set. We

conclude (iii).

To prove (ii), let ra(x) be a basic sequence with the delta set {Ru , Rn},

Let sa(x) = Tra(x) and let S, = TR.T'1 for each ί. By (iii), {Sl9 , Sn}

is a delta set. Now

(2.4.3) SMx) = TRiT-Xix) = TO,rα(x) = Γrα.ei(x) = sa.ei(x\

i = 1, , n.

We need only to prove that for \a\ ψ 0, 5α(0) == 0. Now we can write

Since rα(0) = 0, we have a(a; 0) = 0. Hence

Tra(x) = Σ α(α; /3)g/x) = sα(x ,

so that saφ) = 0 for μ| ^ 0.

To prove (iv) and (v), it is trivial. Q.E D

The next result determines the operator corresponding to an umbral

composition..

THEOREM 2.4.2. Let sa(x) and ta(x) be Sheffer sets relative to {Pl9 ,

Pn; S} and {Qu •••.,.<?«; T}, respectively. Let pa(x) and qa(x) be basic sets

for {Pu , Pn} and {Qu , QJ αzzcί ZeZ ί/ιβ differential expressions of S,

T, Pi and Q5 be
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S = s(d\ T = t(d), P, = p<(3) αrcd Q, = Qj(d\ i, j = 1, . . . , Λ ,

respectively. Define ra(x) to be the umbral composition of sa(x) and ta(x),

in symbols

ra(x) = sa(t(x)).

Then ra(x) is a Sheffer set relative to

•••,Pn(q(d));t(d)s(q(β))}.

Proof. First, we shall prove the result in the special case where S

and T are the identity operators. We find a delta set for the sequence

ua(x}= pa(q(x)) to be a basic sequence. Let V: xala\-+qa(x) be an umbral

operator. Then ua(x) = Vpa(x), and by (iii) and (v) of Proposition 2.4.1, the

delta set {VPxV-\ , VPnV'x) of ua(x) is the form {Pl(q(d))f ,p,(g(3))}

as desired. Next, suppose that T is the identity operator, but not S. We

study the sequence sa(q(x)). But

*.(*(*))= Vsa(x)= VS-'pXx),

and from Vpa(x) = pa(q(x)), we obtain

sa(q(x))= VS-'V-'u^x) .

From (v) of Proposition 2.4.1, this proves that sa(q(x)) is a Sheffer set

relative to {A(g(3)), ,p»(q<3)); s(q(d))}.

Now to the general case, we have

ta(χ) = T-ιqa(x), and rα(x) = Γ " ^ ^ ) ) ;

thus, we are reduced to the previous case. Q.E.D.

Using the umbral notation, we give a representation of the general

linear group GL(ή) on a Sheffer set.

COROLLARY 1. Let g be in GL(ή). In the previous theorem, setting

sa(χ) = (gx)*la\, the sequence sa(t(x)) is a Sheffer set relative to {(ίg
m "9 ('H^Pitynl *(<?)}> where tg~1 is a transposed inverse of g and (

is the j-th component of the vector ^ " ^ ( 9 ) ; that is

In this case, we denote sa(t(x)) by (gt)a(x).

The following result is useful.
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COROLLARY 2. Let sa(x) and ta(x) be Sheffer sets as in Theorem 2.4.2

and let V be an umbral operator such that Vsa(x) = ta(x). Then ra(x) —

V~ίsa(x) is uniquely defined by

(2.4.4) ra(x) = Σ 8β(x)[Q>T8Λ(x)]x.o.
β

Proof. By the Second Expansion Theorem, we have

sa(x) = Σtβ(x)[QβTsa(x)]x=0.
β

Applying the operator V"1 to the both sides, we obtain (2.4.4). Q.E.D.

Remark. In Corollary 2, setting sa(x) = xala\, we obtain a unique

Sheffer set ra(x), called the inverse set, such that ra(t(x)) = xaja\.

