
Can. J. Math., Vol. XXV, No. 3, 1973, pp. 578-584 

QUADRATIC IRRATIONALS IN THE LOWER LAGRANGE 
SPECTRUM 

NANCY DAVIS AND J. R. K I N N E Y 

1. We let £ = jx t}, where the xt are positive integers and i € N, the set of 
all integers. We define £ = Jx/J, where x / = x-t, £(£) = \x*} where 
Xt* = xi+k, £+ = \xt | i > Oj. We let /3(£) = lim„^œ [0; xi, x2, . . . , x„] = 
[0; Xi, x2, . . . ] where 

rn , _ J i 1_ 1 

We let 
M(|,*) = xk + £(£(*)) + 0 (*(*)) 

and define 

M(f) = sup Mft, *) , L(£) = lim sup M({, *) . 
A; /C->oo 

The range of £(£) is known as the Lagrange spectrum and the range of 
M(£) as the Markov spectrum. It is known that both are closed and that the 
Markov spectrum includes the Lagrange spectrum. It has been shown by 
P. Koganija [5] that the two coincide above V10. The spectra contain all 
values above (14 + 7 V2) /4 , [2]. Below 2 V3 , the Lagrange spectrum is 
rather sparse, although of the power of the continuum (see [1; 3; 6]). 

We consider here the spectra for the range where the entries of £ are restricted 
to 1 and 2, which insures that the points of the spectra are at most 2 y/3. 

We introduce the following notation: We denote the complement of a set A 
by cA. We let 

<$ = U|l ^ xt g 2, for all i], <f+ = {£+|£ Ç <f}, 

@ = Ul£ = £00 for some s}, ^?+ = {£+i£ G ^ } , 

^ = U|£(*)+ e ^ + , « ( - i ) + € ^ + , for some *}, <$?e+ = {£+|£ € ^ « } . 

A bar will be used to indicate the repeating section. 
We denote the range of M, L, 0 with the argument restricted to a set <$/ by 

MW] = {M(f) : £ 6 a / } , W ] = {£,(£) : g £ J / } , £ [ ^ ] = {0(f) : £ 6 s/}. 

We let 
J(f» w) = U\r) = {3/4, ;y* = xu \i\ ^ «}. 

We say that £> -> £ if £> £ /(£, ») for 7 > jin). We note that M(£, 0) is a 
continuous function of £. 
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We say that (a, ft) is an interval of the complement of L[<¥] (M[Ç]) if 
a Ç L[<f] (M[#])9 b € Z K ] (M<fl) and (a, ft) C <£[<?] M < f ] ) . 

In Section 2 we prove 

THEOREM 1. If (a, ft) is an interval of the complement of L\$] 0r M[S>}1 

then a and ft are each the sum of solutions of quadratic equations. 

In Section 3 we prove 

THEOREM 2. (a) L\0l\ is dense in L\<¥]. (ft) M\3%] is dense in M[<D], 

Also we prove other results concerning the role of the periodic and eventually 
periodic £. Not so much can be said in this direction as there are { G S%e, 
for instance (. . . , 1, 1, 2, 2, 1, 1, . . .) is such that ikf ft) is clustered on both 
sides by M[3ie\. 

We conclude the introduction by stating some simple lemmas, of which 
the first two are well-known and the proofs will not be given. 

LEMMA l.Ifvt / f t , n) C\ d f t , n + 1) then el{n) < |/3ft) - I3(rj)\ < eu(n), 
where 

€,(») = L(l + V2)~2n, and eu(n) = K[(l + V5)/2]~2" 

where L and K are independent of £. 

LEMMA 2. For any £ £ < ,̂ 77 Ç # , 

[0; xu • • • , Xn-i, àn + /3ft, »)] > [0; xly . . . , #n_i, 5S + £(77, n)], 

where 8n = 1 if n is odd and ôn = 2 if n is even. 

LEMMA 3. 7/ £ G <§*, there is an -q d <§* for which ikf ft) = M(rjf 0). 

Proof. If sup* Jlf ft, &) is obtained for ife < 00, Afft) = Afft(fe), 0). If not 
we can find iV7 = {*'} C N, where Af ft) = l im^œ M({(ï)) and lim^OT f (i') = 
77 £ S. Then ikf (77) ^ M (77, 0) = Af ft). For fixed s 

ikf (77, 5) = lim Afft, 5 + i') g sup Af ft, ife) = Af ft). 

