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EXACT VALUES FOR DEGREE SUMS 
OVER STRIPS OF YOUNG DIAGRAMS 

I. P. GOULDEN 

1. Introduction. If À = (Ai,..., \m) where Ai, . . . , Aw are nonnegative inte
gers with Ai > • • • > Aw, then A is a partition of | A | = Ai + • • •+Aw, and we write 
A h | A |. The non-zero A/'s are the parts of A, so A i is the largest part, and I (A ) is 
the number of parts of A. Two partitions with the same parts, so they differ only in 
number of zeros, are the same. The set of all partitions, including the partition of 0 
(with 0 parts) is denoted by 2\ The conjugate of A, denoted by A, is the partition 
(/ii,. . . , /ijfc), in which /zz- is the number of A's that are > /, for / = 1, . . . , k, where 
k= Ai. 

Let 5 ^ be the symmetric group onlA^ = { 1, . . . ,«}. The irreducible repre
sentations of S<^ are indexed by the partitions A of n; the degrees fx of these 
representations are given by the hook formula of Frame, Robinson and Thrall [2]. 

In this paper, formulas are derived for i = 1,2 and various values of n and m, 
for the sums 

$(«)= E (A")' 
t(X)<m 

and 

^>)= E (fxi 
Xhn 

e(X)=m 

Clearly S(/V) = T*f\ri) = 1 for i = 1,2. Formulas in terms of Catalan num
bers are given for sfin) in Knuth [7], for 7^ V ) , jf\n) in Regev [13], and for 
T^4

l\n), ^(n) in Gouyou-Beauchamps [6]. Determinantal forms of the exponen
tial generating function in n for the S$(n) fori= 1,2 and arbitrary m are given 
in Gessel [3] (See also Bender and Knuth [1], Gordon [4], Gordon and Houten 
[5]). The formulas for S$(n) that follow from these determinantal forms increase 
in complexity as m grows. In contrast, the formulas in the paper (Theorem 3.3, 
Corollary 3.4, Theorem 3.5) increase in complexity as nj m grows. Of course, the 
simplest result of our type is well-known (see, e.g., Stanley [16, Section 17]): 

(1.1) S(^(n) = n\ and S(
n
l\n) = Inv(/ï) 
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764 I. P. GOULDEN 

the number of involutions in J w . 
Regev [13], has obtained the asymptotic form in n for S$(ri), where m is a fixed 

positive integer and i is a fixed real number. The introduction to Regev's paper 
gives a nice account of various contexts in which S^\n) occurs, including repre
sentation theory (Schur [15]), combinatorics (Schensted [14]), polynomial identi
ties (Latyshev [8]), and the Procesi-Razmyslov theory of trace-identities (Procesi 
[10, 11], Razmyslov [12]). In particular, combinatorially, ^ ( ^ ( ( T j ^ n ) ) can be 
interpreted as the number of permutations of n distinct symbols whose longest 
increasing subsequence has length at most m (exactly m), and 5'^)(^)((7^1)(/i)) is 
the number of involutions on n distinct symbols whose longest increasing subse
quence has length at most m (exactly m). 

Stanley [17] refers to a private communication of D. Zeilberger showing that 
{ T^\n)} n ^ 0 is P-recursive for each fixed m. (A sequence is P-recursive if it 
satisfies a homogeneous linear recurrence equation of fixed order with polynomial 
coefficients.) 

Formulas in this paper are derived by the manipulation of symmetric functions 
in the variables x — (jq,.. .,xn). (See Macdonald [9, Chapter I], for a complete 
treatment.) The power-sum symmetric functions po(x),p\(x),... are defined by 

/>,-(*) = £ 4 î> l 
. 7 = 1 

and/?o(*) = 1. If E(z,x) — FÇLiO +*/£)> then the elementary symmetric functions 
eo(x), e\ (x),... are given by 

ei(x)= [j]E(z,x), i>09 

where [zl] denotes the coefficient of £ in the expression to the right. The complete 
symmetric functions ho(x), h\(x),... are given by 

ht(x)= [j]E(-z,x)-\ i>0. 