COROLLARY 3. Let f(x) be any polynomial. Then in the notation of

Corollary 2, we have

The following result gives the solution of the so-called "problem of

connection constants" in the case of several variables.

COROLLARY 4. Given Sheffer sets sa(x) and ta(x) as in Theorem 2.4.2,

the constants a(a; β) such that

Σ α ( α ; j8)ί,(x) = ββ(x)
β

are uniquely determined as follows. The polynomial sequence

is the Sheffer set relative to {piq-\d% . , pn(q-\d)); s(q-χd))lt(q-χd))}γ

where q~Xξ) = (qϊ\ξ)9 , qΰn(ξ)) is a formal inverse of (qi(ξ), , qJg))-

The following proposition gives a partial derivation with respect to

each xt of an umbral operator.

PROPOSITION 2.4.3. Let W; pa(x) -+xala\ be an umbral operator, and

let {Pu , Pn} be the delta set of pa(x). Then

WxJ(x) = ± xkW(diPk)(d)f(x) ,

for all polynomials f(x). Here Pi(d) is a differential expression of the

operator Pt. Setting Wxt — xtW — W(ί\ we see
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= ± χHW((diPk){d) - δik).
k = l

Proof. Let the matrix (bij(ξ)) be the inverse matrix of (djPi(ξ)). By

Corollary 1.3.3 in [28], we have for each i

(2.4.5) pa+ei(x) = (a, + ϊ)-*(± xkbki(d))pa(x) .
\k = l }

Applying the umbral operator W on the both sides, it holds

(«, + l)-ιW±xkbti(S)pa(x) = Wpa+ei(x).
k = l

Now, Wpa+e£x) = x«+eil(a + et)\ = x,(α4 + l)"V/α! = xt(at + ly'Wp^x), so

that

(2.4.5) W±xkbki(d) = XiW
k=l

on the vector space P. Applying the matrix operator ((djPi)(d)) to (2.4.5)

from the right side, we obtain the result. Q.E.D.

§ 5. The Sheffer set as a system of eigenfunctions

In this section, we obtain Sheffer polynomials as eigenfunctions of

some differential operator system. The key step consists in singling out

a "natural" inner product associated with the Sheffer set over the real

field. To this end, let sa(x) be a Sheffer set relative to {Pl9 , P n ; S}.

Let Wbe an umbral operator mapping sa(x) to xaja\. For any polynomials

f(x) and g(x), we define a bilinear form associated with sa(x);

(2.5.1) (/(*), g(x)) = [(Wf)(P)Sg(x)]x=0, P = (Pu -,PJ.

Then:

PROPOSITION 2.5.1. The bilinear form (2.5.1) on the vector space P

over the real field is a positive definite inner product

Proof. It suffices to show that (sa(x), sβ(x)) = (sβ(x), sa(x)) = 0 for

aΦ β, and (sa(x), sa(x)) > 0 for all a. Now

(sa(x), sβ(x)) = (a^[PaS

where pa(x) are basic polynomials for the delta set {Pu , Pn}.

Q.E.D.
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We shall call (2.5.1) the natural inner product associated with the

Sheffer set sa(x). Now we construct an operator system to take sa(x) as

a system of eigenfunctions.

THEOREM 2.5.2. For any Sheffer set sa(x) relative to {Pu ,Pn; S},

there exists a unique set of operators {Tu , Tn] such that

(2.5.2) Γ4 = Σ [ Σ *,uι,{«) + Σ Vtάoίfip , i = 1, • , n,

the following properties:

( i ) /or eαcΛ- ί, Tt is essentially self adjoint in the Hilbert space H

obtained by completing the space P of polynomials in the associated inner

product (2.5.1);

(ii) the spectrum of {Tu •••, Tn} consists of simple eigenvalues at

each vectors in Z\ and the eίgenfunction associated with the vector a is

the polynomial sa(x), that is

TiSa(x) = ctiSaix) , a = (au , an)

(iii) setting the inverse matrix (6^(f)) of the matrix

stants Uijia) and Vi^ά) in (2.5.2) are given by

ui3(a) = [bJt(d)pa_βt(x)]x,0

and

where pa(x) are the basic polynomials for the delta set {Pu , Pn}.

