OUADRATIC IRRATIONALS IN THE LOWER LAGRANGE SPECTRUM

NANCY DAVIS AND J. R. KINNEY

1. We let $\xi = \{x_i\}$, where the x_i are positive integers and $i \in N$, the set of all integers. We define $\overline{\xi} = \{x_i\}$, where $x_i = x_{-i}$, $\xi(k) = \{x_i\}$ where $x_i^* = x_{i+k}, \xi^+ = \{x_i \mid i > 0\}.$ We let $\beta(\xi) = \lim_{n \to \infty} [0; x_1, x_2, \dots, x_n] =$ $[0; x_1, x_2, \dots]$ where

$$[0; x_1, x_2, \ldots, x_n] = \frac{1}{x_1 + x_2 + \cdots + x_n}.$$

We let

$$M(\xi, k) = x_k + \beta(\xi(k)) + \beta(\xi(k))$$

and define

 $M(\xi) = \sup_{k} M(\xi, k), \qquad L(\xi) = \limsup_{k \to \infty} M(\xi, k).$

The range of $L(\xi)$ is known as the Lagrange spectrum and the range of $M(\xi)$ as the Markov spectrum. It is known that both are closed and that the Markov spectrum includes the Lagrange spectrum. It has been shown by P. Koganija [5] that the two coincide above $\sqrt{10}$. The spectra contain all values above $(14 + 7\sqrt{2})/4$, [2]. Below $2\sqrt{3}$, the Lagrange spectrum is rather sparse, although of the power of the continuum (see [1; 3; 6]).

We consider here the spectra for the range where the entries of ξ are restricted to 1 and 2, which insures that the points of the spectra are at most $2\sqrt{3}$.

We introduce the following notation: We denote the complement of a set Aby cA. We let

$$\begin{split} & \mathscr{E} = \{\xi | 1 \leq x_i \leq 2, \text{ for all } i\}, \quad \mathscr{E}^+ = \{\xi^+ | \xi \in \mathscr{E}\}, \\ & \mathscr{R} = \{\xi | \xi = \xi(s) \text{ for some } s\}, \quad \mathscr{R}^+ = \{\xi^+ | \xi \in \mathscr{R}\}, \\ & \mathscr{R}e = \{\xi | \xi(i)^+ \in \mathscr{R}^+, \overline{\xi(-i)^+} \in \mathscr{R}^+, \text{ for some } i\}, \quad \mathscr{R}e^+ = \{\xi^+ | \xi \in \mathscr{R}e\}. \end{split}$$

A bar will be used to indicate the repeating section.

We denote the range of M, L, β with the argument restricted to a set \mathscr{A} by

$$M[\mathscr{A}] = \{ M(\xi) : \xi \in \mathscr{A} \}, L[\mathscr{A}] = \{ L(\xi) : \xi \in \mathscr{A} \}, \beta[\mathscr{A}] = \{ \beta(\xi) : \xi \in \mathscr{A} \}.$$

We let

V

$$I(\xi, n) = \{\eta | \eta = \{y_i\}, y_i = x_i, |i| \leq n\}.$$

We say that $\xi^j \to \xi$ if $\xi^j \in I(\xi, n)$ for j > j(n). We note that $M(\xi, 0)$ is a continuous function of ξ .

Received February 16, 1972 and in revised form, June 12, 1972. The research of the second named author was supported by NSF Grant GP-28116.

We say that (a, b) is an interval of the complement of $L[\mathscr{E}]$ $(M[\xi])$ if $a \in L[\mathscr{E}]$ $(M[\mathscr{E}]), b \in L[\mathscr{E}]$ $(M[\mathscr{E}])$ and $(a, b) \subset cL[\mathscr{E}]$ $(cM[\mathscr{E}])$. In Section 2 we prove

THEOREM 1. If (a, b) is an interval of the complement of $L[\mathscr{E}]$ or $M[\mathscr{E}]$, then a and b are each the sum of solutions of quadratic equations.

In Section 3 we prove

THEOREM 2. (a) $L[\mathscr{R}]$ is dense in $L[\mathscr{E}]$. (b) $M[\mathscr{R}]$ is dense in $M[\mathscr{E}]$.

