Partitioning of limiting protein and energy in the growing pig: testing quantitative rules against experimental data

Fredrik B. Sandberg*, Gerry C. Emmans and Ilias Kyriazakis

Animal Nutrition and Health Department, Scottish Agricultural College, West Mains Road, Edinburgh EH9 3JG, UK

(Received 7 May 2004 – Revised 30 September 2004 – Accepted 11 October 2004)

Literature solutions to the problem of protein and energy partitioning in the growing pig are quantitatively examined. Possible effects of live weight, genotype and food composition on the marginal response in protein retention to protein and energy intakes, on protein and energy-limiting foods are quantified. No evidence was found that the marginal response in protein retention to ideal protein supply, when protein intake is limiting, is affected by live weight, genotype or environmental temperature. There was good evidence that live weight does not affect the marginal response in protein retention to energy intake when protein intake is not limiting. Limited data for different genotypes suggested no effects on this response. A general quantitative partitioning rule is proposed that has two key parameters: e_p* (the maximum marginal efficiency for retaining the first limiting amino acid) and $R*$ (the maximum value of R, the energy to protein ratio of the food, MJ metabolisable energy (ME)/kg digestible crude protein (DCP), when e_p* is just achieved). When $R < R*$ the material efficiency of using ideal protein is $(e_p*/R*) \times R$. The value of e_p* was determined to be 0.763 (SE 0.0130). There was no good experimental evidence that e_p* is different for different amino acids. The best estimate of $R*$ was 0.763 (SE 0.0130) MJ ME/kg DCP. Live weight, genotype and temperature did not affect the values of either parameter. A more general understanding of partitioning, including the effects of ‘stressors’ such as disease, may be achieved by using the preferred rule as a starting point.

Swine: Growth: Partitioning: Protein: Energy

Nutrient partitioning in the growing animal is the distribution of absorbed protein and energy to protein (PR) and lipid (LR) retention once the requirements for maintenance have been met. In a companion paper, Sandberg et al. (2005) described solutions that have been proposed to the problem of the partitioning of scarce resources and criticised these qualitatively. Quantitative tests of the rules that withstood qualitative criticisms (Black et al. 1986; Kyriazakis & Emmans, 1992a,b; Whittemore, 1995; National Research Council, 1998) are presented here. Black et al. (1986) and Kyriazakis & Emmans (1992b) deal with the marginal response in protein retention to both energy and protein intake, whichever is scarce. Black et al. (1986) proposed that there are effects of live weight and genotype on these responses; Kyriazakis & Emmans (1992a,b) proposed that there were not. National Research Council (1998) made the marginal response in protein retention to energy intake depend on body weight (following Black et al. 1986), potential rate of protein retention and temperature. Whittemore (1995) proposed a minimum ratio of lipid to protein in the body at which the partitioning rule of an animal may change to conserve body lipid. The value of this minimum ratio, and the factors that might affect it, are also considered here.

The marginal efficiency with which dietary protein supply above maintenance is retained (e_p) is central to the prediction of the rates of retention of both protein and lipid as shown in Fig. 1.

Whittemore et al. (2001) recently concluded that the evidence ‘…would point empirically to a value of [the maximum marginal efficiency, e_p*] of 0.75 to 0.85 but gives scant guidance as to how the prevailing value in any given circumstance may be determined’. It will be shown that the values of e_p and e_p* for particular conditions of food, animal and environment, and estimates of their errors, can be experimentally determined. The work presented here extends the work of Birkett & de Lange (2001) and van Milgen & Noblet (2003) to produce a general partitioning rule for growing pigs.

Protein retention in relation to energy and protein intakes

The response in protein retention to energy intake

Kyriazakis & Emmans (1992a,b) made the marginal efficiency of retaining ideal protein (e_p) a function of the
ratio of the metabolisable energy content (MEC, MJ/kg) to the
digestible crude protein content (DCPC, kg/kg) of the
food, R (MJ metabolisable energy (ME)/kg digestible
crude protein (DCP)). The proposed relationship was
\(e_p = \mu R \) with a maximum value for \(e_p \) of \(e_p^* \) when \(R \) was
above a specific value, \(R^* \). The value of \(R^* \) was calculated as
72.55 (SE 1.53), with \(e_p^* = 0.814 \) and \(\mu = 0.0112 \) (SE 0.00022). The minimum value of \(e_p \) was calculated as 0.2,
when all of the energy came from protein. In support,
Fuller & Crofts (1977) predict a value of 0.17 for the net
protein utilisation when all of the energy comes from protein.
The strong assumptions made by Kyriazakis &
Emmans (1992a,b) were that the values of \(e_p^* \) and \(\mu \), and hence \(R^* \), were independent of live weight and genotype,
including sex. Black et al. (1986, 1995), Fuller et al.
(1995) and de Greef & Verstegen (1995), amongst others,
disagree with this position and expect effects of live
weight and genotype.