2. To prove Theorem 1 we first prove two lemmas. 

LEMMA 4. Suppose (a, ft) to be an interval of the complement of M\S\ Then 
if s > inf {n\eu(n) > (ft - a ) /2 j , Afft, 0) ^ ft, and 77 € Zft, 5), we have 
Af (77) ^ ft. 

We call 5 (a, ft) the set of sequences x_s, x_z+i, . . . , x0, Xi, . . . , xs cor
responding to I with Afft, 0) è ft. It is clear that Af (77) ^ ft if 

y is, yt-s+i, • . . , ^t+s € 5 (a, ft) 

for some i, and i f (77) ^ a if ;)/*_„ ^ - s + i , . . . , yi+s (? S(a> ft) for every i. 
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Proof. Suppose rj G L(£, s), then 

Mb, 0) = 2 + 0(iO + p(n) > 2 + pQ) + /3(£) - (5 - a) 

^ ikf (£, 0) - (6 - a) = b - (b - a) = a. 

Since by hypothesis M(rj) g (a, 6), we must have M(rj) è 6. 

Definition. We say that £ £ <̂  is subject to a finite stationary restriction 
A s of length 5 if there is a finite set of sequences of l 's and 2's, each of length s, 
As = {[#i, • • • » asl}> such that for every j è 0, [tf^+i, . . . , xj+s] G As. We 
denote such £ by $ /A8. 

We will consider only As for which (o /As is non empty. It is not difficult 
to see that <o /As is a closed set. 

LEMMA 5. 7/£ € &IAtani${£) = max {0(£')|£' € ^ / i4 ,}o rmin {/3(£')|£' € 
<f/4,} *Ae», £+ G ^ e + . 

Proof. We let £ = {xt}. Of the sequences [x2fcs+i, • . • , x2ks+s], 0 ^ fe ^ 2s + 1, 
two must be identical, since there are at most 2s different ones. Hence, there 
must be i, and a d > s for which [xi+1, . . . , x i+ s] = \xi+2d+i, . • • , Xi+M+J-
Suppose 

Let £' = {#/} where x / = xfc for k ^ i -\- 2d + s and # / = xk-2d for 
& > i + 2d + 5. It is easily checked that £' G <^A4S since each [xf+i', . . . , xt+/] 
appears in £. But by Lemma 2, /3(£') > /3(£) contrary to hypothesis. 

If x i + s + i ^ ôi+2«n-s+i = xi+2d+s+i, we let £" = {xt"}, with x / ' = xfc for 
k ^ i + 5 and xfc" = x*+2d for k > i + s. Again £" G <f A4S and /?(£") > /3(£) 
contrary to hypothesis. Hence we must have xi+s+i = #i+2<z+s+i, and hence, 
by induction, x i + j = xi+2d+j for all7 > 0. Hence £+ G <^?e+. 

By a similar argument we can show that if 

SZ&/A, and /3(£) = min {£(£') |£' G < ^ 4 . } 

then £+ G ^?e+. 

Proof of Theorem 1. It is sufficient to show that there is a £' G ^?e and 
a £ G Siïe for which Af (£) = Af (£, 0) = a and Af (£') = Af (£', 0) = 6. 

By Lemma 3, there is a £ G <f for which Af (£) = Af (£, 0) = a. We let ^ 
be those sequences of l 's and 2's of length 2s + 1 not appearing in S (a, b). 
Then £ and £ are clearly subject to the finite stationary restrictions A of 
length 2s + 1 and £(£), jft(£) must be maxima of the continued fractions 
subject to A2s+i' By applying Lemma 5, we obtain £ G <^e. 

By Lemma 3, there is a £ G $ for which Af (£) = Af (£, 0) = 6. From the 
definition, M(£, t) tk b for all £. We consider first 
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Case 1. M(%, t) = b for only a finite number of t: Then there is a k such 
that for |*| > k, M{£, t) < b. Then we have M(£, 0) = 2 + 0( |) + 0(£) where 

|8(f) = [0; *_ l f x_2, . . . , x_2* + j8(£(-2*))], 

j9(£) = [0 ; * i , * 2 , . . . , s 2 * + /8(ff 2*)], 

and £( —2&)+ and £(2&)+ are subject to the finite stationary restriction A, 
mentioned above, and /3(£, —2k), /3(£, 2&) must be the maxima of the con
tinued fractions subject to this restriction. By applying Lemma 5, we have 

Case 2. We suppose Jlf(f) =Af(£, 0) = Af(£, /) = & for an infinite set 
T = {t(i)\ C. N, i £ N, t(0) = 0, t(i) increasing: We consider first Case 2a: 
for some k, t(i) — t(i — 1) < k for all i £ N.U k is less than the s of Lemma 4 
we take A to be the S (a, b) of Lemma 4. If k is greater than s, we take 4̂ to be 
the set of sequences {[xi, . . . , x2£+i]} of 1 and 2 with 

[Xj+ i , xz-+2, . . . , X J 4 - 2 S + I ] Ç o ( a , #) 

for some i in the range 0 ^ i ^ 2& — 2s. Then £+, £+ are sequences subject 
to the finite stationary restriction A, and £(£), /5(f) are minimum continued 
fractions subject to these restrictions. Hence, applying Lemma 5, we have 
£ e me. 

The remainder of the proof consists of showing that we can find a £ which 
fits either Case 1 or Case 2a. We consider Case 2b: there is a subsequence 
N' = \i'\ C N, and a sequence s(i') increasing to infinity and a K such that 

t(ï + v) - t(ï + v - 1) < K, for 1 ^ Î; S 2s(i'). 

In this case there is a further subsequence N" = {i"} C iV7 along which 
£(/( i"))-»£ '• We find, by a simple limit argument that b = M(£', 0) = 
M(g, t'(i)) for a set of t'(i) with J'(i + 1) - t'(i) < K. So this case reduces 
to Case 2a. 

Case 2c: T = {t(i)} is infinite, and the situation of Case 2b does not arise. 
We must have a sequence N' = {i'\ C N, a bounded sequence s(i') and 
a constant L such that: 

/(*') - t(i' - 1) -*oo, *(*' + s(ï)) - t{i') < L, 

t(if + s(i') + 1) - *(*' + *(*')) -*«). 
Then for some further subsequence N" = {i"\ QN', £(/(*")) -+ £*. We 
find, by a simple limit argument that b = ikT(g*, 0) = ikf(£*> 0 for only a 
finite set of t. So this case reduces to Case 1. 

3. We begin with the proof of Theorem 2. 

Proof of Theorem 2(a). We choose N' = {i'\ so that £(i')-*%. Then 
L(g) = linv€Ar/ ikf(£, i')- We take n and m from this sequence so large that 

|M({, ») - M ( r ) | + |M(£, m) - M({')l < e/2 
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and so far apart that m — n + 1 = v > t, where the / is so large that in 
Lemma 1, eu(t) < e/4. We let ysv = 2 and ysv+j = xn+jJ for 0 ^ j < vy -co < 
5 < oo and set rj = (. . . , —y, 3/0, y±, . . .). Now for 0 ^ j ^ v 

riU) € / t t («+j) ,») 
and hence 

MOKw + J ) ) = M(i,( j)) < M(£, n+j) + €/2 < M(£) + 6. 

On the other hand 

M(n, 0) = 2 + p(v) + 13 (v) > M (£') - e. 

For periodic YJ, M(rj) = L(T?) so the result holds. 

Proof of Theorem 2(b). Koganija [5] has shown that above V10, M[<o] 
and L[(f] coincide, so Theorem 2(a) suffices in this case. She has also shown 
that (4\/30/7, \ /10) contains no points of either spectrum. In [3] it is shown 
that the fractional dimension of the part of M[(^] below 4 V30/7 is of frac
tional dimension less than one, which implies that it is also of measure zero. 
Hence the complement of M[(f] is dense there, so the end points of the 
intervals composing the complement are dense. Hence we may apply Theorem 
1 in this interval to complete the proof. 

Definition. We say thatL(£) = M(£) = M(£, 0) has a maximum (minimum) 
at £ if there is an e(£) and an /(£, n), if T? £ /(£, n) and, we have either 
L(£) ^ MM or MM > i ( f ) + e(£). (L(£) ^ M(v)orM(v) < L({) - €(£)). 

If L(£) has both a local maximum and a local minimum at £ we say that 
L(£) is locally isolated there. 

THEOREM 3. If £ is periodic, and L(£) = Af(£, 0), ^ n L(£) Ẑ as a local 
maximum at £. 

Proof. Since L[&] is dense in I>[< ]̂ it is sufficient to consider periodic 77, 
with %i = yt where \i\ < 2as + v — 1, where t; < 2s, 5 the period of £, and a 
will be specified later. Without loss of generality we may suppose £(77) > £(£). 
Let & = 2as + u = min {i : yt 9^ xu i > 0}. Then we must have 

y2as+v = f>2as+v ~ $vi %2as+v = 3 — Ô2as+v = 3 ÔVj 

M(f, 2as) = M ({) = L(£) = 2 + j3(f) + gft), 

M(T7, 2as) = 2 + 0(r,(2as)) + P(r,{2as)). 

Now 77(2as) agrees with £ in 2as more places than did 77, so we may make 

|0(D ~~ £0?(2#s))| a s small as we please. However, 

P(ri(2as)) = [0; xu x2, . . . , x,_i, ô„, . . .] 

/3(f) = [0; ffi, x2, . . . , x,_i, 3 — 8V, . . . ] . 
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So by Lemma 1, fi(rj(2as)) — /3ft) > 2ei, where ei can be so chosen as to 
depend only on s. By choosing a, then, which determines the neighborhood, 
so that \pft) - fi(ri(2as))\ < ei we insure that L(rj) > Lft) + ci. 

THEOREM 4. / / ? is 0/ odd period, Lft) w locally isolated. 

Proof. From the above theorem, we need only show that for 77 periodic, 
77 G /f t , n), for sufficiently large n, M(t)) > M{£). The period of £ we take 
as 2s + 1, 

n = (2a + 1) (2^ + 1) + v, with 1; < 2s + 1, n = inf {i\xt ^ yu i > 0} 

where a is to be determined later. We must have 

#(2a+l)(25+l) + fl = 5(2o+l)(2s+l)+» = 3 — O r, 

3 ;(2a+l)(2s+l) + « = 3 — Ô(2a+l)(2s+l) + » = ^v 

Without loss of generality, /3 ft, 0) < 18(17, 0). Now 

Mft, (2a + 1) (2s + 1)) = Mft, 0) = 2 + /3ft) + /3ft), 

Mfo, (2a + 1) (2s + 1)) = 
2 + 18(17((2a + 1) (2s + 1))) + 18(17((2a + 1) (2s + 1))). 

As before, by choosing a large enough, we will insure that 

1/3(1) - j8fo((2a + 1) (2* + 1)))| < €, but since 5(2a+1)(2s+i)+, = 3 - «„ 
/8(r7(2a + 1 (2s + 1))) = [0; xu . . . , * _ i , $„ . . .], 

/8ft) = [0;xi, . . . ,x,_i, 3 - « „ . . . ] 

and we have, by Lemma 1, 

18(17, ( 2 a + 1 ) ( 2 s + 1 ) ) - / 3 f t , 0 ) >2e 

where e depends only on s. 
Hence M(-q) > ikfft) + e and the theorem is proved. 

THEOREM 5. If £ is periodic with period 2s, and if for some k < 2s, %k = £, 
then Lft) = M ft, 0) /zas a locally isolated value at £. 

The proof depends on the fact that x2k = 2,/3ft(&)) = /3ft),/3ft(&)) = /3ft), 
and depends as did the proof of Theorem 5 on the differing parity of subscripts. 
It is so similar to the proof of Theorem 5 that we will omit it. 

We note that if a value of Af(£) = 2 + /3 ft) + /3 ft) is locally isolated 
at £, but not isolated, then there must be a {' ^ f such that ikf ft) = ikfft') = 
2 + /3ft') + /3ft') where £(£') 5* /3ft). We remark that Theorem 2.1 of [3] 
implies rather easily the following. 

COROLLARY. If a 6 0[(f], then the only pair (fi,y) G &[<**] X #[<?] with 
/3 + 7 = 2a is (a, a). 
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Together with Theorem 4 this implies the following 

THEOREM 6. If £ is of odd period, and if £ = ?, and if L(£) = Af (£, 0) = 
2 + #(£), /feew L(£) is isolated in the Markov spectrum. 

For example, if § = {2, 1, 1}, or ? = {2, 1, 1, 1, 1} then M(£) = L(£) is 
isolated in both spectra. 

Remark. We see from Theorem 6 that if c G £[<^] is an isolated point, 
there is a £ G ^ for which I f (£) = c and hence [7], c involves a single quadratic 
irrational. In case (a, 6) C cL[#] , with & a cluster point of L[<^], we have 
by Theorem 3, that there is a ? G ^?e with jkf(£, 0) = 6. If M(£, f (i)) = b 
for an infinite number of i then there is an Nf = {i'} for which £(t(i')) —>£' G ̂ ?, 
but ikf(g) is locally isolated, so %(t(if)) = £' for large i, and hence £ = £'. 
Hence there must be a £ G <^e P\ ^ if i f (£) = 6. 
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