Let 6 = (n—l,n — 2,...,l,0).Ifb = (b\,..., bn) is an w-tuple of non-negative 
integers, then the Schur symmetric function Sb(x) is given by 

sb(x) = a8(xyxab+s(x), 

where for c = (c\,..., cn), ac(x) is the alternant 

ac(x) = det(x^)nxn 

Thus aè (x) is the Vandermonde determinant, and we denote it by V(x). 
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The connection between the degree sums given above and symmetric functons 
is that 

A _ r\ f = f 
PI to" 

n\ 
•SA to 

when À = (Ai,... , A„) is a partition of n. (This coefficient is well-defined for n 
variables since the degree of p\(x)n is < n.) Thus, define 

¥(«,*) = J2umVm(x) 
m>0 

= Y Y ds\M 
Ae^;>A, 

®(u,x,y)= £ um<$>m(x,y) 
m>0 

= Y Y ds\(x)s\(y), 
AG^7>A, 

where y = (y\,.. .,)>„), so we obtain (using the fact that Ai = /(A)) the following 
result. 

PROPOSITION 1.1. 

(a) S^\n) = [^}Vm(x\ 

Note that 

{(l-uy¥(u9x)}\u=l = E ^ A W 
AG^P 

{(1 - u)®(u9x,y)}\u=i = £ sx(x)sx(y) 

and these summations are well-known as products (see, e.g. [9], p. 33, 45) 

(1.2) Vto= E ^ t o 

= ri(i-^r1 n d-̂ -r1, 
i=\ l<i<j<n 

) toy) = Y s\(x)sx(y) 
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766 I. P. GOULDEN 

So that Proposition 1.1 can be used, expressions must first be developed for 
^m(jc) and Om(;e, y). The technical details of these developments are given in Sec
tion 2, and begin with a technique of Macdonald [9, p. 124]. The nature of these 
expressions is that they allow us to write 

(1.3) *¥m(x)=J2lVm*(x), 

n 

®m(x,y)= Y,®mjc(x,y), 
k=0 

where as k increases, 
(i) ^mjc a nd ®m,k become increasingly complicated (explicit formulas are given 
in Theorems 2.3 and 2.4), 
(ii) the minimum total degree in x of the monomials in *Fm>£ and Om^ is k(m+k). 
The effect of (/) and (//) is that we can evaluate S£\ri) and S%\n) for 

< m < 
7 + 1 " J 

by considering only the terms in (1.3) corresponding to k = 0, . . . J. 
In Section 3 we apply Proposition 1.1 to obtain the most compact of the explicit 

formulas for S$(ri), corresponding to the first few values of j above. We also give 
a few expressions for the simplest values of T$(ri), since some collapse in the 
formulas for the equivalent S$(ri) — Sĵ _i(w) can be exploited. 

Note that, in principle, the symmetric group character summation 

can be evaluated analogously to Proposition 1.1 by extracting appropriate power 
sum coefficients from Om(x,y). For arbitrary partitions /i, i/, the resulting expres
sions seem awkward, and are not given. 

2. Generating functions for the degree sums. The first stage in the derivation 
of formulas for ^ ( J C ) and Om(x,y) follows the method used by Macdonald [9, 
p. 124] for a sum of Hall-Little wood symmetric functions analogous to *Fm(jc). The 
details are included here, in Theorem 2.1 below, because the details are simpler 
for these Schur function summations, we need a special form for the result, and 
for completeness. (Macdonald [p. 51,52] uses his form for the result to derive the 
generating functions for various classes of column-strict plane partitions in a box.) 

The following notation is used in this section: if a = { a\,..., ak} Ç 9\Q with 
<x\ < • • • < ak, then â = fA& - a, xa = (xa[,.. .,xak), xl

a = xl
ax,.. .,x*ak and 

1(a) {(ij) G a x a and i < j \ 
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THEOREM 2.1. (a) ¥w(jc) = EJLo ̂ mjcix) where 

*ww = E (-i/<«>^Kr y ( * ; ^ W « W * * ) 
| a r | = * 

ffej Ow(*,;y) = ELo *«,*(*» 3O where 

®m,k(x,y) = 

|a|=|0l=* 

Proo/ (a) Writing the Schur functions as a ratio of alternants, we get 

vw 7 > A i > - > A „ > 0 ( 7 6 5 , 

Now let do = J; — Ai + 1, (ii = Ai — À2 + 1, ..., dn-\ = A„_i — An + 1, dn = \n, 
so do > 1, . . . , (i^-i > 1 and d„ > 0, and An_i + 1 = dn-i +dn,...,\\+n— I = 
d\ + • • • + dn, j = d\ + • • • + dn — n. Thus 

(2.1) ¥(«,*) = —l— Y. E sgn^)^"^1;-^" • • -4: 

dn>0 ** 

1 E sgn(a)E^°"-

• • . E ("**, • • ' X°n-X ^ E ("**, ' • • ^ J ^ 

- ^ j - —— E sgnO)-j 

1 UX(jl ' ' ' Xon^\ 1 UX(jx ' ' ' X(j 

since the summations over the d;'s are all geometric series. In particular, note that 