Proof. Taking the partial derivations d/dξt = di on the both sides of

the generating function

we have

(2.5.3) 9,[S(f)-V«α, £»] = Σ sa(a) ±
a

The left side of (2.5.3) is

±
t = l
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Operating the matrix (6*/?)) from the right hand, and multiplying by
Pi(ξ) on (2.5.3), we obtain

(2.5.4) ± pmb^ξXa, - a,(log S)(ξ))S(ξ)-> e((a9 f» = Σ α A

For each i, define the operator 7̂  to be

Ti = gp«(3)&,«(3)(α, - (3,(log S))(S)).

Next, expand Tt in multiple powers of {Pl9 , Pn}, that is,

(2.5.5) Γ, =
a

Compute ct(a) for each ί as follows:

ct(a) = [i p .^)] , . ,

-.<(«)],-e ~ Σ [(Sj(logS))(d)bji(d)pa.ei(x)h=0

Σ
i-i

where

and

From (2.5.5) we have for any polynomial f(x)

(2.5.6) ΪVS-yί* + a) = Σ cMP'S-Wx + a), i = 1, ,

Also by the Second Expansion Theorem

S-y(* + α) = Σββ(*)P /(α),
α

so that placing the right side in (2.5.6), we obtain

TtS-Wx + a) = Σ ct(μ)P' Σ sβ(x)Pβf(a)
(2.5.7)

= Σ E ct(β)P%(x)]P"f(a).

Comparing (2.5.7) with the right side of (2.5.4), we obtain

https://doi.org/10.1017/S0027763000021279 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021279


120 TOSHIHIRO WATANABE

Σ ct(β)P'8a(x) = aίSa(x) .
β

Therefore every Sheffer polynomial sa(x) is an eigenfunction of the oper-

ators {Tu , Tn}. Since the Sheffer set generates all polynomials, it is

obvious to prove ( i) . Q.E.D.

§ 6. Cross sequences

In this section we shall be concerned with a polynomial sequence

pLa\x) depending on a parameter λ to satisfy the identity

(2.6.1) p^'Xx + y) = Σ

In the case of one variable, Steffensen [26] and Rota etc. [22] treated the

polynomial sequence to satisfy (2.6.1). We can easily give a generaliza-

tion of their properties as stated in [22].

Let (Qc)m be the m tensor products of complex rational numbers Qc.

Then, a cross sequence of polynomials, written by p?](x) where λ ranges

over (Qc)m and a over Z+, is defined by the following properties:

(i) pla\x) is a polynomial sequence of binomial type defined in

Section 1 [28];

(ii) for any λ and μ in (Qc)m, it holds the identity (2.6.1).

Now we begin stating the well known lemma, so we omit the proof.

LEMMA 2.6.1. Let p(λ; ξ) be a non zero formal power series depending

on λ = (λu - - -, λm) in (Qc)m to satisfy

P(λ + μ; ξ) = P(λ\ ξ)p(μ; ξ).

Then there exists a set of the invertible formal power series {gXί), , qm(ζ)}

such that

Using the above lemma, we have a fundamental property of the cross

sequence.

THEOREM 2.6.2. A polynomial sequence pψ{oc) is a cross sequence if

and only if there exists a m parameter group Qt Q%? of translation invar-

iant operators {Qu , Qm} and a sequence pa(x) of binomial type such that

Proof. The necessary condition is clear. So we prove the sufficient
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condition. First, note that the sequence pa(x) — Pla\x) is of binomial type.
Setting μ — 0 in (2.6.1) and applying Corollary of Proposition 2.1.4, we
infer that pψipc) is a Sheffer set relative to a invertible operator Q(X).
From (2.6.1), we have

Paix + y) = Σ P?X*)Pr(y) >
a = β + r

and applying Q(μ)'1 to the both sides, we get

QOO-'QW-'PΛ* + y) = Σ P ? W
α = iS + r

Since p«(#) is a base for the vector space P, we obtain

Q(λ + μ) = Q(X)Q(μ) .

