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QUADRATIC IRRATIONALS IN THE LOWER LAGRANGE
SPECTRUM

NANCY DAVIS AND J. R, KINNEY

1. We let ¢ = {x,}, where the x, are positive integers and 7 € N, the set of
all integers. We define £ = {x/}, where x/ = x_;, £(k) = {x*] where

X* =Xy, £ ={x,]71>0}. We let B(§) = lim,, [0; %1, %2 ...,%,] =
[0; xy, %9, . . . ] where
1 1 1
[nylyx2y...,xn]—-x1+x2+...+xn.
We let

M R) = x -+ B(ER)) + B(E(R))
and define

ME) = sup M k), L) = lirgcl sup M (¢, k).

The range of L(¢) is known as the Lagrange spectrum and the range of
M (¢) as the Markov spectrum. It is known that both are closed and that the
Markov spectrum includes the Lagrange spectrum. It has been shown by
P. Koganija [5] that the two coincide above +/10. The spectra contain all
values above (14 4+ 7 v/2)/4, {2]. Below 2 +/3, the Lagrange spectrum is
rather sparse, although of the power of the continuum (see [1; 3; 6]).

We consider here the spectra for the range where the entries of £ are restricted
to 1 and 2, which insures that the points of the spectra are at most 2 /3.

We introduce the following notation: We denote the complement of a set A
by cA. We let

& = {¢1 £ x, < 2,foralli}, &+ = (£t e &Y,
R = (gt = £(5) for some s}, R+ = (£t ¢ A,
He = {E|e()t € A+, E(—i)t € R, for some i}, Het = {EF|t € He).
A bar will be used to indicate the repeating section.
We denote the range of M, L, 8 with the argument restricted to a set.%/ by

M) = (M) : £ €}, L[] = {L¢): £ €}, 8] = (B() : £ € ).
We let
I(g,n) = {nln = {yd, . = x4 |i]| = n}.

We say that & — £ if &9 € I(¢, n) for 7 > j(n). We note that M (£, 0) is a
continuous function of &.
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We say that (a, b) is an interval of the complement of L[&] (Mlg]) if
a € L[&] (M[&]), b€ L[&] (M[&]) and (a, b) C cL[&] (cM[&E)).

In Section 2 we prove

THEOREM 1. If (a, b) is an interval of the complement of L[&’] or M[&],
then a and b are each the sum of solutions of quadratic equations.

In Section 3 we prove
THEOREM 2. (a) LIZ] is dense in L[ &]. (b) MIR] is dense in M[&].

Also we prove other results concerning the role of the periodic and eventually
periodic £. Not so much can be said in this direction as there are ¢ € e,

for instance (...,1,1,2,2,1,1,...) is such that M (¢) is clustered on both
sides by M[%e)].

We conclude the introduction by stating some simple lemmas, of which
the first two are well-known and the proofs will not be given.

LEMMA 1. If n € I(¢§,n) N cI(§ n + 1) then e;(n) < |B(8) — B(n)| < e(n)

where
a(n) = L(1 + v2)™, and e (n) = K[(1 + +/5)/2]7*"
where L and K are independent of k.
LEMMA 2. Forany £ € &, 7 € &,
(05060, « .oy X, 8 F B(E, )] > [05 21, . .., Xy, 0 + B(n, m)],
where 6, = 1 if n is odd and 6, = 2 if n is even.
LEMMA 3. If £ € &, there is an n € & for which M(£) = M(n, 0).

Proof. 1f sup, M (¢, k) is obtained for & < o0, M(¥) = M(¢(k), 0). If not
we can find N = {¢/} C N, where M (¢) = lim,,, M(¢(z')) and lim ., £(') =
n € &. Then M(n) = M(y,0) = M(£). For fixed s

M, s) = lim M(E s +1") < sup M(§ k) = M(E).
>0 k
2. To prove Theorem 1 we first prove two lemmas.

LemMMA 4. Suppose (a, b) to be an interval of the complement of M[& ). Then
if s> inf {n|e,(n) > (b —a)/2}, M(,0) 20, and 4 € I(§s), we have
M(n) = b.