Also we prove other results concerning the role of the periodic and eventually periodic ξ . Not so much can be said in this direction as there are $\xi \in \mathscr{R}e$, for instance $(\ldots, \overline{1, 1}, 2, 2, \overline{1, 1}, \ldots)$ is such that $M(\xi)$ is clustered on both sides by $M[\mathscr{R}e]$.

We conclude the introduction by stating some simple lemmas, of which the first two are well-known and the proofs will not be given.

LEMMA 1. If $\eta \in I(\xi, n) \cap cI(\xi, n+1)$ then $\epsilon_l(n) < |\beta(\xi) - \beta(\eta)| < \epsilon_u(n)$, where

 $\epsilon_l(n) = L(1 + \sqrt{2})^{-2n}$, and $\epsilon_u(n) = K[(1 + \sqrt{5})/2]^{-2n}$

where L and K are independent of ξ .

LEMMA 2. For any $\xi \in \mathscr{E}$, $\eta \in \mathscr{E}$,

 $[0; x_1, \ldots, x_{n-1}, \delta_n + \beta(\xi, n)] > [0; x_1, \ldots, x_{n-1}, \delta_{\tilde{n}} + \beta(\eta, n)],$

where $\delta_n = 1$ if *n* is odd and $\delta_n = 2$ if *n* is even.

LEMMA 3. If $\xi \in \mathscr{E}$, there is an $\eta \in \mathscr{E}$ for which $M(\xi) = M(\eta, 0)$.

Proof. If $\sup_k M(\xi, k)$ is obtained for $k < \infty$, $M(\xi) = M(\xi(k), 0)$. If not we can find $N' = \{i'\} \subset N$, where $M(\xi) = \lim_{i\to\infty} M(\xi(i'))$ and $\lim_{i\to\infty} \xi(i') = \eta \in \mathscr{E}$. Then $M(\eta) \ge M(\eta, 0) = M(\xi)$. For fixed s

$$M(\eta, s) = \lim_{i'\to\infty} M(\xi, s+i') \leq \sup_{k} M(\xi, k) = M(\xi).$$

2. To prove Theorem 1 we first prove two lemmas.

LEMMA 4. Suppose (a, b) to be an interval of the complement of $M[\mathscr{E}]$. Then if $s > \inf \{n|\epsilon_u(n) > (b-a)/2\}$, $M(\xi, 0) \ge b$, and $\eta \in I(\xi, s)$, we have $M(\eta) \ge b$.

We call S(a, b) the set of sequences $x_{-s}, x_{-x+1}, \ldots, x_0, x_1, \ldots, x_s$ corresponding to ξ with $M(\xi, 0) \ge b$. It is clear that $M(\eta) \ge b$ if

$$y_{i-s}, y_{i-s+1}, \ldots, y_{i+s} \in S(a, b)$$

for some *i*, and $M(\eta) \leq a$ if $y_{i-s}, y_{i-s+1}, \ldots, y_{i+s} \notin S(a, b)$ for every *i*.

Proof. Suppose $\eta \in L(\xi, s)$, then

$$M(\eta, 0) = 2 + \beta(\bar{\eta}) + \beta(\eta) > 2 + \beta(\bar{\xi}) + \beta(\xi) - (b - a)$$

$$\geq M(\xi, 0) - (b - a) = b - (b - a) = a.$$

Since by hypothesis $M(\eta) \notin (a, b)$, we must have $M(\eta) \ge b$.

Definition. We say that $\xi \in \mathscr{E}$ is subject to a finite stationary restriction A_s of length s if there is a finite set of sequences of 1's and 2's, each of length s, $A_s = \{[a_1, \ldots, a_s]\}$, such that for every $j \ge 0$, $[x_{j+1}, \ldots, x_{j+s}] \in A_s$. We denote such ξ by \mathscr{E}/A_s .

We will consider only A_s for which \mathscr{C}/A_s is non empty. It is not difficult to see that \mathscr{C}/A_s is a closed set.

LEMMA 5. If $\xi \in \mathscr{C}/A_s$ and $\beta(\xi) = \max \{\beta(\xi') | \xi' \in \mathscr{C}/A_s\}$ or min $\{\beta(\xi') | \xi' \in \mathscr{C}/A_s\}$ then, $\xi^+ \in \mathscr{R}e^+$.

Proof. We let $\xi = \{x_i\}$. Of the sequences $[x_{2ks+1}, \ldots, x_{2ks+s}], 0 \leq k \leq 2^s + 1$, two must be identical, since there are at most 2^s different ones. Hence, there must be *i*, and a d > s for which $[x_{i+1}, \ldots, x_{i+s}] = [x_{i+2d+1}, \ldots, x_{i+2d+s}]$. Suppose

$$x_{i+s+1} = \delta_{i+s+1} = \delta_{i+2d+s+1} \neq x_{i+2d+s+1}.$$

Let $\xi' = \{x_i'\}$ where $x_k' = x_k$ for $k \leq i + 2d + s$ and $x_k' = x_{k-2d}$ for k > i + 2d + s. It is easily checked that $\xi' \in \mathscr{C}/A_s$ since each $[x_{i+1}', \ldots, x_{i+s}']$ appears in ξ . But by Lemma 2, $\beta(\xi') > \beta(\xi)$ contrary to hypothesis.

If $x_{i+s+1} \neq \delta_{i+2d+s+1} = x_{i+2d+s+1}$, we let $\xi'' = \{x_i''\}$, with $x_k'' = x_k$ for $k \leq i + s$ and $x_k'' = x_{k+2d}$ for k > i + s. Again $\xi'' \in \mathscr{C}/A_s$ and $\beta(\xi'') > \beta(\xi)$ contrary to hypothesis. Hence we must have $x_{i+s+1} = x_{i+2d+s+1}$, and hence, by induction, $x_{i+j} = x_{i+2d+j}$ for all j > 0. Hence $\xi^+ \in \mathscr{R}e^+$.

By a similar argument we can show that if

$$\xi \in \mathscr{E}/A_s$$
 and $\beta(\xi) = \min \{\beta(\xi') | \xi' \in \mathscr{E}/A_s\}$

then $\xi^+ \in \mathscr{R}e^+$.

Proof of Theorem 1. It is sufficient to show that there is a $\xi' \in \mathscr{R}e$ and a $\xi \in \mathscr{R}e$ for which $M(\xi) = M(\xi, 0) = a$ and $M(\xi') = M(\xi', 0) = b$.

By Lemma 3, there is a $\xi \in \mathscr{E}$ for which $M(\xi) = M(\xi, 0) = a$. We let A be those sequences of 1's and 2's of length 2s + 1 not appearing in S(a, b). Then ξ and $\overline{\xi}$ are clearly subject to the finite stationary restrictions A of length 2s + 1 and $\beta(\overline{\xi})$, $\beta(\xi)$ must be maxima of the continued fractions subject to A_{2s+1} . By applying Lemma 5, we obtain $\xi \in \mathscr{R}e$.

By Lemma 3, there is a $\xi \in \mathscr{E}$ for which $M(\xi) = M(\xi, 0) = b$. From the definition, $M(\xi, t) \leq b$ for all t. We consider first

580

Case 1. $M(\xi, t) = b$ for only a finite number of t: Then there is a k such that for |t| > k, $M(\xi, t) < b$. Then we have $M(\xi, 0) = 2 + \beta(\overline{\xi}) + \beta(\xi)$ where

$$\beta(\overline{\xi}) = [0; x_{-1}, x_{-2}, \dots, x_{-2k} + \beta(\overline{\xi(-2k)})], \beta(\xi) = [0; x_1, x_2, \dots, x_{2k} + \beta(\xi, 2k)],$$

and $\overline{\xi(-2k)^+}$ and $\xi(2k)^+$ are subject to the finite stationary restriction A, mentioned above, and $\overline{\beta(\xi, -2k)}$, $\beta(\xi, 2k)$ must be the maxima of the continued fractions subject to this restriction. By applying Lemma 5, we have $\xi \in \Re e$.

Case 2. We suppose $M(\xi) = M(\xi, 0) = M(\xi, t) = b$ for an infinite set $T = \{t(i)\} \subset N, i \in N, t(0) = 0, t(i)$ increasing: We consider first Case 2a: for some k, t(i) - t(i - 1) < k for all $i \in N$. If k is less than the s of Lemma 4 we take A to be the S(a, b) of Lemma 4. If k is greater than s, we take A to be the set of sequences $\{[x_1, \ldots, x_{2k+1}]\}$ of 1 and 2 with

$$[x_{i+1}, x_{i+2}, \ldots, x_{i+2s+1}] \in S(a, b)$$

for some *i* in the range $0 \leq i \leq 2k - 2s$. Then ξ^+ , $\overline{\xi}^+$ are sequences subject to the finite stationary restriction *A*, and $\beta(\xi)$, $\beta(\overline{\xi})$ are minimum continued fractions subject to these restrictions. Hence, applying Lemma 5, we have $\xi \in \Re e$.

The remainder of the proof consists of showing that we can find a ξ which fits either Case 1 or Case 2a. We consider Case 2b: there is a subsequence $N' = \{i'\} \subset N$, and a sequence s(i') increasing to infinity and a K such that

$$t(i' + v) - t(i' + v - 1) < K$$
, for $1 \le v \le 2s(i')$.

In this case there is a further subsequence $N'' = \{i''\} \subset N'$ along which $\xi(t(i'')) \to \xi'$. We find, by a simple limit argument that $b = M(\xi', 0) = M(\xi', t'(i))$ for a set of t'(i) with t'(i + 1) - t'(i) < K. So this case reduces to Case 2a.

Case 2c: $T = \{t(i)\}$ is infinite, and the situation of Case 2b does not arise. We must have a sequence $N' = \{i'\} \subset N$, a bounded sequence s(i') and a constant L such that:

$$t(i') - t(i' - 1) \to \infty, t(i' + s(i')) - t(i') < L,$$

$$t(i' + s(i') + 1) - t(i' + s(i')) \to \infty.$$

Then for some further subsequence $N'' = \{i''\} \subset N', \ \xi(t(i'')) \to \xi^*$. We find, by a simple limit argument that $b = M(\xi^*, 0) = M(\xi^*, t)$ for only a finite set of t. So this case reduces to Case 1.

3. We begin with the proof of Theorem 2.

Proof of Theorem 2(a). We choose $N' = \{i'\}$ so that $\xi(i') \to \xi'$. Then $L(\xi') = \lim_{i' \in N'} M(\xi, i')$. We take *n* and *m* from this sequence so large that $|M(\xi, n) - M(\xi')| + |M(\xi, m) - M(\xi')| < \epsilon/2$

and so far apart that m - n + 1 = v > t, where the t is so large that in Lemma 1, $\epsilon_u(t) < \epsilon/4$. We let $y_{sv} = 2$ and $y_{sv+j} = x_{n+j}$, for $0 \le j < v$, $-\infty < s < \infty$ and set $\eta = (\ldots, -y, y_0, y_1, \ldots)$. Now for $0 \le j \le v$

$$\eta(j) \in I(\xi(n+j), v)$$

and hence

$$M(\eta(sv+j)) = M(\eta(j)) < M(\xi, n+j) + \epsilon/2 < M(\xi) + \epsilon$$

On the other hand

$$M(\eta, 0) = 2 + \beta(\eta) + \beta(\bar{\eta}) > M(\xi') - \epsilon.$$

For periodic η , $M(\eta) = L(\eta)$ so the result holds.

Proof of Theorem 2(b). Koganija [5] has shown that above $\sqrt{10}$, $M[\mathscr{C}]$ and $L[\mathscr{C}]$ coincide, so Theorem 2(a) suffices in this case. She has also shown that $(4\sqrt{30}/7, \sqrt{10})$ contains no points of either spectrum. In [3] it is shown that the fractional dimension of the part of $M[\mathscr{C}]$ below $4\sqrt{30}/7$ is of fractional dimension less than one, which implies that it is also of measure zero. Hence the complement of $M[\mathscr{C}]$ is dense there, so the end points of the intervals composing the complement are dense. Hence we may apply Theorem 1 in this interval to complete the proof.

Definition. We say that $L(\xi) = M(\xi) = M(\xi, 0)$ has a maximum (minimum) at ξ if there is an $\epsilon(\xi)$ and an $I(\xi, n)$, if $\eta \in I(\xi, n)$ and, we have either $L(\xi) \ge M(\eta)$ or $M(\eta) > L(\xi) + \epsilon(\xi)$. $(L(\xi) \le M(\eta) \text{ or } M(\eta) < L(\xi) - \epsilon(\xi))$.

If $L(\xi)$ has both a local maximum and a local minimum at ξ we say that $L(\xi)$ is locally isolated there.

THEOREM 3. If ξ is periodic, and $L(\xi) = M(\xi, 0)$, then $L(\xi)$ has a local maximum at ξ .

Proof. Since $L[\mathscr{R}]$ is dense in $L[\mathscr{C}]$ it is sufficient to consider periodic η , with $x_i = y_i$ where |i| < 2as + v - 1, where v < 2s, s the period of ξ , and a will be specified later. Without loss of generality we may suppose $\beta(\eta) > \beta(\xi)$. Let $k = 2as + v = \min \{i : y_i \neq x_i, i > 0\}$. Then we must have

$$y_{2as+v} = \delta_{2as+v} = \delta_v, \quad x_{2as+v} = 3 - \delta_{2as+v} = 3 - \delta_v$$
$$M(\xi, 2as) = M(\xi) = L(\xi) = 2 + \beta(\xi) + \beta(\xi),$$
$$M(\eta, 2as) = 2 + \beta(\eta(2as)) + \beta(\overline{\eta(2as)}).$$

Now $\bar{\eta}(2as)$ agrees with $\bar{\xi}$ in 2as more places than did $\bar{\eta}$, so we may make $|\beta(\bar{\xi}) - \beta(\overline{\eta(2as)})|$ as small as we please. However,

$$\beta(\eta(2as)) = [0; x_1, x_2, \dots, x_{v-1}, \delta_v, \dots]$$

$$\beta(\xi) = [0; x_1, x_2, \dots, x_{v-1}, 3 - \delta_v, \dots].$$

So by Lemma 1, $\beta(\eta(2as)) - \beta(\xi) > 2\epsilon_1$, where ϵ_1 can be so chosen as to depend only on s. By choosing a, then, which determines the neighborhood, so that $|\beta(\xi) - \beta(\eta(2as))| < \epsilon_1$ we insure that $L(\eta) > L(\xi) + \epsilon_1$.

THEOREM 4. If ξ is of odd period, $L(\xi)$ is locally isolated.

Proof. From the above theorem, we need only show that for η periodic, $\eta \in I(\xi, n)$, for sufficiently large n, $M(\eta) > M(\xi)$. The period of ξ we take as 2s + 1,

$$n = (2a + 1) (2s + 1) + v$$
, with $v < 2s + 1$, $n = \inf \{i | x_i \neq y_i, i > 0\}$

where a is to be determined later. We must have

$$\begin{aligned} x_{(2a+1)(2s+1)+v} &= \delta_{(2a+1)(2s+1)+v} = 3 - \delta_v, \\ y_{(2a+1)(2s+1)+v} &= 3 - \delta_{(2a+1)(2s+1)+v} = \delta_v. \end{aligned}$$

Without loss of generality, $\beta(\xi, 0) < \beta(\eta, 0)$. Now

$$\begin{split} M(\xi, (2a+1) (2s+1)) &= M(\xi, 0) = 2 + \beta(\xi) + \beta(\overline{\xi}), \\ M(\eta, (2a+1) (2s+1)) &= \\ & 2 + \beta(\eta((2a+1) (2s+1))) + \beta(\overline{\eta((2a+1) (2s+1))}). \end{split}$$

As before, by choosing a large enough, we will insure that

$$\begin{aligned} |\beta(\xi) - \beta(\eta((2a+1) \ (2s+1)))| &< \epsilon, \text{ but since } \delta_{(2a+1)(2s+1)+v} = 3 - \delta_v, \\ \beta(\eta(2a+1 \ (2s+1))) &= [0; x_1, \dots, x_{v-1}, \delta_v, \dots], \\ \beta(\xi) &= [0; x_1, \dots, x_{v-1}, 3 - \delta_v, \dots] \end{aligned}$$

and we have, by Lemma 1,

$$\beta(\eta, (2a+1) (2s+1)) - \beta(\xi, 0) > 2\epsilon$$

where ϵ depends only on *s*.

Hence $M(\eta) > M(\xi) + \epsilon$ and the theorem is proved.

THEOREM 5. If ξ is periodic with period 2s, and if for some k < 2s, $\overline{\xi}_k = \xi$, then $L(\xi) = M(\xi, 0)$ has a locally isolated value at ξ .

The proof depends on the fact that $x_{2k} = 2$, $\beta(\xi(k)) = \beta(\xi)$, $\beta(\xi(k)) = \beta(\bar{\xi})$, and depends as did the proof of Theorem 5 on the differing parity of subscripts. It is so similar to the proof of Theorem 5 that we will omit it.

We note that if a value of $M(\xi) = 2 + \beta(\xi) + \beta(\overline{\xi})$ is locally isolated at ξ , but not isolated, then there must be a $\xi' \neq \overline{\xi}$ such that $M(\xi) = M(\xi') =$ $2 + \beta(\xi') + \beta(\overline{\xi}')$ where $\beta(\xi') \neq \beta(\xi)$. We remark that Theorem 2.1 of [3] implies rather easily the following.

COROLLARY. If $\alpha \in \beta[\mathscr{E}]$, then the only pair $(\beta, \gamma) \in \beta[\mathscr{E}] \times \beta[\mathscr{E}]$ with $\beta + \gamma = 2\alpha$ is (α, α) .

Together with Theorem 4 this implies the following

THEOREM 6. If ξ is of odd period, and if $\xi = \overline{\xi}$, and if $L(\xi) = M(\xi, 0) = 2 + \beta(\xi)$, then $L(\xi)$ is isolated in the Markov spectrum.

For example, if $\xi = \{\overline{2, 1, 1}\}$, or $\xi = \{\overline{2, 1, 1, 1, 1}\}$ then $M(\xi) = L(\xi)$ is isolated in both spectra.

Remark. We see from Theorem 6 that if $c \in L[\mathscr{E}]$ is an isolated point, there is a $\xi \in \mathscr{R}$ for which $M(\xi) = c$ and hence [7], c involves a single quadratic irrational. In case $(a, b) \subset cL[\mathscr{E}]$, with b a cluster point of $L[\mathscr{E}]$, we have by Theorem 3, that there is a $\xi \in \mathscr{R}e$ with $M(\xi, 0) = b$. If $M(\xi, t(i)) = b$ for an infinite number of i then there is an $N' = \{i'\}$ for which $\xi(t(i')) \to \xi' \in \mathscr{R}$, but $M(\xi)$ is locally isolated, so $\xi(t(i')) = \xi'$ for large i, and hence $\xi = \xi'$. Hence there must be a $\xi \in \mathscr{R}e \cap c\mathscr{R}$ if $M(\xi) = b$.

References

- 1. C. J. Hightower, The minima of indefinite binary quadratic forms, J. Number Theory 2 (1970), 364-377.
- 2. J. R. Kinney and T. S. Pitcher, The Hausdorff-Besicovich dimension of level sets of Perron's modular functions, Trans. Amer. Math. Soc. 124 (1966), 122-130.

3. — On the lower range of Perron's modular function, Can. J. Math. 21 (1969), 808-816.

- P. Kogonija, On the connection between the spectra of Lagrange and Markov. II, Tbiliss. Gos. Univ. Trudy Ser. Meh.-Mat. Nauk 102 (1964), 95–104.
- On the connection between the spectra of Lagrange and Markov. III, Tbiliss. Gos. Univ. Trudy Ser. Meh.-Mat. Nauk 102 (1964), 105–113.
- On the connection between the spectra of Lagrange and Markov. IV, Akad. Nauk. Gruzin. S.S.R. Trudy Tbiliss Mat. Inst. Razmadze 29 (1963), 15-35 (1964).
- 7. O. Perron, Über die Approximation Irrationale Zahlen durch Rationals, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 12 (1921), 3-17.

University of Chicago, Chicago, Illinois; Michigan State University, East Lansing, Michigan