From Lemma 2.6.1, we conclude the result. Q.E.D.

From the above theorem, the polynomial sequence pLa\x) is a cross
sequence relative to {Pί9 , Pn; Qu , Qm}, where {Pu , Pn} is the
delta set for the basic set pc

α°
3(#). If the dimension m of the parameter λ

is equal to the dimension n of the variable x, we obtain an interesting
proposition.

PROPOSITION 2.6.3. Suppose that for each i, I — Qt = Pi9 where {Pu

Pn} is a delta set. Then for fixed a and a cross sequence p[xl(x) relative

to {Pu - , Pn; Qu , Qn], it holds that

is a Sheffer set relative to a set of difference operators Δi = exp dt — /,

i = 1, , n.

Proof. We have

Every invertible translation invariant operator T can be written in
the form T — exp F for some translation invariant operator F. Indeed,
setting T = I + S, where S 1 = 0, F = log (I + S) is well defined and T
= exp F. Hence, putting

Qt = exp F,, i = 1, , 7Λ,
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we call {Fl9 , Fm} the generator of the cross sequence pL

a

xl(x).

PROPOSITION 2.6.4. (i) If {Fu , Fm} and {Glf , Gm} are the gerir

erators of cross sequences pψ(x) and qψ{x) having the same basic sequence,

then {Fx + Gu , Fm + Gm} is the generator of the cross sequence

exp ( - Σ *iGt)pF(x). = exp ( -

(ii) If each Ri9 i = 1, , m is any invertίble translation invariant

operator, then R~xp[λl(x) is a cross sequence when pι

a

λl(x) is one.

The proof is trivial, so we omit the proof.

§ 7. A class of generating functions

Recently, some new generating functions for classical polynomials

have been studied in several papers [7], [9], [10], [25]. We give a few

typical examples:

(i) for Hermite polynomials Hn(x),.

Σ Hn(x + ny)ξnln\ = e<2*i-i">/(l - 2yη)

where ξ = ηe~vv;

(ii) for the generalized Laguerre polynomials L(

n

a)(x),

Σ Urβn\x)ξn = (1 + 7J)a+1e-*Ί(l - βη)

where a, β are arbitrary complex numbers and η is defined by

e = τ ( i + ?)- '- ' , JKO) = o.

In this section, we shall give the similar generating functions to the

case of our Sheffer polynomials. In the case of one variable, it concludes

above results of the generating functions.

THEOREM 2.7.1. Let sa(x) be a Sheffer set relative to the operators

{Pί9 - , Pn; S}. Let {pϊ\ξ)9 , PΰXξ)} be the formal inverse of the symbol

{Pi(fλ , Pn(f)} of the delta set {Pu.. ., Pn}. Let S(ξ) be the symbol of

S. Then it holds the following identity

(2.7.1) ? sa(Aa + b)U
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where A is a nXn matrix (αi>;), b is an n dimensional vector (bu , br)>

\δij — ?*<#*> (d/P^X?))I is the determinant, and the inner product

Proof. Let 2^(3) be defined by

Let fa(x) be a set of basic polynomials for the delta set {ί\(3), , Fn(3)}.

Since

by the Transfer Formula (i) in [28], fa(x) is given as follows:

Setting the sequence ca by

and using the First Expansion Formula in [28], we have

By the Second Expansion Formula, this gives

= sa(Aa + 6). Q.E.D.

§ 8. Examples

In this section, we shall be concerned with a generalization of some

classical polynomials; Hermite, Laguerre, Euler and Bernoulli polynomials.

And we discuss some properties of each polynomial.