The partitioning rule of Black et al. (1986), which is
also used by Schinckel & de Lange (1996), NRC (1998)
can be summarised as the two equations in Sandberg
et al. (2005):

\[
PR = b \times (MEI - (c \times ME_m))(g/d)
\]

(1)

\[
b = X_m \times ((n \times \exp(-yW)) + z)(g/MJ)
\]

(2)

MEI is metabolisable energy intake and \(ME_m \) the amount
needed for maintenance, MJ/d. The rate of response, \(b \),
depends on both live weight, \(W \), and genotype through
the value of the parameter \(X_m \). The values of the other
parameters \(n (0.7) \), \(y (-0.0192) \) and \(z (0.65) \) were assumed
constant across live weights, genotypes, including sex
and environments. Equation 2 was modified by NRC
(1998) to include the effects of different values of the
parameter called MPAR, the ‘mean protein accretion rate
over the range of 20 to 120 kg W’ and ambient temperature (\(T \)).
In addition, the parameters of equation 2 are now related
to digestible energy intake, \(DEI \) MJ/d, rather than MEI (hence

\[
\frac{b'}{b} \text{ rather than } b). \text{ The revised equation is:}
\]

\[
b' = ((17.5 \times \exp(-0.0192W)) + 16.25) \\
\times (MPAR/125) \times (1 + (0.015(20 - T)))
\]

(3)

(\(g/MJ \ DE \mapled))

The equation is only for energy-limiting foods, but no
definition is given of such foods.

Where it is the case that \(e_p = \mu R \) and \(R \leq R^* \), but only
then, the two positions described above, one where \(PR \)
is made a function of energy intake and the other where
\(PR \) is made a function of \(R \), can be shown to be equivalent
(Kyriazakis & Emmans, 1992a,b). The second position becomes:

\[
PR = b \times MEI - a
\]

(4)

The linear coefficient \(b \) can be shown to be equal to \(\mu v \),
where \(v \) is the quality (the proportion of digested protein
that is ideal) of the dietary protein. Therefore, when in
later sections testing the effects of live weight and genotype,
including sex on \(b \), the value of \(\mu \) is also being tested
given assumptions about \(v \) (see below). The supply of
energy is here considered as \(MEI \) as it is consistent
with the rules of Black et al. (1986) and Kyriazakis &
Emmans (1992a,b).

The response in protein retention to protein supply

The methodology used in analysing the data for protein (or
amino acid) supplies and retentions, are described below.
Both the independent variable (intake) and the dependent
variable (retention) need clear quantitative descriptions,
before a value for \(e_p \) can be determined. In addition, the
different descriptions of protein (or amino acid) retention
and protein (or amino acid) supply also need considering.

Protein retained as a function of the ideal protein supply.

The ideal protein supply, \(IP \) (g/d), is that defined by Moughan (2003).
It is calculated as:

\[
IP = F1 \times CPC \times d_i \times v
\]

(5)

\(F1 \) (kg/d) is the food intake, \(CPC \) (kg/kg) is the crude
protein content, \(d_i \) is the ideal digestibility and \(v \) is the quality
of the protein. Ideal digestibility is preferred to faecal
digestibility estimates, but may need correction for any
digenous flow of amino acids (Moughan, 2003). The
ratio of the first limiting amino acid in the digestible
protein, relative to its concentration in the reference protein
is \(v \).

There is large variation in the estimates of the amino acid
composition of the reference protein, which is used to
calculate \(v \) (Table 1). Part of this variation may reflect
analytical problems. Moughan (2003) pointed out that ‘Modern
amino acid analysis is capable of providing data with a
within-laboratory repeatability of 5% or less and a reproducibility
between laboratories of around 10%, but to achieve
such results requires careful attention to detail’. A further
problem is that the amino acid composition of the reference
protein can change with increasing supplies of the particular
amino acid (Batterham et al. 1990).
The marginal material efficiency, e_p, is defined as:

$$e_p = PR/(IP - MP)$$ (6)

In the cases where e_p was calculated rather than determined by regression of PR on IP the ideal maintenance requirement (MP) was calculated as $0.004P$ where P is the protein weight of the pig calculated as $0.16W$.

The response in inferred amino acid retention to amino acid supply. For the ideal protein concept to be valid, all amino acids have to be used with the same efficiency, when they are first limiting. Boisen et al. (2000), who recently reviewed the definitions and applications of the ideal protein concept, did not mention this necessary assumption. It has been challenged by Heger et al. (2002, 2003), who proposed that amino acids were retained with different efficiencies, when first limiting. Whittimore et al. (2001) agreed with the above view that there may be differences in the efficiencies of utilization of amino acids.

Heger et al. (2002, 2003) did not measure the retention of each amino acid, but calculated it indirectly from the measured nitrogen retention. It was assumed that all protein retained had the amino acid composition reported by Bikker et al. (1994a), except for tryptophan where the value was taken from Kyriazakis et al. (1993). The amino acid composition of whole body protein has been reported by several authors as shown in Table 1. The variation between authors is substantial. The data of Heger et al. (2002, 2003) for amino acid supply and protein retention were combined with the amino acid compositions of body protein shown in Table 1 to estimate a possible range in e_p.