(2.2) V « = 7 ^ T E s g n ( g ) - ^ - - - / * ' • • • * * - * , 
"vA-J aÇiSnj ** X&\ A A ^ ' * * AC0-w_, 1 X ^ J f ^ 

Note that since an alternant with an equal pair of entries is equal to zero, we 
could have also started with the expression 
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which, modifying the above argument, leads to 

(2.3) ^(*)= J - ^ £ sgn((7) 
V(x) aeScu ^ ~ xc\ 1 — xa\ ' ' ' xan 

But, from (2.1), ^(w,*) is a rational function with denominator un {V(x) 
n « c ^ ( l ~~ uxa)i so it has the partial fraction expansion 

where 

Aa = { un~\\ - iaa)0(w,x)} |M=JC-i 

Now let | a | = fc, a; = a;i • • • uJk = <Tk" '°\,P = Pi • • • Pn-^ = cr̂ +i • * * ^n, so 
from (2.1), 

7 ^ E s g n ^ ) 7 - 7 7 - — — 7 T A« =1 =T77T\ S sê n(^)-
L ~ Xa V\X) wGSa 1 — (XUx ' ' • X y ^ , ) 

pes à 

1 -* f l l - * f l l " * * Xn 

1 XUJ{ 1 X p j 1 X p i ' ' • XPn_k_x 1 X p i • • • A : p n _ J f e 

But sgn(cr) = sgn(a;)sgn(p)(—l)/(a)+V2), which gives 

4(-l)/(«H© - 1 
A« = Ï77-; E sgn(cc;) 

- 1 - 1 

1 -^u;i * * * XuJk-\ * - ^ I " " * xu)k 

x E sgn(p)-^ 
p€S« A XP1 A XP1 ' ' '"^Pn-fc-l l XP\'''Xpn~k 

The summation in UJ can be evaluated by (2.3) and the summation in p can be 
evaluated by (2.2). This yields 

A a = \7Tï ^a^aW^âWK^aWK**). 
V\X) 

The result follows since 
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(b) Modifying the argument in (a), we obtain 

° ( < W ) = W~^ E "A° E sgn(0r)sgn(p)(xai^1)Al+rt-1 • • • 
VWVyy) A0>->An>0 ^s^ 

'"OcanyPn)
Xn 

E sgn(a)sgn(p)-
un~\\ - u)V(x)Viy) ^ ^;\-uxaxyPx 

pes% 
uxaxyPx '"XGn_xyPn_x 1 

1 - uxGxyPx • "Xan_xyPn_x 1 - uxaxyPx • - x a n y P n 

The result follows by a partial fraction expansion similar to that in (a), with de
nominators 1 — uxayp, fora,/? Ç 5\£, with | a | = |/?|. 

If Proposition 1.1 is to be applied to Theorem 2.1, the division by V(JC) and 
V(y) must first be carried out. This can be done by using the following result, in 
which expressions like those on the RHS of Theorem 2.1 are seen to arise in the 
Laplace expansion of the numerator alternant of a Schur function. (Recall that 
Schur functions are defined for an arbitrary vector of non-negative integers.) 

PROPOSITION 2.2. LetF(zu.. •, zk) = T,au...,ak>o c(au..., ak)z\x ---za
k
] be a sym

metric function in z\, • • •, Zh Then 

( -1 ) 1 ^ Ï77- 4 ^ a ) = E (̂tf ! , . . . , a ^ , , . . . ^ ) ^ ) 
« ç ^ V W a,,...,a*^0 
|a|=* 

Proof. Let z = (zi,.. . ,z&). It is sufficient to prove this result when F(z) is a 
monomial symmetric function. Thus, let 

where Ai, . . . , A* > 0. (This differs from the monomial symmetric function m\ (z) 
only by a multinomial coefficient scalar. ) We now calculate 

zn-kV(z)F(z) = E sgn (a )^ 1 • • • tf E ^ ' • ' 4 * 

E sgn(a)za\P l " - Z a k 
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Now let UJ — pa, so 

z"-kV(z)F(z) = E E s g n ( a ) C ™ - 1 - - - ^ r 

___ Xw.+n—j 

= E det(z,. ' ) tx t. 