(a) A generalization of Hermite polynomials.

Since the publication of the book [2] by Appell and Kampe de Feriet,

a generalization of Hermite polynomials with several variables has been

studied by many investigators (cf. [11] vol. 2, p. 285). Now, we examine
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properties of the generalized Hermite polynomials from our operational

point of view.

Let g be a real symmetric and nondegenerate nXn matrix (gij).

Let's give Sheffer polynomials Ha(g; x) relative to {du , dn; e(—(gd9 3>/2)}:

•(2.8.1) Ha(g; x) = e«gd, 3>/2)r/α!.

From Corollary 1 of Theorem 2.4.2, we see that {g-ιH)a{g; x) is the Sheffer

s e t r e l a t i v e t o {(gS)lt •••, (gd)n; e(-(gd,d}l2)};

(2.8.2) (g-'HUg; x) = e((gd, S ^ X ^ x ) " / * ! .

where (gd)t = J^=1gikdk. The generating functions of Ha(g; x) and

{g'^H)^; x) are given by Corollary 3 of Theorem 2.1.3, respectively;

<2.8.3) Σ Ha(g; x)ξ" = e((x, ξ> + 2
a

(2.8.4) Σ (g-'HXig; *)T = e«x, g~>O + 2-\g-% ξ}) •
a

Hence, in the notation of Appell and Kampe de Feriet,

Ha(-A-1; x) = Ga(x)la\9 (~AH)a(-A-1; x) = (-ϊ)^

where A is a real symmetric matrix (ai}).

We enumerate some properties of the generalized Hermite polynomials

with a brief proof.

(i) Rodrigues' formula (cf. [11] vol. 2, p. 285). Since

e((gd, d>/2K - x<e«gd, 3>/2) = (gd)Λ{gd, 3>/2) ,

and

(gdhe(-<g-% x>/2) = -Xίe(-(g-% x}/2) + e(-(g~%

by the iteration, it holds the identities

e«gd,d)l2)[x«la\]e(-(gd,d)l2)

(2.8.5) = (gd + xY/al

= e(~(g-% x)l2)[(gdyial]e((g~% x}/2).

Hence, we obtain the Rodrigues' formula

(2.8.6) Ha(g; x) = e(-(g~% x)l2)[(gdyia\]e((g-% x>/2) .

In like manner, we get
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% *>/2).

(ii) Recurrence formula.

From (2.3.20), we obtain the recurrence formulas for Ha(g; x) and

{g-ιH)a{g\ x), respectively;

(2.8.8) (at + l)Ha+ei(g; x) = x.H^g; x) + Σ gi*Ha_ek(g; x),

(α, +
(2.8.9)

i,j = 1, ••, n.

(iii) Partial differential systems to determine the generalized Hermite

polynomials.

By Theorem 2.5.2, we obtain

(2.8.10) {(gd)tdt + XidJHte; x) = a.HXg; x)

and

(2.8.11) {3^3), + (g-'xUgd)i}{g-ιHUg; x) = a^HUg; x) ,

i,j = 1, •••, n.

(vi) A generalization of the formula of Burchnall-Feldheim-Watson

(cf. [8], [12], [13], [29], [30]).

From (2.8.5), it holds the identities

(gd + x)"l(al)f(x)

= Σ H,(g;x)(gdyi(»\)f(x).
a — μ + v

Setting f(x) = (g-'ίf)^^; x), we have

(2.8.12) (gd + xyi(al)(g-ίH)β(g;x)= Σ Hμ(g; *XJΓ'#),.,(*; x)/vl
a = μ + v

We introduce the following umbral notation: Setting

we define
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(g(g-ιH)β)a(g; *) = Σ cXμXg-Ή^ig; x) .
μ

Then (2.8.12) is written as follows:

<2.8.13) (g(8-iH)βUg; x) = Σ Hμ{g;x)(g-ιmf.Jig\x)
a = μ + v

In the same way, we obtain

(2.8.14) (g-*Hβ)a(g;x)= Σ (g

Secondly, we represent Ha(g; x)(g~ιH)β(g; x) as a linear combination

of Ha(g; x) or (g~ίH)a(g; x). By the Second Expansion Formula, we have

(2.8.15)

Noting

[e(-(gd, 3>/2XΣ ^ f e ; xXfi

> + 2-I<£-1

9, ̂ > + <χ, ς

Λve get

[e(-(gd, d}l2)Ha(g; xXg-'H)^; «)],., = (-l) '- '^ !)- 1 *., .

Hence, in the right side of (2.8.15), the term in the bracket is calculated

as follows:

[d"e(-(gd, d}l2)Ha(g; xXg-'HUg; ac)],.,

= Σ \e(-(gd,d}l2)-(ή~(^Ha(g;x))\(d"'(g-iH)β(g;x))\

(2.8.16) = Σ \-2\-e(-(gd,dy2)H.-Jig;x)
μ=v+ω L Vl

X( Σ

Σ Σ Σ Π
|il

= Σ Σ Σ
S

where λt = (^π, , ί ί n), J = (yί̂  , yln) and As = Σ*=i Â̂  Then we obtain
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<2.8.17) H.(g; x)(g~Ή ),fe; x) = Σ c ^ f e ; x) ,

where cμ is the constant defined by (2.8.16). In the same way, we can
represent Ha(g; x)(g-1H)β(g; x) as a linear sum of (g~1H)a(g; x), but we omit
it.

(b) A generalization of Laguerre polynomials.

As well known (cf. [11] vol. 2, p. 189), the down-ladder of Laguerre
polynomials with one variable is (d/dx)l(dldx — 1). So we take a linear
fractional transformation of the derivation 9;

{djl + <α, 3>, , 3n/l + <α, 9>}, a = (al9 • • •, αn)

for a delta set of a generalized Laguerre polynomials La(x).

Setting

P*(f) = f*/l + <α,f>, i = l, ••-,*,

we have the matrix

Since the determinant \((diPj)(ξ))\ is equal to (1 + (a, ξ})~n~\ by the
Transfer Formula [28], we obtain

(2.8.18) La(x) = (1 + <α, 9» | α |-V/α!.

Now, using the Heisenberg-Weyl relation, we change the representa-
tion (2.8.18) or La(x) as follows:

n

Σ
ft l

- (l«l - l)«j Σ

Σ a/1 + <σ, g))'"-^,^->—/(a - et)\
A l

Σ

Σ
fe l
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= Xj(l + (a, 9»"'JC—>/«!

V jy 0>K

for each 7 = 1, , n. Hence, we obtain the other representation of

(2.8.19) La(x) = 1 { Σ Xj(l + <α, 3» "'*«->/α!

n

+ Σ v-ej-eic (fy

This gives a formula similar to the classical Rodrigues' formula. Fixing

the vector b to satisfy

1 + <o, 6> = 0,

we obtain the formula

£.(*) = - f t *i*«6, *»<α, «(-
(2.8.20)

V αJ>

Now we deal with the Sheffer set Lλ

a(x) respect to {djl + <(α, 3), ,

(i) Partial differential system to determine the Sheffer set Lλ

a(x).

Since the inverse matrix of ((diPj)(ξ)) is

we can easily calculate the numbers Ui^ά) and υtj(a) in Theorem 2.5.2:

uίj(a) — δij-
(a - et)\ (a-et -ej)\

-
(α - βf - β,)!

We have
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ZJZJ xjuij~, Γ Γ α ^ ^ ZJ ZJ X J 7

y-i α (α: — £*)! J = I « (α — e c

= XiPt(l - <α, P))- 1 + Σ Xj^PiPjil - <o, P » - 2 ,

where <α, P> = Σ*-i « f t ^ Setting

P ί = 9Jl + <α,3>, i = l, . . . , n ,

we get the identity

(2.8.21) Σ Σ x,utJ{a)P* = xtdt + ± xp&d,, i - 1, • -, n.

Also, it holds

(2.8.22) Σ Σ υtJ(a)P = (λ + l)atdt, i = 1, • , n.

Hence, we obtain the partial differential system to determine Lλ

a(x):

(2.8.23) [ Σ Xjafifij + (x< + (λ + l)add^Ua(x) = α < Li( Λ ), i = 1, ., n.

(ii) Recurrence formula.

Since the formal inverse of {&/1 + <α, f>, , ξjl + <α, ξ}} is

{ft/1 — <α, £>, , ξjl — <α, £>}, in the notations of Section 3, we get the

identities

(a, log S)(q(ξ)) = - α + l)α, + (λ + l)α<<α, f>.

Using Theorem 2.3.4, we obtain the recurrence formula:

(α,

(2.8.24)

n

- (l«l + ^ ) Σ a ^ L ^ . J x ) , £ = 1, . . . , n .

(iii) Composition formulas.

Let M«(x) be a Sheffer set relative to {3J1 — <α, 3>, , 3n/l — <α, 3>;
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Give the other Sheffer set Nλ

a(x) relative to {du . . , dn; ( l -<α, 9»2};

Nl(x) = (l-(a,dyy>x«la\.

Then from Theorem 2.4.2, we have the composition formulas:

Zf(Λfa (La ( .(Λfa ) • )))(*) = NλΓλ*+~'-λ*"(x).

In the case of one variable, this formula is well known as the second

composition law (cf. [22] p. 729]).

(c) A generalization of Euler and Bernoulli polynomials.

As well known (cf. [19], [11] vol. 1, [15] Chapter V, VI), Euler En(x)

and Bernoulli polynomials Bn(x) are defined by the operations of the

mean on the one dimensional convex cell [0,1] and its vertex {0,1}:

λ-(En(x + 1) + En(x)) = xn , Γ 1 Bn{t)dt = xn .

Now, we construct Euler and Bernoulli polynomials with several

variables by using operations of the mean on an n dimensional convex cell

and its faces. Let et be unit vectors

et = (1, 0, , 0), β2 = (0, 1, 0, ,0), , en = (0, . , 0, 1).

Let V be a convex cell spanned by the origin 0 and the set of vectors

| έ eu\ i*, / = 1, , n, ίkl Φ ik2 if k, Φ k\ .
U=i J

Set Vι for a set of all I dimensional faces of V". We define the operation

Jι of the mean associated with Vt as follows:

JlP{x) = kϊ Σi I " * I [P(*l> > XH + ?ii> ' * " > XU + ?i!> '">Xn)
ίi< "<ilJ0 Jo

+ p{Xι + 1, X2, ' ' , Xιx + ζil9 ' ' , Xit + ζin ' ' *, Λ̂ n)

+ p\xu x2 + 1, x3, , Λ ^ + ζil9 ' , x^j + fίι? , #TO)

<2.8.25) + p ( Λ l , . . , χ t l + ξiι9 ' , χ t ι + ξtι, ...9χn + ι )

+ P(X1 + 1, X2 + 1, *8, , Xix + fix, ' , XU + ξtι9 --,Xn)

+ p(x1 + l,xz + 1, •• , x i l - 1 + l,xtι + ξiv -',xu + ξiι9

xiι+ί + 1, . . . , xn + l)]df t ι df u ,
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where k* is the inverse of the total volume 2n~ι[ Λ of Vt. Note that in

the case of Vo, that is the set of all vertices of V, the operator Jo is

defined by

Jop(x) = 2-n{p(x) + Σp(x + et)
(2.8.26) ι i=1

+ Σ p(χ + eH + eu) + + p(χ + *ι + + OJ

Then c/r is written as follows:

T
<

X p(x1? , xit + ξil9 , xu + f ^ , xn)df έ l dξu .
Jo Jo

Operating the both side of (2.8.27) by dx - dn, we have

W 9 ) + ! ) ( ( 9 ^ + 1)

X a

tf> ' ! " (g(^t) - 1) (e(dtι) - l)p(x).
9 3

Hence, we obtain the differential representation of Jj

We consider the general n dimensional convex cell (gV)n spanned by

the origin 0 and

f̂*; h h = 1, , n, ikl Φ ik2 if k, Φ kλ ,

where a set of the vectors {gu , gn} is linear independent. Let (gV)t

be a set of all I dimensional faces in (gV)n. As the right side of (2.8.25)

is denoted by

we define the operation of the mean Jf associated with

(2.8.30) Jfp(x) = k?j .^ Jp(x +
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Then in the similar way, we get the differential representation of Jf:

(2 g 3 1 ) «<<• «<*«„ 3» + 1) <««*<„ 9» + 1)
( « & 9» ~ 1) (e«git, g» - 1)

We note that Jf is a symmetric function with respect to {gu , gn}.
Noting the operator Jf has the inverse, we define a generalization of
Euler and Bernoulli polynomials Ba(x; (gV)t) associated with (gV)t as
follows:

(2.8.32) JfBa{x;(gV)ι) = xala\.

Hence, the polynomials Ba(x\ (gV)t) is a Sheffer set related to {3^ ••-,

dn;Jf}. In the special case, we have the following relations with the

classical Euler and Bernoulli polynomials:

Ba(x; Vo) = Eai{xx) . . . Ean(Xn)l*l,

(gΛ
Let g be the matrix I I. By using the umbral notation in Corollary 1

\gj
of Theorem 2.5.2, we obtain

(2.8.33) Bfgx; (gV)t) = HgBUx; Vt).

From Corollary 3 of Theorem 2.1.3, we have the generating function of

Ba(x;(gV)d:

Σ Ba(x;

(2 8 34) -e«xs

(2.8.34) - *«*, ? ^ < ί i W < ί < i > e > ) + i ) . . . W < g i i , e > )

(€«g<1> g» - 1) (««g«, ,g»-l) V1

<&„£> <ί«,,e> /
Also, the Second Expansion Formula gives a generalization of the Euler-
MacLaurin sum formula.

Now, we examine the other properties of Ba(x; (gV)t) similar to the
classical Euler and Bernoulli polynomials (cf. [19]).

(i) Symmetry
Let Rt be the following reflexion:
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Rigj = (-ΐ)δi% , i , j = l, . . . , n .

Setting

c = i ( f t + ••• +gn)

for the center of (gV)n, we have

),)^ = Σ B.(c + *; (gV^R^y , i = 1, . , n,

where tRi is the transposed matrix of Rt. Hence, using the umbral nota-
tion of Corollary 1 of Theorem 2.5.2, we obtain

Ba(c + RiX; (gV)t) = (RtBUc + x; {gV)t), i - 1, , n.

In the classical case, this is equal to

BJ1 - x) = (-iyBn(x)

and

(ii) Multiplication formulas.
Set for the given positive integers li9 i — 1, , n.

G(χ; (gV)n) = S Σ1 Bβ(x + 4-ft + + -^-g,; (gV)n).

Then it holds

Setting the matrix gι

o ' ° M o" ° and

\(g%! \ 'hi \gJ\ ϊj
we have

d)) - 1) (e«(gι)n, Z-'3

Hence, we obtain the multiplication formula for Ba(x; (gV)n):
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B.(ix; (gιv)n) = /r"1+1 zr-+1 Σ Σ

X Ba(x + A g l + +

Similarly, we have the formulas

B.(lx; (gιV)0) = /Γ"+I /„—+1 Σ ΣΣ Σ
* 0 fc 0

X ( -

for every odd number Zί?

and

Batfx; (gιV)n) = lrί+1 t β " + 1 Σ Σ

X (-l)'* B( A

for every even number Z*.
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