We call S(a,d) the set of sequences x_s, ¥_;11,...,%0, X1, ...,%s COI-
responding to £ with M (¢, 0) = b. It is clear that M (y) = b if

yi—sf yi—s+ly c e vy‘t+s E S(ay b)

for some 7, and M () < a if Yiygy Vimst1y o+ -, Yirs € S(a, b) for every 1.
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Proof. Suppose n € L(g, s), then

M@»,0) =2+8G +80) >2+B8E) +8E) — (0 —a)
> M(EOD — (b —a)=b—(b—a)=a.

Since by hypothesis M () € (a,b), we must have M (y) = b.

Definition. We say that £ € & is subject to a finite stationary restriction
A of length s if there is a finite set of sequences of 1's and 2’s, each of length s,
As = {[ay, ..., a5}, such that for every j = 0, [xj41,...,%;45] € 4;. We
denote such ¢ by & /4.

We will consider only 4, for which & /4, is non empty. It is not difficult
to see that & /4, is a closed set.

LEMMA 5. If £ € & /A and B(¢) = max {B(¢)|§ € &/A,} ormin {B(E)|¢ €
& /A ) then, £ € Aet.

Proof. We let £ = {x;}. Of the sequences [Xogst1, - - -, Xopsts), 0 S b S 2941,
two must be identical, since there are at most 2° different ones. Hence, there
must be 7, and a d > s for which [x;11, ..., %] = [Xireasty « « oy Xiv2ars]
Suppose

Xitstl = Oiporl = Oipoatstl ¥ Xopoatstie

Let ¢ = {x,/} where x/ =%, for k =74+ 2d+ s and x,/ = x3_0¢ for
kB> i+ 2d + s. Itiseasily checked that & € & /A since each [x,41', ..., X1ys']
appears in £ But by Lemma 2, 8(¢') > B(£) contrary to hypothesis.

If ®ipsrt # Siroarsrt = Xipoarsrr, we let & = {x/"}, with x/' = x; for
bk <i+4sandx; = xpeqfork > i+ s Againé’ € &/A,and B(E') > B(¢)
contrary to hypothesis. Hence we must have %151 = X40015+1, and hence,
by induction, ¥ ;;; = %4244, for all j > 0. Hence ¢t € He™.

By a similar argument we can show that if

g€ &/4, and B(¢) = min {BE)|E € &/4)
then ¢+ € He™.

Proof of Theorem 1. 1t is sufficient to show that there is a ¢ € e and
at € He for which M(¢) = M(£,0) = a and M (') = M(,0) = b.

By Lemma 3, there is a £ € & for which M(§) = M(£,0) = a. We let 4
be those sequences of 1’s and 2’s of length 2s + 1 not appearing in S(a, b).
Then ¢ and £ are clearly subject to the finite stationary restrictions 4 of
length 25 + 1 and B(%), 8(f) must be maxima of the continued fractions
subject to Ass,1. By applying Lemma 5, we obtain ¢ € He.

By Lemma 3, there is a £ € & for which M (¢) = M (g 0) = b. From the
definition, M (¢, t) < b for all £&. We consider first
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Case 1. M(%,t) = b for only a finite number of ¢#: Then there is a k such
that for |¢| > k, M (£, t) < b. Then we have M (¢,0) = 2 + B(§) + B(¢) where

6@) = [0;x_1, %2, ..., %05 + B(E(——Qk))],
B(&) = [0; 21, %3, . . ., X + B (&, 2k)],

and ¢(—2k)* and £(2k)t are subject to the finite stationary restriction 4,

mentioned above, and B(¢, —2k), B(£, 2k) must be the maxima of the con-
tinued fractions subject to this restriction. By applying Lemma 5, we have
£ € He.

Case 2. We suppose M () =M (£, 0) = M(§,t) = b for an infinite set
T = {t@z)} C N,z € N, t0) =0, t(z) increasing: We consider first Case 2a:
for some k, (1) — t(z+ — 1) < kforall7 € N. If kis less than the s of Lemma 4
we take 4 to be the S(e, b) of Lemma 4. If  is greater than s, we take 4 to be
the set of sequences {[x, . .., Xx41]} of 1 and 2 with

[X i1, Xogo, o oo h Xayosi1] € S(a, b)

for some ¢ in the range 0 £ ¢ < 2k — 2s. Then &+, &t are sequences subject
to the finite stationary restriction 4, and (¢), 8(£) are minimum continued

-

fractions subject to these restrictions. Hence, applying Lemma 5, we have
£ € He.

The remainder of the proof consists of showing that we can find a ¢ which
fits either Case 1 or Case 2a. We consider Case 2b: there is a subsequence
N’ = {¢/} C N, and a sequence s(¢) increasing to infinity and a K such that

1@ +v) —t@ +v—1) < K, for 1 =29 = 2s().
In this case there is a further subsequence N’ = {7/} C N’ along which
£(t@")) — ¢. We find, by a simple limit argument that b = M(¢,0) =
M, ¢ (2)) for a set of #/(¢) with #/(z + 1) — ¢/ () < K. So this case reduces
to Case 2a.

Case 2c: T = {t(z)} is infinite, and the situation of Case 2b does not arise.
We must have a sequence N’ = {i’} C N, a bounded sequence s(:’) and
a constant L such that:

(@) —t(@ — 1) > 00,t@ +s@E")) —t(@') < L,
1@+ s@)+1) —t@ + s@’)) — .
Then for some further subsequence N’ = {i'’} C N’, £(t(")) — £*. We
find, by a simple limit argument that b = M (£*,0) = M (£, ¢) for only a
finite set of £. So this case reduces to Case 1.

3. We begin with the proof of Theorem 2.

Proof of Theorem 2(a). We choose N’ = {i’} so that £(z’) —» ¢. Then
L) = limyey M(,4"). We take # and m from this sequence so large that

|M(E n) — ME)| + [MEm) — ME)] < e/2
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and so far apart that m — n 4+ 1 = v > {, where the ¢ is so large that in
Lemma 1, ¢,() < ¢/4. We let y,, = 2 and ygp15 = Xppj, for0 £ j < 9, —0 <
s<oandsety = (..., —¥,90,%1,...). Nowfor0 < j <9

1(j) € I + ), v)

and hence

M@(v+37)) =Mn(4) <MEn+7) + /2 < ME) + e
On the other hand

M©®,0) =2+80) +8GH) > M) — e
For periodic 7, M (n) = L(y) so the result holds.

Proof of Theorem 2(b). Koganija [5] has shown that above /10, M[&"]
and L[&’] coincide, so Theorem 2(a) suffices in this case. She has also shown
that (44/30/7, +/10) contains no points of either spectrum. In [3] it is shown
that the fractional dimension of the part of M[&’] below 4 +/30/7 is of frac-
tional dimension less than one, which implies that it is also of measure zero.
Hence the complement of M[&] is dense there, so the end points of the
intervals composing the complement are dense. Hence we may apply Theorem
1 in this interval to complete the proof.

Definition. We say that L(¢) = M (¢) = M (¢, 0) has a maximum (minimum)
at £ if there is an €(¢) and an I(§, %), if n € I(¢,n) and, we have either
L(&) = M(n)or M(n) > L(§) + €(¢). (L(§) = M(n) or M(n) < L(§) — €(§)).

If L(¢) has both a local maximum and a local minimum at ¢ we say that
L(£) is locally isolated there.

THEOREM 3. If ¢ is periodic, and L(¢) = M (¢, 0), then L(E) has a local
maximum at k.

Proof. Since L[] is dense in L[&] it is sufficient to consider periodic 7,
with x; = y,; where |i| < 2as + v — 1, where v < 2s, s the period of &, and «
will be specified later. Without loss of generality we may suppose 8(n) > B(¢).
Let 2 = 2as + v = min {7 : y; # x;, 72 > 0}. Then we must have

Voas+v = 62as+v = 61}» Xogsto = 3 — 62as+v =3 — 6177
M, 2as) = M(§) = L(§) = 2+ B() + B(&),
M(n, 2as) = 2 + B(n(2as)) + B((2as)).

Now 7(2as) agrees with £ in 2as more places than did 4, so we may make
|B(E) — B(n(2as))| as small as we please. However,

5(77(2‘13)) = [O; X1y X2y ¢ 0 0y Xp—1, va .. ']

B(E) = [0;®1, X2y v oy Xp1, 3 — 8py o« -]
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So by Lemma 1, 8(n(2as)) — B(§) > 2¢;, where ¢; can be so chosen as to
depend only on s. By choosing «, then, which determines the neighborhood,
so that |B(¢) — B(n(2as))| < e we insure that L(n) > L(£) + €.

THEOREM 4. If £ 15 of odd period, L (&) is locally isolated.

Proof. From the above theorem, we need only show that for 5 periodic,
n € I(§, n), for sufficiently large n, M(y) > M (£). The period of ¢ we take
as 2s + 1,

n=(2e4+1) 2s+1)+9, with v <254+ 1,n =inf {i|x; = y,,7 > 0}
where ¢ is to be determined later. We must have

X(20+1) (2s+ D40 = 024D 2st Do = 3 — 0p,
V(21 @st D40 = 3 = 8(2a4+1) 25+ D40 = Oy
Without loss of generality, 8(¢, 0) < 8(n, 0). Now
ME (2a+1) 25+ 1)) = M(,0) =2+ 8() + 837,
M@, 2a+1) 25+ 1)) =
2+ Bm((2a +1) 25 + 1)) + B0 ((2¢ + 1) (25 + 1))).

As before, by choosing @ large enough, we will insure that

IIB(E) - B(ﬂ((2a’ + 1) (25 + 1)))[ < €, but since 6(20+1)(28+1)+v =3 — 50’
B(n(2a +1 (25 +1))) = [0;%1,. .., %01, 8y, .. ],
BE) =[0;%1,...,%0-1,3 — &, ...]

and we have, by Lemma 1,

B(n, (2a + 1) (2s + 1)) — B(£ 0) > 2

where ¢ depends only on s.
Hence M () > M (¢) 4+ € and the theorem is proved.

THEOREM 5. If ¢ is periodic with period 2s, and if for some k < 2s, & = &,
then L(¢) = M (&, 0) has a locally isolated value at .

The proof depends on the fact that xy, = 2, B(£(k)) = B(¢), B(E(R)) = B(E),
and depends as did the proof of Theorem 5 on the differing parity of subscripts.
It is so similar to the proof of Theorem 5 that we will omit it.

We note that if a value of M () = 2 4+ 8(¢) + B(%) is locally isolated
at £, but not isolated, then there must be a ¢ £ such that M(¢) = M(¢') =
2 4 B() + B(F) where B(¢) = B(£). We remark that Theorem 2.1 of [3]
implies rather easily the following.

COROLLARY. If a € B[&], then the only pair (8,v) € B[] X B[] with
B+v =2ais (a,a).
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Together with Theorem 4 this implies the following

THEOREM 6. If £ is of odd period, and if £ = &, and if L(§) = M(,0) =
2 + B(§), then L(§) 1s 1solated in the Markov spectrum.

For example, if £ = {2,1,1}, or £ = {2,1,1,1,1} then M(¢) = L(¢) is
isolated in both spectra.

Remark. We see from Theorem 6 that if ¢ € L[&’] is an isolated point,
thereisa ¢ € & for which M (¢) = c and hence [7], ¢ involves a single quadratic
irrational. In case (a,b) C cL[&’], with b a cluster point of L[&’], we have
by Theorem 3, that there is a § € Pe with M(,0) = b. If Mg, t(2)) = b
for an infinite number of 7 then thereisan N’ = {4’} for which £(¢t(¢")) —¢ € X,
but M (¢) is locally isolated, so £(t(:')) = ¢ for large 7, and hence ¢ = §'.
Hence there must be a § € He N cR if M(£) = b.
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