The values for e_p calculated by Heger et al. (2002, 2003) fall within the range presented, and agree on average with the mean (0.83) across the amino acids (Table 1). However, for any one amino acid the uncertainty about its value for e_p is substantial. Given this uncertainty, which arises from the different estimates of the composition of body protein, it is not justified to use the data of Heger et al. (2002, 2003) to conclude that the maximum efficiency of amino acid retention is different for different amino acids. It may therefore be possible to use a single overall efficiency for all amino acids whichever is first limiting, and this is discussed further below.

Testing the rules with experimental data

The effect of live weight, genotype and environmental temperature on the marginal response in protein retention for protein- ($R > R^*$) and energy- ($R \leq R^*$) limiting foods is now considered. This definition of protein- and energy-limiting foods was chosen, as it was the only quantitative one present in the literature. For example, de Greef & Verstegen (1995) recognize the necessity of defining 'protein adequate foods' but do not give a quantitative definition.

Preferred tests would be experiments that consider defined protein and energy supplies across live weights, genotypes and environments. Foods with a wide range of protein concentrations given at several allowances would be needed. The experiments in the literature that most closely matched these conditions for protein- and energy-limiting foods are now considered in turn.

The marginal response in protein retention to protein supply in protein-limiting foods

Effects of live weight. Black & Griffiths (1975) concluded that there was no difference in the marginal response in nitrogen retention to nitrogen intake of liquid-fed lambs at live weights between 5 and 25 kg. The response in pigs was estimated from PR and crude protein intake (CPI) CPI g/d the data of Campbell et al. (1984), 45–90 kg, and Campbell et al. (1985a), 20–45 kg. The regression equations presented by the authors were $PR = 0.382 CPI - 11.15$, for the $20–45$ kg pigs, and $PR = 0.425 CPI - 17.8$, for the $45–90$ kg pigs.

Table 1. The amino acid composition of pig body protein from different sources: the consequence of the variation on the calculation of the maximum marginal efficiency of amino acid retention (e_p^*) is shown, together with the values of e_p^* proposed by Heger et al. (2002, 2003)

<table>
<thead>
<tr>
<th>Amino acid composition of pig protein (g/kg crude protein) from different sources†</th>
<th>e_p^* calculated from the N retention data of Heger et al. (2002, 2003)‡</th>
<th>Values of e_p^* proposed by Heger et al. (2002, 2003)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystine (C)</td>
<td>– 13 12 9 16 – 10 9 – 13 9 11-7 16</td>
<td>–</td>
</tr>
<tr>
<td>Histidine</td>
<td>24 35 27 32 27 26 28 28 36 22 22 28-0 36</td>
<td>0.86 1.09 1.40</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>21 29 37 31 28 32 33 35 37 30 21 31-9 37</td>
<td>0.47 0.72 0.86</td>
</tr>
<tr>
<td>Leucine</td>
<td>56 76 74 67 68 68 74 65 75 71 56 69-5 76</td>
<td>0.69 0.86 0.94</td>
</tr>
<tr>
<td>Lysine</td>
<td>55 60 65 64 63 60 70 66 73 60 55 64-2 73</td>
<td>0.70 0.82 0.94</td>
</tr>
<tr>
<td>Methionine (M)</td>
<td>– 19 19 19 22 – 18 20 – 20 18 19-6 22</td>
<td>–</td>
</tr>
<tr>
<td>M + C</td>
<td>– 32 31 28 38 31 28 30 31 33 28 31-5 38</td>
<td>0.78 0.88 1.06</td>
</tr>
<tr>
<td>Phenylalanine (P)</td>
<td>– 29 35 35 36 – 36 35 36-7 35 38 36-7 36</td>
<td>0.78 0.88 1.06</td>
</tr>
<tr>
<td>P + T</td>
<td>49 67 63 60 61 62 64 59 72 – 49 61-9 72</td>
<td>0.55 0.70 0.81</td>
</tr>
<tr>
<td>Threonine</td>
<td>30 39 40 38 34 36 38 36 39 34 30 36-9 40</td>
<td>0.67 0.82 0.93</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>– 7 8 – – 8 8</td>
<td>0.59 0.77 1.01</td>
</tr>
<tr>
<td>Valine</td>
<td>36 40 51 41 41 44 44 47 44</td>
<td>0.67 0.82 0.95</td>
</tr>
</tbody>
</table>

† Sources: 1, Siebrits et al. (1986); 2, Moughan & Smith (1987); 3, Campbell et al. (1988); 4, Battenham et al. (1990); 5, Kemm et al. (1990); 6, Chung & Baker (1992); 7, Kyriazakis et al. (1993); 8, Bikker et al. (1994a); 9, Mahan & Shields (1998); 10, