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ON A DUAL RELATION FOR ADDITION FORMULAS
OF ADDITIVE GROUPS II

TOSHIHIRO WATANABE

Chapter 2. Sheffer Polynomials

Introduction

This paper is a continuation of our previous memoir [28], hereafter
referred to as I, and constitutes the second chapter of this series. As
stated in I, our aim in this series is to examine properties of a polynomial
sequence with several variables satisfying an addition formula by means
of the down-ladder, and to give a generalization of so called classical poly-
nomials. In the present article, we study the two kinds of polynomial
sequences:

(1) sequences s,(x) of polynomials satisfying the identities

s(x+y) = MZH 8(x)p,(¥) ,

where p,(x) is a given sequence of binomial type defined in I,
(ii) doubly indexed sequences pt¥(x) of polynomials satisfying

P (x + y) = ,,Z+ , PE ()P (y) .

In the case of one variable (cf. [11], [22]), the addition formula (i) or
(ii) holds for many well known polynomials, for example, Hermite, La-
guerre, Euler, Bernoulli, Poisson-Charlier, Krawtchouk, and Stirling
polynomials etc.. In Section 8, some of these polynomials are generalized
to the case of several variables.

Let us give a brief description of contents of this paper.

Section 1 deals with fundamental properties of a polynomial sequence
8.(x) to satisfy the addition formula (i), that is called a Sheffer set. In
this section, we have a relation between the Sheffer set s,(x) and the
polynomial sequence p,(x) of binomial type. Also, an expansion formula
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in the Sheffer set s,(x) is given.

Section 2 deals with a unipotent representation of a delta set defined
in I on a Sheffer set. This representation uniquely determines a Sheffer
set.

Section 3 deals with a recurrence formula of the Sheffer set s.(x)
with respect to the parameter . Conversely, a class of difference systems
resulting from the recurrence formula characterizes the Sheffer sets.

Section 4 deals with the umbral calculus. This gives a solution
of so called “problem of connection constants” in the case of several
variables.

Section’5 constructs a differential system of a Sheffer set as its eigen-
functions.

Section 6 deals with some properties of a polynomial sequence
PY(x) satisfying the addition formula (ii). The polynomial sequence pi(x)
turns out to be a special Sheffer set.

Section 7 deals with some special generating function associated with
a Sheffer set. In the case of one variable, this concludes generating
functions of some of classical polynomials examined by Carlitz [10].

Section 8 deals with a generalization of Hermite, Euler, Bernoulli
and Laguerre polynomials.

Let us enumerate symbols and notations in this paper. The symbol
Z" is the subset in the n dimensional integral lattice Z", in which each

point has all non-negative entries. Let the Greek letters «,f, --- be
vectors in Z" and, for example, the components of « be written in the
form

a=(a, -, a,),

The polynomial sequence p.(x) is a set of polynomials with the variable
x = (xy, +++, %, depending on the parameter « in Z2. For convenience
of calculation, we regard p.(x) as vanishing for « ¢ Z%. The symbol P is
the vector space of all polynomials with n variables. The origin is denoted
by the notation 0. Let {e, ---, e,} be a unit coordinate system, that is,

el=(1,0’ "'90)a ""en=(09"',071)'

The inner product > 7., x;¥, is written by (x,y>. We use e({x, y)) instead
of exp{x,y>. For «¢eZ" and the variable x = (x,, - - -, x,), the length
@ + -+ 4+ a, of @ is denoted by |«|, and the polynomial x*/a! is x#/x,!
o xenfa,!. Instead of the partial differential operators d/ox, - - -, d/dx,,
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we use the symbol 9,, - -+,9,. Also, the vector (3/dx,, - - -, 9/dx,) is denoted
by the symbol 4. Let {P, ---,P,} be translation invariant operators.
Then the multiple Pf*-..P;» is denoted by P« The notation §,; is a
generalization of the Kronecker’s delta symbol §,; such that

{1 if =4
aaﬁ - .

0 if =8
§1. Definitions and fundamental properties

A polynomial sequence s.(x) is called a Sheffer set or a set of Sheffer
polynomials for the delta set {P,, ---, P,} if

(i) sfx) =c#0,
(ii)) for eachi=1,---,n,

P.s,(x) = 5, ,,(x).

If the delta set {P,, - --, P,} is normal (as for the definition, see [28] § 1.),
s.(x) is called a normal Sheffer set or a set of normal Sheffer polynomials.
The following lemma is fundamental.

Lemma 2.1.1. A set of Sheffer polynomials s,(x) is a base for the vector
space P.

Proof. By a change of the coordinate, we have only to prove the
lemma in the case of a normal Sheffer set s,(x). To prove the lemma,
we use the induction on the parameter « of s, (x). For each unit vector
e;, set

8.(x) = a;(@)xeja!, j=1 ---,n.
lalsi;

Since the normal delta set {P,, -- -, P,} has the following expressions:
Pi=6i+lalz>:1ci(a)a“, i=1--n,
the homogeneous polynomial of the highest degree of P;s,(x) is
mz;t; aa)x i f(a — e;)!.
On the other hand, the definition of the Sheffer set gives
Pis, (x) = §;;80(%) = 0,5, Lj=1---,n.

Therefore we obtain
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8.(x) = cx; + ay, j=1 .-, n,

for some constants @¢,. By induction, we assume that for |¢|<m, the only
monomial of the highest degree in s,(x) is ¢ x*/al. Set, for |a| = m,

s = 3 a(p) =,

and operate P; on s,(x). Using the same argument in the case of |«| = 1,
we, also, see that for |a| = m, the only monomial of the highest degree
in s,(x) is cx*[al. Q.E.D.

Remark. The only monomial of the highest degree in a normal

Sheffer polynomial s,(x) is ¢ x*/a!.

A Sheffer set relative to a delta set {P,, ---, P,} is related to a set
of basic polynomials for {P,, ---, P,} by the following.

ProposiTiON 2.1.2. Let {P,, ---, P,} be a delta set with basic poly-
nomials p(x). Then s,(x) is a Sheffer set relative to {P,, - - -, P,} if and only
if there exists an invertible translation invariant operator S such that

2.1.1) $.(x) = S~'p(x).
Proof. Suppose first (2.1.1). Then by Proposition 1.1.2 [28], S-'P, =
P,;S-* and

PjS,,(x) = Pjsnlpa(x) = 8- jpa(x) = S_llya—ej(x) = sa—ej(x)r J = 1, TR (2
Further, since S is invertible, S-'1 = ¢ # 0, so that
so(x) = S 'p(x) = S-'1=c.

Thus s.(x) is a Sheffer set.
Conversely, to prove (2.1.1), we may assume that s,(x) is a normal
Sheffer set. Define S by setting

S; 8,(x) —> pu(x),

and extending S to all polynomials by the linearity and Lemma 2.1.1.
Since, by Remark of Lemma 2.1.1, and Proposition 1.1.3 [28], the only
monomial of the highest degree in s,(x) and p.x) is cx*/a! and x%/a!,
respectively, S is invertible. It remains to show that S is translation
invariant. To this end, note that S commutes with each P;,, j =1, ---, n.
Indeed,

SPjsa(x) = Ssa—ej(x) = pa-ej(x) = Pjpa(x) = P_;SS,,(x), j = 17 e, N,
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whence SP* = P*S. By the First Expansion Formula in [28], we conclude
that S is translation invariant. Q.E.D.

By Proposition 1.1.4 [28], we see that every delta set has a unique
sequence of* basic polynomials. Hence every Sheffer polynomials s,(x) is
uniquely defined by a delta set {P,, ---, P,} and an invertible translation
invariant operator S. So we call s, (x) a Sheffer set or a set of Sheffer
polynomials relative to {P,, ---, P,; S}.

Now we get an expansion formula in the Sheffer polynomials.

THEOREM 2.1.3. (Second Expansion Formula). Lei s (x) be a set of
Sheffer polynomials relative to {P,, ---,P,; S}. If T is any translation
invariant operator, and f(x) is any polynomial, the following identity holds:

Tf(x + 5) = 25 89)P*STf(x) ,
for every vectors x and y.

Proof. Let p,(x) be basic polynomials for the delta set {P,, ---, P,}.
By the First Expansion Formula in [28],

fx+y) = ;pa(y)P“f(x) .

Applying S-!, regarding y as the variable and x as a parameter, this
becomes

S7f(x +3) = 2. ST PLNPf(x)
= 21 8(0Pf().

Now, again, regarding y as the constant and x as the variable, and
applying S followed by T, we obtain the second expansion formula.
Q.E.D.

In the preceding theorem, setting y = 0 and T = S-', we obtain

CoroLLARY 1. If s.x) is a set of Sheffer polynomials relative to
{Py, -+, P,; S}, then

S = Y 5.(0)P .

Let T be the identity operator and f(x) be the Sheffer polynomial
s.(x) relative to {P, ---, P,;S}. Then,
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CoroLLARY 2. The Sheffer polynomials s (x) satisfies
s +9) = 2 s®)p() -
Using the symbol of translation invariant operators defined in [27],
we derive a generating function for the Sheffer polynomials.

CoroLLARY 3. Let {p7'(¢),---,p;.'(¥)} be the formal inverse of the
symbol {p(§), - - -, p.(§)} for the delta set {P,, ---, P,}. Then the generating
function for the Sheffer set s, (x) is given by

a . ____1___ -1
(2.1.2) 2. 808" = S~ @) e({x,p7(8))) ,
where S(&) is the symbol of the operator S.

In the case of one variable, a polynomial sequence defined by the
generating function (2.1.2) has been studied from of old (cf. [1], [6], [11]
vol. 3, [23], [24], [26]).

The following converse of the Second Expansion Formula is proved.

ProrositioN 2.1.4. Let T be an invertible translation invariant oper-

ator, let {P,, ---, P,} be a delta set, and let s, (x) be a polynomial sequence.
Suppose that
(2.1.3) flx + @) = 2] s(a)PTf(x)

a

for all polynomials f(x) and all vectors a. Then the set s, (x) is the Sheffer
set relative to {P,, ---, P,; T}.

Proof. Operating with T-' and then with T after permuting variables,
we have, from (2.1.3),

f& + @) = T Ts.@Pf).

Setting f(x) = p.(x), where p,(x) is the basic set of the delta set {P,, - - -, P,},

we obtain
Px+0) = 3 Tslap(x).
Putting x = 0, this yields p.(a) = Ts.(a) for every vectors a. Q.E.D.

In the above proposition, setting f(x) = s.(x), we obtain the following
result from Corollary 2 in Theorem 2.1.3.
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CoroLLARY. A polynomial sequence s (x) is a Sheffer set associated
with a basic set p(x) if and only if

Sfx +y) = . =Zﬁ]+r ss(0)p(y) .

As referred to the introduction, in the case of one variable, this
addition formula holds for many classical polynomials.

§2. A unipotent representation of a delta set on a Sheffer set

In this section, we shall be concerned with a unipotent representation
of a delta set on a set of Sheffer polynomials. Then, this representation
uniquely determines a set of Sheffer polynomials as follows:

THEOREM 2.2.1. Let s,x) be a polynomial sequence with sy(x) = 1.
Then:

(i) If s/x) is a Sheffer set, for every translation invariant operator T,
there uniquely exists a sequence of constants c, such that

2.2.1) Ts(x) = § sy(x)c; .

(i) Let {P,---,P,} be a delta set. For aeZ", let {c(a), - - -, c.(a)} be
a set of sequences such that the determinant |c(e,)| does not vanish. If it
holds the identities

(2‘2’2) Pjsa(x) = a=Zﬂ:+r sﬁ(x)cj(r) ’ j = 1’ e, N,
then s, (x) is a Sheffer set.

Proof of (1). Let p.x) be a basic set associated with the Sheffer set
8x). Corollary of Proposition 2.1.4 gives

sdx+y) = 25 s{®)p,().
Applying T, regarding v as the variable and x as a parameter, this becomas
Tsx+9) = 2, s£0)Tp().
Setting y = 0 gives
Ts(x) = 2. si0)Tp(0) .
Defining

Tp(0) = ¢,
we obtain (2.2.1). Q.E.D.
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Proof of (ii). By a change of the coordinate, we have only to prove
(ii) in the case of a normal delta set {P,, ---, P,}. To prove (ii), we use
the induction on the parameter « of s,(x). Putting « = e, in (2.2.2), we
have

(2.2.3) Ps, (x) = so(x)cs(e;) + 8. (x)c,0), i,j=1,---, n

Comparing the homogeneous polynomials of the highest degree of the
both sides of (2.2.3), and noting

2.2.9) P, =93, + | |Z>;1 a(@)7°,

we have from sy(x) = 1,

(2'2'5) sei(x) = Zn cj(ei>xj + bl ’ i = 1’ e,
J=1

for some constants b,, and
(2.2.6) c(0)=0.

For |a|<m, we assume that the homogeneous polynomial of the highest
degree of s.(x) is (Cx)*/a!, where

(Cx), = ji'lcj(ei)xj, i=1 . n.
For |a| = m, set
(0= 2 a.(B)xp!.

By (2.2.4) and (2.2.6), the homogeneous polynomials of the highest degree
of the both sides in (2.2.2) are

(2.2.7) 5, 48w (@ = e,
and
2.2.8) 3 ee(Cor i — et

respectively. Hence, comparing (2.2.7) and (2.2.8), we have m = M, and
3 app = (Cxyal.

Thus, we see that the homogeneous polynomial of the highest degree of
8.(x) is (Cx)*Ja!. Therefore we conclude that the polynomial sequence s,(x)
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generates all polynomials. Define a set of linear operators @, by
Qi8.(%) = 8uofx), Jj=1,---,n.

To prove that {@,, ---, @,} is a delta set, first we show that each @, is
translation invariant. Note that

Q.P;s.(x) = @, ) _z; ) sp(@)e,(n) = § r 8- e.(2)Cs(7)
= ZH sp(®)c;(1) = Pysa-.(x) = P,Q,s.(%) .

a-e;=f
Since s,(x) generates all polynomials, this implies
P,Q, = Q.P, Lj=1---,n,
whence
PQ, = QP i=1---,n.

Using the First Expansion Formula in [28], we see that each @, is trans-
lation invariant. Hence, each @, has a differential expression by Propo-
sition 1.1.2 in [28];

Qi:Zai(a)aaa i=1"",n-
Since it holds

Qisef(x)=5ij’ i,j:l,---,n.
we have, from (2.2.5), a,(0) = 0 and

kzglai(ek)c,,(e,-) =4, L,j=1---,n.

Therefore, the set of operators {@,, ---, @,} is a delta set. Now, we
conclude that s,(x) is a Sheffer set. Q.E.D.

§3. Recurrence formula

In this section we treat a partial difference system of Sheffer poly-
nomials s,(x) with respect to the parameter «, that is called a recurrence
formula. In the theory of orthogonal polynomials with one variable [27],
the recurrence formula holds for any three consecutive orthogonal poly-
nomials. On the other hand, in the case of Sheffer polynomials, we can
take the formula for any finite consecutive polynomials. Also we see
that this recurrence formula determines a unique Sheffer set. For this
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purpose, we need an elementary theory of a completely integrable system
of first order [20].

Lemma 2.3.1. Let a,)(&) be a formal power series with respect to & =
&, -, &) for each i,j =1, .--,n. Let X, be a vector field defined by

Xz:};am(f)ak, i=1-..--,n,

where 8, is a partial derivation with respect to &,. Then the partial
differential system of first order

(2.3.1) qu,(é) = 04y, L,j=1---,n
is completely integrable if and only if
2.3.2) IGZ:Ilazk(S)akau(E) - ajk(e)akail(s) =0.

Proof. Let X, be a prolongation of the vector field X; to a space of
variables (¢,, -+ -&., ¢, * -, ¢,) such that

Xt = kZ_;aik(S)ak + 5ik5k ’
where d, is the partial derivation with respect to the variable q;
ék=a/an’ k=1.--,n.

As well known, if the complete solutions of (2.3.1) are given by the
implicit functions

vj(gb"’,quu""qn)z("j’ j=13"',n
for some constants c;, to have the non-vanishing Jacobian

Igivjl # 0 ’
the system (2.3.1) is equal to

(2.3.3) Xw)=0, ij=1--,n.
Hence, (2.3.3) is a completely integrable system if and only if
2.3.4) X, X]1=0 mod(X, -, X,).

Since
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X, X,] = (gam(f)ak + 5tkék)(§l a; ()0, + 5115z)
- (kZZlan(E)ak + 5“51;)(2 ay,(8)3; + 5uéz>

[atk(g)(akajl(‘s)) - ajk(s)(akail(f))]az s

Ky i=1
the condition (2.3.4) is equal to (2.3.2). Q.E.D.

Let {@:(&), - - - qa(&)} be a formal inverse of the symbol {pi(&), - - -, pa(®)}
of the normal delta set {P,, - - -, P,}, that is,

(2-3'5) QJ(p(S)) = Ej ) J = 1’ AP (2
Operating with 8, on the both sides of (2.3.5), we obtain

(2.3.6) kZZ:I(akQJ)(p(&))aipk(f) = 0is, i,j=1--4,n,
and, so
(2.3.7) PHCERCOLRIOEE N S LS RN

Since {P,, - -+, P,} is a normal delta set, we have the following expansion
(2.3.8) @up)qE) = 0y + 25 cy(@gs,  Lj=1---,n

for some constants c;,(«). Here, we treat the system (2.3.1) in the case
of the following:

(2.3.9) a8 =46, + lg_s:l cy ()&, Lji=1:,n

for some constants c¢,;(«¢). Then:
LemmA 2.3.2. The condition (2.3.2) is equal to
(e, + 1)Cjt(0‘ + e) + =Z:,9+ ];(Tk + 1)Czk(.3)cjz(7 + ek)

(2.3.10) .
= (a; + Deyla + e)) + a;ﬂ kzgl(ﬁk + Dej(Meq (B + e,

i,j,l=1,---,n.

The proof is a direct verification. Secondly, we treat the other
differential system.

LemMmA 2.3.3. Let {p,%), -- -, p.(§)} be a symbol of the normal delta
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set {P,, ---, P,} given by (2.3.8). Then the partial differential system
(2.3.11) @) =2 b)p€), i=1---,n

is completely integrable if and only if the coefficients b,(e) satisfy

n

Z cik(T)(lgk + 1)bj(.3 + ey)
(2312 T i

= Z 1cjk(r)(‘3k + 1)bi(/3 + ek)9 l’j = 1’ e, Ny,

a=B+y k=
where ¢,;(0) = §,;, and c,,(«) are defined by (2.3.8).

Proof. As well known, the system (2.3.11) is completely integrable if
and only if it holds

2319 8, Db@p©) =0 Db @@, bi=1-n.
Inserting (2.3.8) into (2.3.13), we obtain (2.3.12). Q.E.D.

Now, we shall determine the form of a recurrence formula for a
normal Sheffer set s,(x). Since the homogeneous polynomials of the
highest degree in s,..(x) and s,(x) are the monomials ¢ x***//(a¢ + e;)! and
cx®la!, respectively, by Remark of Lemma 2.1.1, the recurrence formula
must be the following shape:

(2.3.14)  (a; + 1)8440,(%) = x,8,(x) — l 2 bi(a; B)sg(x), i=1-.--,n,
Bl=lal
for some constants b,(«; ) depending on the parameters « and B. To

determine the constants b,(«a; f) in (2.3.14), we use the generating function
of s, (x) in Corollary of Theorem 2.1.3,

(2.3.15) 2. 80p€) = SO e(x, £) -

Operating with the partial derivation 9; with respect to &; on the both
sides of (2.3.15), we have

pIDILENGICHES \NNE) LG

= (x, — (.(log SHENSEO)"e((x, ©)) -
Setting &, = q.(y) in (2.3.5) gives
P3P ICHRICIONICAESS IRNE Ty

= (x — @.(log SN S(al) e, a)) -

(2.3.16)

(2.3.17)
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Using (2.3.15), we get

3 31 0p)ao) s + Vs e
= (x — (0.0108 S)(@() 3] 5.5 -

(2.3.18)

Taking the expansions (2.3.8) and (2.3.11) with f(&) = log S(¢), and the
coefficients of the both sides of (2.8.18), we obtain
(@ 4 Dsere® + 3 3 cnlBs + Dsen®)

= %,5.(x) — 2 bi(P)s,(x).

a=8+r

(2.3.19)

Thus we arrive at the final form of the recurrence formula of Sheffer
sets:

(e, + 1)Sa+e¢(x)
= %,;8,(x) — ; (bt(a - P+ kZZIlcik(a - B+ ek)ﬁk)sﬂ(x),

i_—_l’...,n,

(2.3.20)

where b,(a) and c,,(«) are defined on Z7, and
cij(0)=0; i,j=1,"‘,n.

Conversely, we see that the difference system (2.3.20) characterizes a
Sheffer set as follows:

THEOREM 2.3.4. Let s,(x) be a polynomial sequence with sy(x) = c # 0.
Suppose s,(x) is a base for the vector space P.
Then, for some given constants b,(a) and c,,(«) on Z" to satisfy

C”(O)=O, i3j=1,"')n7

s.(x) satisfies the difference system (2.3.20) if and only if s,(x) is a Sheffer
set. Then the differential systems (2.3.7) with (2.3.8) and (2.3.11) with f(§) =
log S(¢) are completely integrable. Take the formal inverse {p,(&), - - -, P.(&)}
for the formal power series solution {g,(¢), ---, ¢.(&)} of (2.3.7) with (2.3.8)
such that

qj(0)=0) j=17""n'
So, the sequence s,(x) is a Sheffer set relative to {p,(), - - -, p.(9); S()}.

Proof. Our previous discussion has shown the necessary condition.
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So, we have only to prove the sufficient condition. Assume that a poly-
nomial sequence s,(x) satisfies (2.3.20) for some given constants b,(«)
and ¢;,(a) on Z% to hold

C“(O):O, i7j=17'°',n°
We calculate the compatibility condition for (2.3.20).

Firstly, we regard s...,..(%), i # j, as a string of transformations:

8(X)—>8 01 o (X)—>8useis (%)

Then it holds
Sevensel®) = (@ + D@ = 3 5@

- 2T, B + Vs u@)

k=1 ate;=8+

= (@, + D + 1)“‘xj{x,s,,(x) - 3 b )
=3 2 el + D@} — @+ D 3 b))
— @+ D5 T B + Dsyrul®)]

= @ + D7 + Dxas ) — (@ + D7 + D
x{ 3 0®{0 + Dso@ + 3 b

+ 3 5 en@n + Dssa) ) — (e + D7 + D
x {3 3 cwl®e + D0+ 14 8050000
+ r+e,¢Z=,‘+” by()s.(x) + Zi.;ﬁ > (e, + 1)sym(x)}}

Ex=p+y

— @+ 07 T b@s)

atei=4

— @+ )5 X s+ Dsul).

=1 at+es=

Arranging the above identity, we have
Savesre%) = (a; + 1)7N(a; 4+ 1)7'x;x,8,(%)
— @+ D@+ D 3 7@ @)

atej=f+
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— (@ + D@+ D T bBbWs, (x)}
p+y ykbi(:B)CJ x(#)s.,(x)}

(2.3.21) — (o; + D) M, + Zn: Ty(re — Bjk)cik(ﬁ)sr(x>}

k=1 a’+€j+€k B+r

k=1 a+ek

»
— (@ + D+ D3

{

{;

— (@ + Ve + DY

1 a+er¢=ﬂ+p

(e + b el )

— (a; + D e, + 1- {i} 2. ”z(#k + v — 0xs)

1 at+ex+er=8+p+v

X col@ea@s @) — @ + D 2 s

atei=f+r

@+ 03 3 eu@s ).

k=1 atejt+ex=F+r

On the other hand, S......(x) may be regarded as the string of the
transformations:

sa(x) Sa + ej(x) sa +eq+ e](x)'
Then, by permuting i and j in (2.3.21), we obtain the identity:
Sarecref(X) = (@, + D7Hat; + 1)7'x,2,8,(x)

— @+ D+ D 3 rbEs@)
— @+ D7+ D 3 6@ )
— @+ DM+ DS T b enln@)
@3.22) — @D+ D ST 1 - swen(@s@)

,—/\—\ ;—/\_\
)

TMS ||M§

— @+ D+ DD S+ b Bs)

tep=p+p

— (@, + Dl a; + 1) { vi(pe + v — 011)

1 ateg+er=p+p+v

X cul@en@s@} — @+ D T b@s@)

ates=

— @ DS N new®s ).

k=1 a+ejt+er=p+r

Eliminating the symmetric terms in (2.3.21) and (2.3.22) with respect to
the permutation (i,j), and multiplying («; + I)(@; + 1) to (2.3.21) and
(2.3.22), we obtain the identity
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5 rhAs) £ T wbdfeu@s@

atej=p+ =1 atex=B+p+vy

+3 D, T = 30ea(B)s @
+ 25 (et ub (e @)
+ 3B mwenen(WsE)
@328 +@+D] T b@Es@| + @+ D5 ¥ s )
= D rb@s@+ 3 T sbEea@s®)

+ Z Z 7.7 — 5tk)cjk(.3)sr(x)

=1 atej+ex=B+7r

+ 3D G bien(Ps @)
+ 33 pweeaen®s@ + @+ D 3 b(@s@)

kyl=1 atex+er=8+p+v atej=p+7

+@+0{E 3 Tew®s ).

1 atej+ep=p+7r

Note that s.(x) is a base for the vector space P. Hence the coefficients
of s,-,(x) in (2.3.23) give

@ = BbB+e) + 3 (e — BIbes®)

+ g;l(“j — BNy, — B — d50)ci(B + €5 + ei)

F3T0S (@ + 1= v)by (i)

k=1 B+ex=p+v

+ 2":. >, via, — ,Bz)cik(/l)cjz(”)

@320)  + @+ Db + o) + (@ + DT (@ — BIenlB + e+ o))
=(@—pbE+e)+ 3 T (e — AIbWeut)
+ 35 (@ — Be — B — Su)esu(B + e+ e)
+3 T (@ + 1= w)bi(eb)

k=1 B+ex=p+v

+ i 2. oy — Be,(p)es )

k,l=1 B+ex+er=p+v
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+ @+ DbB + €) + (@ + DT (@ — fea® + ¢ + e}
Arranging (2.3.24), we obtain
(B + DB+ e) + 35 T mbiiesst)

+ 2: (.Bj + 14 5jk)(a'zc - ‘Bk)ctk(.B + e; + ex)

- i: vi(a, — Igz)czk(ﬂ)cjz(”)
(23.25) k.l=1 B+ex+ei=p+y §
=B+ Db+ e;) + k};l ﬁ+e§#+v #iby(p)e. ()

+ 3 @ = BB+ 1+ e + e+ €)

n

— Z vi(e, — ,Bz)cjk(/l)cu(”) .

kyl=1 B+ex+er=p+y

Regarding «, as variables and replacing B + e, with B, we get the follow-
ing identity for the coefficient of «;:

(B + DewlB + e)) — i 20 viCu(e; ()
(2.3.26) k=1 ﬁ+elc=.u+1:

= (B; + Dec,u(B + e) — 2, > ”kcjk(/")cu(v) .

k=1 f+ex=p+»

This is exactly the completely integrable condition (2.3.10). Comparing
the coefficient of the constant term, we have

By + Db+ e) + k}i:l ot 2 n tebi()e; )

- ki:l‘Bk(‘Bj + 14 8;0c(8 + e; + ew)

+ Zn: 2 Bwici(cs (v)

kyl=1B+ex+er=p+v

(2.3.27) .
= (8, + Db,(B + e;) + IcZ=1 ﬁ“%;:“ﬂﬁkbj(ﬂ)cm(”)

- éﬁk(ﬁt + 14 d;)c(8 + e + e)
+ k,i__: 2 Bwici () () .

18+ep+er=p+v

Inserting (2.3.26) into (2.3.27), we obtain
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(B + Db + e)) + i ST pebi(p)e; )
(2.328) k=1 p+ex=p+v

= (B + Db,(B + e) + ki::l “eg;Mv b (e () .

This is, also, the completely integrable condition (2.3.12) with f(&) =
log S(£). Therefore we get a unique set of formal solutions {g,(8), - - -, ¢.(8)}
and S(¢) of (2.3.1) with initial conditions q,0)=0,j=1,---,n, and
(2.3.11) for f(¢) = log S(&) with the initial condition S(0) = ¢ # 0, respec-
tively. We easily see that {g,(d), - - -, ¢.(0)} is a delta set. Let us give
the formal inverse {p:(¢), ---,p.(6)} of {qi(€), -~ -, q.(®)}. Let 5.(x) be a
Sheffer set relative to {p,(d), - - -, p.(9); S(@)}. Since the partial difference
system (2.3.20) with the initial conditions sy(x) = ¢ has a unique polyno-
mial solution, we obtain §,(x) = s.(x). Q.E.D.

Remark. (i) The recurrence formula for a Sheffer set is obtained
from the generating function (2.1.2).

(ii) If the coefficients b,(¢) and c,;(«) in (2.3.8) and (2.3.11) with
(&) = log S(¢), respectively, vanish without only finite terms, the con-
secutive Sheffer polynomials in the recurrence formula are finite.

§4. Umbral calculus

In its most primitive form, umbral notation or symbolic notation
called in the past century is an algorithmic device for treating a sequence
a, a, a, -+ as a sequence of powers a, @, @° ---. Computationally,
this technique turned out to be very effective in the hands of Bilssard
[5], Bell [4], and some invariant theorists [14] etc. In [21] and [22],
G.C. Rota etc. built up a unified theory of this technique by considering
the sequence a, as defined by a linear functional on the space of poly-
nomials: a, = L(x"). In this section, we see that it is easy to generalize
the unified theory in the case of several variables.

If a polynomial sequence a.(x) is a base for the vector space P, there
exists a unique linear operator L on P such that L(x*/a!) = a.(x). We
call L the umbral representation of a,x). We develop the umbral device
in a form leading to a useful identities.

An umbral operator is an operator T' which maps some basic sequence
p.(x) into another basic sequence g.(x), that is, Tp.(x) = q.(x). To motivate
this definition, we require another definition, the wmbral composition of
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two polynomial sequences:
a,(x) = 2 ale; Ha’lBl,

and b,(x). This is the sequence of polynomials c,(x) defined by
eu®) = 3] alar; by

We use for this umbral composition the notation

(%) = a.(b(x)) .

There is a simple connection between umbral operators and the umbral
composition of basic sets. For, if T maps x*/a! to b.(x), then

aa(b(x)) = Taa(x) .
We give some fundamental properties of the umbral operator.

ProposiTiON 2.4.1. Let T be an umbral operator. Then, T-' exists
and .

(i) the map S—TST-' is an automorphism on the algebra X of
translation invariant operators;

(ii) T maps every sequence of basic polynomials into a sequence of
basic polynomials;

(i) if {R,---,R,} is a delta set, then {TR,T-',...,TR,T""} is a
delta set;

(iv) T maps every Sheffer set into a Sheffer set;

(v) if S=s(Q) where @ =(Q, ---,Q,) and s(§) is a formal power
series with n variables, then TST ' = s(TQT "), where TQT ' = {TQ,T",
<, TQ, T} is as in (iid).

Proof. Let Tp.(x) = q.(x) for two basic polynomials p,(x) and g.(x).
Since a basic set is a base for the vector space P (cf. Proposition 1.1.1

[28]), it is clear that T is invertible. To prove (i), let{P,, ---, P,} and
(@, -+, .} be delta sets for p.(x) and g.(x), respectively. For each i,
we have

(2’4‘1) TPlp“(x) = Tpﬂ-ei(x) = qa-—ei(x) = QiTpa(x)’ l = 1, R (X

Hence TP, = Q,T, whence TP* = Q*T. Let S be any translation invariant
operator and let the expansion of S in terms of {P, ---, P,} be

S =3 a/P".

https://doi.org/10.1017/50027763000021279 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021279

114 TOSHIHIRO WATANABE
Then
2.4.2) TST' = > e, TPT-' = Y a,Q".

Thus TST-' is a translation invariant operator. Also it is clear that
S—TST-! is onto. Therefore the map is an automorphism, as claimed.

Let {R,, ---, R,} be a delta set. Set the expansion of R, in terms
of {P,, - -+, P,} such that

Rizzai(a)Pa’ i=17"',n'
Since {R,, - -+, R,} is a delta set,
ai(0)=0, i=1,"',n

and the determinant |a;(e;)| does not vanish. From the identities similar
to (2.4.2), we easily see that {TR,T, ..., TR, T""} is a delta set. We
conclude (iii).

~ To prove (ii), let r,(x) be a basic sequence with the delta set {R,, - - -, R,},
Let s,(x) = Tr(x) and let S, = TR,T-' for each i. By (iii), {S,, ---, S,}
is a delta set. Now

(2.4.3) S:8.(x) = TR, T '5,(x) = TR;r(x) = Tr,- ., (%) = So_.,(%),

i:]_’...’n_

We need only to prove that for |«| = 0, s,(0) = 0. Now we can write
rx) = ; a(e; Ppy(x) .
Since r,(0) = 0, we have a(a; 0) = 0. Hence
Tro(x) = 25 ala; F)gu(x) = sulx

so that s,(0) =0 for |a| == 0.
To prove (iv) and (v), it is trivial. Q.E.D.

The next result determines the operator corresponding to an umbral
composition.,

THEOREM 2.4.2. Let s.(x) and t.(x) be Sheffer sets relative to {P,, ---,
P,; S} and {Q,, - --,.Q,; T}, respectively. Let p,(x) and q.(x) be basic sets
for {P,, ---, P} and {Q, -+, Q.} and let the differential expressions of S,
T, P, and Q, be
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S = 8(6)7 T = t(a)) Pi = pi(a) and Qj = Qj(a), i’j == 1, ey, n,

respectively. Define r,(x) to be the umbral composition of s.(x) and t.(x),
in symbols

ro(x) = s,(t(x)).
Then r.(x) is a Sheffer set relative to

{p:(q(@), - - -, p.(q(3)); 43)s(q(9))}.

Proof. First, we shall prove the result in the special case where S
and T are the identity operators. We find a delta set for the sequence
u(x) = pq(x)) to be a basic sequence. Let V: x*/a! — q.(x) be an umbral
operator. Then u,(x) = Vp,(x), and by (iii) and (v) of Proposition 2.4.1, the
delta set {VP,V-, ..., VP, V-'} of u,x) is the form {p,(q(®)), - - -, p.(q(d))}
as desired. Next, suppose that T"is the identity operator, but not S. We
study the sequence s.(g(x)). But

5q(x)) = Vs, (x) = VS~'p(x),
and from Vp.(x) = p.(q(x)), we obtain
s.(g(x)) = VSV -u,(x) .

From (v) of Proposition 2.4.1, this proves that s,(g(x)) is a Sheffer set

relative to {p«(g(d)), - - -, P.(q(@); s(a(@)}.
Now to the general case, we have

t(x) = T'q(x), and r(x) = T 's.(q(x));
thus, we are reduced to the previous case. Q.E.D.

Using the umbral notation, we give a representation of the general
linear group GL(n) on a Sheffer set.

CoroLLARY 1. Let g be in GL(n). In the previous theorem, setting
$.(x) = (gx)*|a!, the sequence s,(t(x)) is a Sheffer set relative to {(*g-'p(2)),,
<o, (Cg87P(@)),; 1)}, where ‘g~ is a transposed inverse of g and (*g'p(9));
is the j-th component of the vector 'g~'p(d); that is

(g p@); = 3 (&)@

In this case, we denote s,(#(x)) by (g8).(x).
The following result is useful.

https://doi.org/10.1017/50027763000021279 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021279

116 TOSHIHIRO WATANABE

COROLLARY 2. Let s,(x) and t(x) be Sheffer sets as in Theorem 2.4.2
and let V be an umbral operator such that Vs (x) = t(x). Then r(x) =
V-is.(x) is uniquely defined by

(2.4.4) rdx) = Z; s(X)[Q° Ts,(x)]o-0 -
Proof. By the Second Expansion Theorem, we have

8.(%) = Zpl ta()[ @ Tso()) z-0 -

Applying the operator V' to the both sides, we obtain (2.4.4). Q.ED.

Remark. In Corollary 2, setting s,(x) = x*/a!, we obtain a unique
Sheffer set r.(x), called the inverse set, such that r.(#(x)) = x*/a!.

COROLLARY 3. Let f(x) be any polynomial. Then in the notation of
Corollary 2, we have

fr(x) = 2 % [Q°Tf(%))o-o0 -

The following result gives the solution of the so-called “problem of
connection constants” in the case of several variables.

COROLLARY 4. Given Sheffer sets s,(x) and t.(x) as in Theorem 2.4.2,
the constants a(wx; B) such that

2 ala; B)t(x) = su(%)

B

are uniquely determined as follows. The polynomial sequence
ux) = 3 aler; p=*[B!

is the Sheffer set relative to {p(q~'()), - - -, P(a”'@); s(a~*@)/Hg "N}
where g-'(§) = (¢'(), - - -, ¢."(8)) is a formal inverse of (qi(€), - - > gx(£)-

The following proposition gives a partial derivation with respect to
each x, of an umbral operator.

PropOSITION 2.4.3. Let W; p.(x) — x*/a! be an umbral operator, and
let {P,, ---, P,} be the delta set of p.x). Then

W f@) = 3. 2. WP @) ,

for all polynomials f(x). Here p,d) is a differential expression of the
operator P,. Setting Wx, — x, W= W, we see
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WO = 3 2 W(@p)O) — 3,s).

Proof. Let the matrix (b;,(¢)) be the inverse matrix of (9,p,(&)). By
Corollary 1.3.3 in [28], we have for each i

(2.4.5) M@@=@+n%§%%@ﬁmy
Applying the umbral operator W on the both sides, it holds
(e, + 1)-1WkZ=:1 X101 (Dp(x) = Wp,. e,(x) .

Now, Wp,.,.(x) = x***[(a + e))! = xi(a, + D7'x*[a! = x,(a; + 1)7' Wp,(x), so
that

(2.4.5) WS x.byi(@) = x,W
k=1

on the vector space P. Applying the matrix operator ((9,p;)(d)) to (2.4.5)
from the right side, we obtain the result. Q.E.D.

§5. The Sheffer set as a system of eigenfunctions

In this section, we obtain Sheffer polynomials as eigenfunctions of
some differential operator system. The key step consists in singling out
a "natural” inner product associated with the Sheffer set over the real
field. To this end, let s,(x) be a Sheffer set relative to {P,, ---, P,; S}.
Let W be an umbral operator mapping s.(x) to x*/a!. For any polynomials
f(x) and g(x), we define a bilinear form associated with s,(x);

25.1) (f(%), 8(®) = [(Wf)YP)Sg(x)]zz0, P = (P, -+, P,).
Then:

PropositioN 2.5.1. The bilinear form (2.5.1) on the vector space P
over the real field is a positive definite inner product.

Proof. It suffices to show that (s.(x), s,(%)) = (s4(%), s.(x)) = 0 for
a #+ B, and (s,(x), s,(x)) > 0 for all «. Now

(8.(x), 85(x)) = (@) '[P*Ssy(x)]-0
= (@) '[P py(0)]so0 = (@!)'Ds-.(0) = (a!)"0,s,

where p.(x) are basic polynomials for the delta set {P, ---, P,}.
Q.E.D.
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We shall call (2.5.1) the natural inner product associated with the
Sheffer set s (x). Now we construct an operator system to take s,(x) as
a system of eigenfunctions.

THEOREM 2.5.2. For any Sheffer set s,(x) relative to {P,, ---, P,; S},

there exists a unique set of operators {1\, ---, T} such that

@59 T.= 2[5 su@+ Sus@]P,  i=1m,
« L7=1 ’ =1

with the following properties:

(i) for each i, T, is essentially selfadjoint in the Hilbert space H
obtained by completing the space P of polynomials in the associated inner
product (2.5.1);

(ii) the spectrum of {T\, ..., T,} consists of simple eigenvalues at
each vectors in Z" and the eigenfunction associated with the vector « is
the polynomial s/(x), that is

Tisa(x) = aisa(x) ’ a = (aly Tty an) ’

(ili) setting the inverse matrix (b,,(€)) of the matrix (9;p,
stants u;(a) and v;,(«) in (2.5.2) are given by

Uis(@) = [6;i(@)Pa- e, (¥)]s-0
and
V() = [—(3,(log 8))@)b;:(O)Pu-e(X)]z-0
where p,(x) are the basic polynomials for the delta set {P,, ---, P,}.

Proof. Taking the partial derivations 9/0&, = 8, on the both sides of
the generating function

S@ (e, ) = TP @,

we have

@53 2SO ea, N] = T 5.) 3 ap D00
The left side of (2.5.3) is

9;,[5(&)"e(Ka, £))] = [ — 8(8)7'9,8(8) + a,15(8) " e(a, &)
= [—09,(log S)(¢) + a,15(5)'e(<a, £)).
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Operating the matrix (b;,(§)) from the right hand, and multiplying by
p:(&) on (2.5.8), we obtain

@54 3 pde)b,)a, — 3,(log SYOSE)ea, £) = T as.@p @)

For each i, define the operator T, to be

T, = 3 pd@b:(@)a; — (,(log S)@).
Next, expand 7, in multiple powers of {P,, - -, P,}, that is,
(255) T.= Se@P, e =[T0)m0
Compute c,(a) for each i as follows:
¢@) = [T.p().g
=[5 @ - @008 ML, @pOPD)]

= 2 albu(@pe-o(D.s — 3 0,008 SNOb,@Pa-oBsns
= 33 astu(@) + 3 vi@),
where
(@) = [6,@Pa-ei@ew
and

V(@) = —[(0,(10g S, A)Pe-e (oo
From (2.5.5) we have for any polynomial f(x)
@568) TS +a) = e @PSE+a), i=1 .
Also by the Second Expansion Theorem

S7f(x + a) = 2 s.(0)P*f(a) ,
so that placing the right side in (2.5.6), we obtain
T.S'f(x + a) = 7;', c(a)P= Z,,: sy(x)P*f(a)
= 3 [T el pPs.@IP@).

(2.5.7)

Comparing (2.5.7) with the right side of (2.5.4), we obtain
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};. c(PP%s,(x) = a;8,(x).

Therefore every Sheffer polynomial s,(x) is an eigenfunction of the oper-
ators {7}, ---, T,}. Since the Sheffer set generates all polynomials, it is
obvious to prove (i). Q.E.D.

§6. Cross sequences

In this section we shall be concerned with a polynomial sequence
Pt3(x) depending on a parameter A to satisfy the identity

(2.6.1) P (x + y) = }ﬂ] ) PP (y) .

In the case of one variable, Steffensen [26] and Rota etc. [22] treated the
polynomial sequence to satisfy (2.6.1). We can easily give a generaliza-
tion of their properties as stated in [22].

Let (Q°)™ be the m tensor products of complex rational numbers Q°.
Then, a cross sequence of polynomials, written by pi“(x) where 1 ranges
over (@)™ and « over Z", is defined by the following properties:

(i) p®(x) is a polynomial sequence of binomial type defined in
Section 1 [28];

(1i)) for any 1 and p in (Q°)™, it holds the identity (2.6.1).

Now we begin stating the well known lemma, so we omit the proof.

LeEmMmA 2.6.1. Let p(2; £) be a non zero formal power series depending

on 2= (4, -+, ,) in ()" to satisfy

P2+ p; &) = p4; E)p(p; &) .
Then there exists a set of the invertible formal power series {q,(§), - - -, @.(5)}
such that

p(2; &) = qi(€)- - -qim(®) .

Using the above lemma, we have a fundamental property of the cross
sequence.

THEOREM 2.6.2. A polynomial sequence px) is a cross sequence if

and only if there exists a m parameter group Q{* - - - Q! of translation invar-
iant operators {@,, - - -, @.} and a sequence p,(x) of binomial type such that

PR(x) = Q" - - - Qu'"p.(x) .

Proof. The necessary condition is clear. So we prove the sufficient
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condition. First, note that the sequence p.(x) = p®(x) is of binomial type.
Setting ¢ = 0 in (2.6.1) and applying Corollary of Proposition 2.1.4, we
infer that pl’(x) is a Sheffer set relative to a invertible operator Q(A).
From (2.6.1), we have

QA™px +3) = 2 PF@)P0),
and applying @(y¢)~' to the both sides, we get
Q)R "plx + ) = 2 PP@PAY).
Since p.(x) is a base for the vector space P, we obtain
QA+ 1) = QAQ(p) .
From Lemma 2.6.1, we conclude the result. Q.E.D.

From the above theorem, the polynomial sequence pt’(x) is a cross
sequence relative to {P, ---, P,; @, - - -, @,}, where {P, ---, P,} is the
delta set for the basic set p®(x). If the dimension m of the parameter A
is equal to the dimension n of the variable x, we obtain an interesting
proposition.

ProprosiTiON 2.6.3. Suppose that for each i, I — Q, = P;, where {P,, - - -,
P,} is a delta set. Then for fixed a and a cross sequence pt(x) relative
to {Py, -+, P,; @, -+, Q.}, it holds that

pE~¥a)
is a Sheffer set relative to a set of difference operators 4, = expd, — I,
i=1,---,n.
Proof. We have

P x) — plI(x) = @+ (I — Q)p.(x)
== Q-—x-—eﬁ»apa—ei(x)
= PR Yx). QE.D.

Every invertible translation invariant operator T can be written in
the form T = exp F for some translation invariant operator F. Indeed,
setting T=1I+ S, where S 1 =0, F =log(I + S) is well defined and T
= exp F. Hence, putting

Q1=epri’ i::lv"'ama
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we call {F), ---, F,} the generator of the cross sequence pLi(x).

ProrposiTioN 2.64. (i) If {F,, ---, F,} and {G,, ---, G,} are the gen-
erators of cross sequences pti(x) and q\%(x) having the same basic sequence,
then {F,+ Gy, ---, F,, + G,} is the generator of the cross sequence

exp (—Z liGz>p£”(x) = exp (—Z ZiFi)qE‘J(x) .
= &1
(i) If each R,, i =1, --., m is any invertible translation invariant
operator, then R-*p™(x) is a cross sequence when p.(x) is one.

The proof is trivial, so we omit the proof.

§7. A class of generating functions

Recently, some new generating functions for classical polynomials
have been studied in several papers [7], [9], [10], [25]. We give a few
typical examples:

(i) for Hermite polynomials H,(x), .

3 Hox + m)énin! = et o)L — 2yy)

where § = 9e¥7;
(i) for the generalized Laguerre polynomials L{"(x),

5 Lo (gt = (L + 7y iem1f(L — fy)
where «, f are arbitrary complex numbers and 7 is defined by

§=y90+ ', 90)=0.

In this section, we shall give the similar generating functions to the
case of our Sheffer polynomials. In the case of one variable, it concludes
above results of the generating functions.

THEOREM 2.7.1. Let s.x) be a Sheffer set relative to the operators
{Py, ---, P,; S}. Let {pi'(€), ---, p;'(§)} be the formal inverse of the symbol

{p:«8), - - -, P(&)} of the delta set {P,, ---,P,}. Let S(&) be the symbol of
S. Then it holds the following identity

@1y Zs(Aa+ ) [T Ge(—Can p @M
= S(p~'(&)'e((b, p(O)N|6:; — Eas, (3,p~)ED|,
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where A is a nXn matrix (a,,), b is an n dimensional vector (b,, ---, b,),
|05 — &a;, (@,p~)E)D]| is the determinant, and the inner product

(@ PO = 3} @upi'@)
(b, PO = 33 bupi'@).
Proof. Let F,(0) be defined by

F,(0) = 9.,e(—<a,, p7'(9))) i=1---,n

Let f.(x) be a set of basic polynomials for the delta set {F(), - - -, F,(9)}-
Since

0;F(§) = d,5e(—<ay, p7'(§))) — §ay, 0,071 (&) e(—<ay, p7H(E)))
= {0y — §ay, 9;,p7'(O))}e(—<ay, P7HE)D) s

by the Transfer Formula (i) in [28], f.(x) is given as follows:
fulx) = 18:5 — 0.y, (0,p7)0))|e({Ae, p~'(9)))x"[et!.

Setting the sequence c, by
S(p=(8))"'e(b, p~(EIN6:; — &:i{as, Q0" NENI™ = Z c.Fe(§),

and using the First Expansion Formula in [28], we have
¢a = [S(p~'(@))*e(b, p~'@)N)10:; — 0:{@s, 0,07 ful®)]a-0-
By the Second Expansion Formula, this gives
. = [S(p'(@))'e((Aa + b, p7'(@)))x[t!] -0
= s,(Aa + b). Q.E.D.
§ 8. Examples

In this section, we shall be concerned with a generalization of some
classical polynomials; Hermite, Laguerre, Euler and Bernoulli polynomials.
And we discuss some properties of each polynomial.

(a) A generalization of Hermite polynomials.

Since the publication of the book [2] by Appell and Kampé de Fériet,
a generalization of Hermite polynomials with several variables has been
studied by many investigators (cf. [11] vol. 2, p. 285). Now, we examine
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properties of the generalized Hermite polynomials from our operational
point of view.

Let g be a real symmetric and nondegenerate n X n matrix (g;)).
Let’s give Sheffer polynomials H,(g; x) relative to {0, - - -, 9,,; e(—{g0, 3)/2)}:

2.8.1) H,(g; x) = e((g0, )/2)x*|a! .

From Corollary 1 of Theorem 2.4.2, we see that (g~'H).(g; x) is the Sheffer
set relative to {(gd),, - - -, (0).; e(—<gd, 3)/2)};

2.8.2) (87'H).(8; x) = e({(g0, 9)[2)(g 'x)"[a! .

where (g0), = > %.,8.0;. The generating functions of H,(g;x) and
(g 'H),(g; x) are given by Corollary 3 of Theorem 2.1.3, respectively;

2.8.3) 2. Hdg; x)¢* = e(<x, §) + 27'Cg¢, §)),
(2.84) Z (87'H)u(8; x)&" = e({x,87'€) + 27Kg7'¢, £)).
Hence, in the notation of Appell and Kampé de Fériet,
H(-A7 x) = G@))a!, (—AH)(—A";2) = (=1)'"H,(x)/a!,

where A is a real symmetric matrix (a,;).
We enumerate some properties of the generalized Hermite polynomials
with a brief proof.

(i) Rodrigues’ formula (cf. [11] vol. 2, p. 285). Since
e({80, 3)/2)x, — x,e({g0, 9)/2) = (29):e({ &9, 3)/2),
and
(80).e(—<87'x, x)[2) = —x.e(—<g'x, x)[2) + e(—{g'x, x)/2)(g0): ,
by the iteration, it holds the identities

(<89, 3)[2)[x"[a!] e(—<{ g9, 37/2)
(2.8.5) = (g0 + x)/a!
= e(—<(g7'x, x)[2)[(80)*[x!] e({g~'x, x}[2) .

Hence, we obtain the Rodrigues’ formula

(2.8.6) H.(g; x) = e(—{g"'x, x)[2)[(g0)"|a'] e({g~'x, x)[2) .

In like manner, we get
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(87'H)(8; %) = (0 + g7'x)[ex!
= e(—<(g7'x, x)/2)[0"[!] e({g~'x, x)[2) .
(i) Recurrence formula.

From (2.3.20), we obtain the recurrence formulas for H,(g;x) and
(g~'H).(g; x), respectively;

(2.8.7)

(2.8.8) (e + DH,,.(8; %) = x,H,(g; x) + :Z.:lgikHa_e,,(g; x),

(a; + 187 H)oure (8 %)

= (D) H)(8; ®) + 3 (@ )ulg H)- e85 ),
i,j=1, AR

(2.8.9)

(iii) Partial differential systems to determine the generalized Hermite

polynomials.

By Theorem 2.5.2, we obtain
(2.8.10) {(89).0; + x,0,}H.(g; x) = a;H,(g; x)
and

2811)  {9,(g9); + (87'%),(89), H(g"H)u(g; %) = (g7 H).(8; %),
i,j':'l’ e, N

(vi) A generalization of the formula of Burchnall-Feldheim-Watson
(cf. [8], [12], [13], [29], [30]).
From (2.8.5), it holds the identities

(80 + x)*[(a)f (%)
= e(—{g'x, x)/2)(80)"/(a))[e({g™"x, x)[2)f (%)]
= e(—Cg7"'%x)[2) 2, [(gdy/(un)e(g™x, x)/2]((gd) /(- Hf ()]

= §+ H,(g; x)(g0y[(w)f(x) .
Setting f(x) = (g 'H)4(g; x), we have
(2812) (g0 + 2 /e H)ig; ©) = 3 H,(g; e H)y-.(g !
We introduce the following umbral notation: Setting
(gx)*[ac! = z cp)xtfp!,

we define
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(8@ H))o(g; 0) = 20 cul) g™ H)pu g 2) -
Then (2.8.12) is written as follows:
(2.8.13) (g(g™ H)p)o(g; %) = 2, His; x)8'H);-(g; 2)v!.
In the same way, we obtain
@81  (HM& = T (e H)(g OH (g 9.

Secondly, we represent H,(g; x)(g 'H),(g; x) as a linear combination
of H,(g;x) or (g7'H).(g; x). By the Second Expansion Formula, we have

H,(g; x) (g H),g; x)

2.8.15
@819 = 21 H(g; x)[0"e(— g9, D)[2H.(g; x)(&" H)(g; ¥))a-0.

Noting
le(—<&9, a>/2)(Zl H,(g; x)(g""H)x(&; )9 )z-0

= [e(—<g0, 9>/2)e(27'(g¢&, &) + 27g ', ) + {x,§ + g“7)>)]z 0
= e(_—<€, 77>)3

we get
[e(—<g0, 0)/2)H.(8; x)(8 ' H)(&; X)] -0 = (—1)'*(}) 70,5 .

Hence, in the right side of (2.8.15), the term in the bracket is calculated
as follows:

[0#e(—<g0, 3)[2)H.(g; x)(g~'H )p(g; %)]s-0

= 3 |e—<en. 02 £l @B ) 2@ B e )]
= 3 [Ee—<er, i H. (g 9 (e g0r (e D )|
@816 = 3 val e(—(gd, 35/2)H,_(g; x)

X( 3 1€ ) e By e )|

wi=]2]

=2 2 2 (g")ﬁi-’(lul) (=D pt @i — )~

p=v+o 0;=|2i], a—y=H-

=c,,

where 2, = (A, -+ +y Ay A = (Ay, - -+, 4,) and 4, = 3%, 2,;. Then we obtain
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2.8.17) H.(g; x)(g"'H)g; %) = 2. ¢,H,(8; %),

where ¢, is the constant defined by (2.8.16). In the same way, we can
represent H,(g; x)(8'H),(g; x) as a linear sum of (g~'H).(g; x), but we omit
it.

(b) A generalization of Laguerre polynomials.

As well known (cf. [11] vol. 2, p. 189), the down-ladder of Laguerre
polynomials with one variable is (d/dx)/(d/dx — 1). So we take a linear
fractional transformation of the derivation 0;

{0/14+<a, 9, -+, 0./1 +4a, D)}, a=(a, -, a,)
for a delta set of a generalized Laguerre polynomials L,(x).
Setting
pi&) = &1 +<a, &), 1
we have the matrix
(@:p)E) = (3:;(1 + <@, )" — @51 + {a, £))7).

Since the determinant |((@,p,)(&))] is equal to (1 + <q, &))""!, by the
Transfer Formula [28], we obtain

(2.8.18) Lx) = (1 + <a, 3)“-"x%a! .

I

1,...,n,

Now, using the Heisenberg-Weyl relation, we change the representa-
tion (2.8.18) or L,(x) as follows:

L(x) = (1 + {a, 3))“'x*|e! — kZZ]la,,(l + {a, ) 'xr k(o — e)!
= (L + <a, D)l fal + alal(l + <a, D) x- sl
= 3% @, (L + Ca, )" (@ — )]
— al = D, 35 a1 + Ca, )1t — )]
= (1 + Ca, )"z !
+ 31 a1 + (@, ) e — )
- i_,‘l a,x,(1 + {a, ) -x*eiek (@ — e,)!
— 3. (al — Dajau(l + Ca, D)= x=4/(a — e,)!
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= x,;,(1 4 <a, 3))'“\x*~¢/a!
+ 5: ajy ak
=1lx;

(I + <a, )= ~'x==m* (. — ey)!

i 13

for each j=1, ..., n. Hence, we obtain the other representation of
L.(x):

2819  Lx) = ",17{23 (1 + {a, 35)aea!

aj’ ak

(1 + (a, 3y -1xa-es-ex/(er — ek)!} .
K=, X

This gives a formula similar to the classical Rodrigues’ formula. Fixing
the vector b to satisfy

1+<a,b)=0,
we obtain the formula
L) = {3 xe(b, ), 0! e(—(b, 2))=a!
(2.8.20) n =
2 |la;, ag
+ [y

k.j= 7 k

e({b, xp)a, 3)'"!~!

X e(—(b, x)xe= - (o — ek)!} .
Now we deal with the Sheffer set LX(x) respect to {3,/1 + {a,d), - --
0./1 4 <a,3>; (1 + {a, )"}
Li(x) = (1 + <a, py*!“'x"[a! .

(i) Partial differential system to determine the Sheffer set Li(x).
Since the inverse matrix of ((9,p,)(§)) is

(0:,(1 + <a, &) + a;5,(1 + <a, 8))),

we can easily calculate the numbers u,;,(«¢) and v,;(a) in Theorem 2.5.2:

u; o) = 5“(([?{&1))—!{(1/:—” + «“_(I_C_‘Iei—__l):;)_!aa_”

(| — 2)!
(@ — e, —ey!

V@) = A+ 1)dy0u.,a; + (A4 1)

aa

We have
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_‘Z 2‘ XU, ()P

=1

— Z Zx 5 (la‘ ) q-¢t P« + i: ij ([al _ 1)! a*-¢iPe

" —e)! (¢ — e, —e))!

= x,P(l —<a, P))"" + ; x,a,P, Pyl — a, P))~*,

where <a, P) = 3%, a,P,. Setting
Pi=6¢/1+(a,a>, i:l’...’n’

we get the identity

@2821) 33 xu (P = 2, + 3 %,09.0,, i=1,---n.
j=1 «a j=1

Also, it holds

(2’8‘22) i Z v“(a)P“ = ('z + 1)a'iai ’ i= 1) e, N

j=1

Hence, we obtain the partial differential system to determine Li(x):
(2.8.23) [Z 2,009, + (%, + (A + Da, ]L‘(x) —alix), i=1---n.

(i) Recurrence formula.

Since the formal inverse of {&/1+ <a, &), ---, &, /1 4+ {a, &)} is
&1 —<a, &, -+, &,/1 — {a, &)}, in the notations of Section 3, we get the
identities

@:p)q&) = 8,y — 0.0, &) — a.§; + a,§Ka, &),
(9, 1og 8)q(®) = —(4 + Da; + A + Daa, .

Using Theorem 2.3.4, we obtain the recurrence formula:
(s + DL, e,(x) = [x, + (a| + Da,]Li(x)
(2.8.24) + (@, + 1) ;Zl [ VS €7

— (el + D3 aalin@®, i=1---n.
k=1

(iii)) Composition formulas.
Let Mi(x) be a Sheffer set relative to {3,/1 — ({a,9), - - -, 3,/1 — {a, 3);
(1 —<a, )"}
Mi(x) = 1 — {a, )" *x"[a! .
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Give the other Sheffer set Ni(x) relative to {d,, - - -, 3,; 1—<{a, 3))}};
Ni(x) = (1 —<a, 3))*x*[al.
Then from Theorem 2.4.2, we have the composition formulas:

Lil(Mh(Lla(. . ,(L22n+1), . )))(x) — Lil—22+23—---+12”+1(x) ,
L(MA(L(- - - (M)« - D)) = N=re=oon(y) |

In the case of one variable, this formula is well known as the second
composition law (cf. [22] p. 729]).

(c) A generalization of Euler and Bernoulli polynomials.

As well known (cf. [19], [11] vol. 1, [15] Chapter V, VI), Euler E,(x)
and Bernoulli polynomials B,(x) are defined by the operations of the
mean on the one dimensional convex cell [0, 1] and its vertex {0, 1}:

%(E,xx +D+E@ =, [ B@dt=a.

Now, we construct Euler and Bernoulli polynomials with several
variables by using operations of the mean on an n dimensional convex cell
and its faces. Let e, be unit vectors

e = (1:0’ "',0)9 €, = (0,1309 "'30)7 ce, 8y = (07 "'30,1)'
Let V be a convex cell spanned by the origin 0 and the set of vectors
l
{Z Cos s L =1, ooy 1y iy iy i By 7Ek2}.
k=1

Set V, for a set of all [ dimensional faces of V. We define the operation
JJ; of the mean associated with V, as follows:

1 1
Tp@ =k 3 [ [ e om0

1< <l
+p(x1 + 1’ Xoy =00y Xy + Eiu Ty Xy, + gip o ',xn)
+p(xh X + 1, Xgy * "7y '?i] + Sip tt "xil + Eiu ""xn)

(2.8.25) Py ey Xy Ery v Xy By e, Xy 1)
+p(x1 + 1’x2 + 1,x3’ :"3 Xy + 5{1’ “'9x13; + gin ""xn)

+p(x1 + 1’ X + 1’ t e ';xh-l + 1, Xy + giv * "yxiz + Sil’
Xiy+1 + 1, crry Xy + 1)]d$n e d&i“
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where %7 is the inverse of the total volume 2""’(?) of V.. Note that in

the case of V,, that is the set of all vertices of V, the operator J, is
defined by

Jyp(x) = 2‘"{p(x) + i p(x + e;)

+ T P@+en ket FPE et e

11<ig

(2.8.26)

Then J, is written as follows:

J.p(x) = (@) + 1) -+ (e(@,) + 1)
! ad<i (e(@;,) + 1) --- (e(@:) + 1)

1 1
XJ'O e jop(xlﬁ cry Xy + Siu v "xi; + éin tt '5xn)d'§i1 c dSiz'

(2.8.27)

Operating the both side of (2.8.27) by 9, ---9,, we have

o - 0. dp@) = (e((;?’l))-F 11) (e(?;n) + 1;
(2.8.28) u<-.a.<u (e; W+ 1) (e@;) + 1)
X al—:%a"—_(e(ail) -1 (e(ai,) — Dp(x) .

Hence, we obtain the differential representation of J;
J p(x) = . >t ' (e(@) + 1) - - - (e(d,) + 1)
wéTen (e0,) + 1) -+ (e@) + 1)

o lele) = 1) (e@) — 1)
0 0

(2.8.29)
(%) .

i1 iy

We consider the general n dimensional convex cell (gV), spanned by
the origin 0 and

A
{Z Guiliv=1, -1 iy # iy, if k :#kz},
k=1

where a set of the vectors {g,, ---, g,} is linear independent. Let (gV),
be a set of all / dimensional faces in (gV),. As the right side of (2.8.25)
is denoted by

B[ [pe+ 9deo,
we define the operation of the mean J? associated with (gV),:

(2.8.30) Jip(x) = k;‘j e fp(x + g&)de® .

https://doi.org/10.1017/50027763000021279 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021279

132 TOSHIHIRO WATANABE

Then in the similar way, we get the differential representation of J%:

o €8y ) + 1) - - (e{ga,3) + 1)
TP = K 2 g ) + D (g ) + 1)

2.8.31)
( X (e(<giu a>) - 1) v (e(<giu a>) - 1) p(x) .
<gt19 a> <g1n a>
We note that J§ is a symmetric function with respect to {g, ---, g.}.

Noting the operator Jf has the inverse, we define a generalization of
Euler and Bernoulli polynomials B,(x; (gV),) associated with (gV), as
follows:

(2.8.32) JéB,(x; (8V),) = x*[a!.

Hence, the polynomials B,(x;(gV),) is a Sheffer set related to {9, ---,
0,;J%}. In the special case, we have the following relations with the
classical Euler and Bernoulli polynomials:

B.(x; V) = E (%) - - - E,(x,)]e!,
Ba(x; Vn) = Bau(xl) e Ban(xn)/a! .

&

Let g be the matrix ( ) By using the umbral notation in Corollary 1
8n

of Theorem 2.5.2, we obtain

(2.8.33) B(*gx; (8V),)) = (‘gB)x; V).

From Corollary 3 of Theorem 2.1.3, we have the generating function of

B.(x;(gV))):

2. Bu(x; (8V),)8
9.8.34 = e({x, £)) (eKg, &) +
( ) e & <i:<{:<“ (e({8uy £)) + 1) - - - (e{8uy €)) + 1)

« (K8 ) =1 (e(8u &) — 1) )".
<gtu E> <gtn $>

Also, the Second Expansion Formula gives a generalization of the Euler-
MacLaurin sum formula.

Now, we examine the other properties of B,(x;(gV),) similar to the
classical Euler and Bernoulli polynomials (cf. [19)).

(i) Symmetry
Let R, be the following reflexion:
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R.,g, = (—1)g,, Lj=1---,n.
Setting
c=4(&+ - +8)
for the center of (gV),, we have

S B+ Rix; @V))E = T B + 5 @VINRY,  i=1-,m,

where ‘R, is the transposed matrix of R,. Hence, using the umbral nota-
tion of Corollary 1 of Theorem 2.5.2, we obtain

B.c + Rx; (§V)) = (RBL(c + % (V)), i=1,---,n.
In the classical case, this is equal to
B,(1 — x) = (—1)"B.(x)
and
E(1—x) = (-1)"E.(x).

(ii) Multiplication formulas.
Set for the given positive integers [, i =1, ---, n.

1

l1— In—-1
s @V =5 - 5 Bix+ Fogr ok g v,
1= n= 1 n

R .
Then it holds
(e <) = 1) -+ (e - <8m ) — 1)GCx: gV
= (e(81,90) — 1) - - - (e(gns 3) — 1)Bo(x; (8V),)
= <gl, a> cee <gna a>xa/a! .
Setting the matrix g°
(g A AV
: .0 : . 0

glz =3 O.'. : 0

: and "9 = (l{'9,, -- -, 1;'9,),
(8- L] \& l,

we have

(e(8D, 17'3)) — 1) - -+ (e(K(8")n, 17'9D) — DG(x; (8V),)
=1L L@ 170) - - - (8", I7')x" el

Hence, we obtain the multiplication formula for B,(x; (gV),):
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By(x; (@'V),) = [+t oo fpet 30 S

k1=0 kn=0
k, ka .
><-Ba: x+’l—g1+ +—l—‘gn’(gv)n .
Similarly, we have the formulas
BJ(lx; (8'V)) = Irestt oo Lot 35 oo 3
k1=0 kn=0
&1 kl kn .
X(_l) Ba x+Tg1+ +Tgn9(gv)0 »
1 n
for every odd number I,,
and
A In
B(lx; (8'V),) = Iyt oo Lentt 50 - ve 3]
k1=0 kn=0
(k| k] kn .
X (=D"™Bx + Tgl T+ -+ Tgn’ &V)),

for every even number [,.
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