With z = jta, this gives 

|a|=* 

= ^Z(-^a)^(x^-X_k)x(n_k) £ d e t e n u 

|a|=* 

1 
y , v E û(AWl+n-l,-,AWt+/i-M-A:-l,-,0)W, 

w G 5 ^ 

(by the Laplace expansion on the first k columns) 

E ^U1 AJW. 

Thus the result is true for monomial symmetric functions F(z), and by linearity, 
for all symmetric functions F(z). 

The special case k — n of Proposition 2.2 is especially striking. It says that 

J2c(a)xa = E c ( ^ > a W 
« a 

when Ea c(«)x^ is a symmetric function in JC. This also can be obtained as a special 
case of Macdonald ([5], p. 32, Ex.12). 

We now apply Proposition 2.2 to Theorem 2.1(a) to give an explicit form for 

**V*. We use Z(k) to denote (zu • • •, Zk)> 

THEOREM 2.3. Fork = 0,...,nlet 

L W t e % ) - ( - l ) u ^ W ^ ~ n — ^ v n n—^77' 
*<*> l l /=lU ~ zi ) LU<i<j<k U — ZiZj) 

Then 

^m,k(x) = E ^ ( ^ ) ) ^ ) W -
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Proof. Proposition 2.2 can be applied to Theorem 2.1 (a) with 

But 

il>(xa)ip(Xâ) = V>(*) IIC1 -XiXj) 
i'Ga 

TbeaE(-Xi,x) 
= 1>(x) 

Ilijea(l -X(Xj) 

and the result follows. 
This result allows us to write ¥„,,*(*) as a summation over Schur functions in

dexed by k-tuples, whose total degree in x are at least k(m + k). To calculate the 
coefficient of £i f̂~, we use the fact that the degree formula is valid for our defini
tion of Schur functions (see, e.g., Macdonald, p. 25,64). 

To obtain an explicit form for Om^, we require two applications of Proposi
tion 2.2 to Theorem 2.1(b), one in x and the other in y. The result is stated without 
proof. We use w^) to denote (H>I, . . . , w*)-

THEOREM 2.4. For k = 0 , . . . , n, let 

v ça r y<»u>-r 1^nL1{fow/r^(-z,y)£(-^,x)} J(k)AAt(k) 

Hk)Hk) rL/= i (1 — Z/W/> 

Then 

f(*)/*(*> 

3. Formulas for the degree sums. From Theorems 2.3 and 2.4 we deduce the 
following results for the generating functions *F, O. 

THEOREM 3.1. 

where every monmial in the expansion of^m^ix) has total degree at least k(m+k). 
Moreover 

(a)*¥m,o(x) = il>(x)t 
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(b) 4Vi(x) = ^(x)Zi,e>o(-y)Mei(x)hm+i+2i+i(x), 

(cTVm,2{x) = 4>(x)EijJ,rJ>0(-iy+J+l(t+\)ei(x)ej(x)s(m+2+i+2e+t,m+2+j+2r+t)(x). 

Proof. In Theorem 2.3, let J3* denote the generating function for the b^s. Then 

(a)B0 = ^(x), 

l-zf 
= V'WEasoC-l^'eiWz™^2^1, 

/ \ D / i\3 / / xZ?+]zT2E(-z\j)E(-z2j) 

(c)fi3 = (-l)3V(x) '(,4?)(,^)(1_Z|a)2 
= ^(xmj,e,r,t>o(-l)i+j+3(t + l)eiWey(x)zr+2+ '+2f+ 'zr2+; '+2m. 

and the results follow from Theorem 2.3. 

The expression which we can derive for an arbitrary 4/
m^(^»>7) from Theorem 

2.3, in general involves (*) + 2fc summation variables, and Schur functions with k 
non-negative indices. 

THEOREM 3.2. 

k=0 

where every monomial in the expansion o/Om^(jc, y) has total degree at least k(m+ 
k) in the x/ Js and at least k(m + k) in the y, s. Moreover 

(a)®m,o(x,y) = </>(x9y), 

(b)®mA(x,y) = 0(x,v)E/^>o(-iy+ 7 + 1a+ l)ei(x)hm+j+t+i(x)ej(y)hm+i+t+i(y). 

Proof. In Theorem 2.4, let Q denote the generating function for the Q 'S . Then 
(a)C0 = (/>(x,v), 

(b) Q = ( - 1 ) ^ , ^ ^ 

= <M*, )0£y , r>o( - iy^ 
and the results follow from Theorem 2.4. 
The expression which we can derive for an arbitrary Om^(jc, v) from Theorem 

2.4, in general involves k2 + 2k summation variables, and pairs of Schur functions 
in x and y, with k non-negative indices each. 

Now, Proposition 1.1 is applied to the above results to obtain formulas for certain 
values of S$(ri). We implicitly use the fact that, when/?i(jc) = x,pt(x) — 0, / > 2, 

xl 

ej(x) = ht(x) = - . 

The symbol {n)t denotes the product n(n — 1)...(« — /+ 1) when / is a positive 
integer, and (n)o = 1. 
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THEOREM 3.3. For^ <m<n-l, 

(a) 5ft\n) = Inv(n) - £ ^ (-jfi(n)i+j Inv(/) 
2i+2l+j=n-m-\ l'J- J 

(b)ti*Xn) = n\-T. wz> ^ ( n - m - i - j - l)(n)M(n)j+l 
i+l+j<n-m-l L l J -

Proof, (a) By definition 

\pi(x)n 

*m\n) 

Pi(x)n 

it 
(Vm.oW + ^ i W ) , 

since, by Theorem 3.1, every monomial in *Fm(;c) — ^Fm,oW ~ \ i W has total 
degree greater than n for m in the given range. We now use the expression for 
*Fm>i(jc) given by Theorem 3.1(a), and set/?i(jc) = x,pi(x) = 0 for / > 2, to get 

Pi(xf 
1^1^ ) = 

But, when/?i(x) = x, /?/(JC) = 0 for / > 2, 

V « = £lnv(/)^, 

from (1.1), and the result follows, 
(b) By definition, 

Yi yin+i+l 

il>0 i\(m + i + l)\ 

^\n) 
Pi(x)npi(y)n 

n\ n\ 
Pi(x)npi(y)n 

n\ 

®m(x,y) 

(Om,0(x,v) + Om,i(x,j)), 

since, by Theorem 3.2, every monomial in Om(jc, v) — Omjo(x,y) — Q>m,i(x,y) has 
total degree greater than n in the x/'s and greater than n in the j / ' s for m in the given 
range. We now use the expression for <bm^\(x,y) given by Theorem 3.2(b), and set 
pi(x) = x, /?i(y) = y, pt(x) = pj(y) = 0 for 1 > 2, to get 

Piixf pi(y)n 

Om,i(x,y) 

xnyn 

,J7>o i\{m+j + t)\j\(m + i + t)\ 
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But under the above power sum substitutions, 

<Kx,y) = J2 
xlyl 

/>o 

from (1.1), and the result follows. 
The corresponding values for T$(n) are now given (without proof), since some 

collapse occurs in evaluating 

COROLLARY3.4. For s=i <m<n, 

(a) 1^\n) = (-l)"-mE2(+^o_m ^p(n),+yInv(/-), 

( i J ^ ( « ) = E < ô ^{n)M(n)j+l 
i+j+l<n-m ' ••/•*•• 

For example, the degrees of the partitions of 9 with 4 parts are 84,168,216,189, 
56, so 7^(9) = 929 and 7^2)(9) = 17,557, in agreement with the above formulas. 

The simple nature of the summations in Theorem 3.3 and Corollary 3.4 sug
gests that it might be possible to derive these by simpler means than those used 
here, presumably by an inclusion-exclusion argument, since they are alternating 
sums. Especially noteworthy is the fact that the summands in Corollary 3.4 are 
independent of m. 

Finally, a single more complicated result is given, in which [^f~] must be ap
plied to an expression involving Schur functions indexed by pairs of non-negative 
integers (see the comment following Theorem 2.3). 

THEOREM 3.5. For *=*• < m < ^ , 

5&\n) =Inv(n) - £ (-^(n)i+jlnv(j) 

(-l)i+j(t + l)(i -j + 2(1 - r) + 1)Inv(w) 

«v.uîi>o i}J]- u\ (m + 3 + i + 2/ +1)\ (m + 2 +j + 2r +1)\ 
2(i+l+j+r+t)+u=n-2m-4 

E 

Proof. Following the proof of Theorem 3.3(a), we get 

Win) Pi to" 
( , F m ,o to + , Pm,l to + 'P» .2 to ) . 

The value of this coefficient in *Pm,o(̂ , y)+yVm, \ to y) has been obtained in Theorem 
3.3(a). We must add to this the value of 

rpito"! ̂ m.lto, 
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which can be determined in a straightforward manner from Theorem 3.1(c), since 

(j+l-DJ+l 

under the substitutionp\(x) = x, pt(x) = 0 for / > 2. 
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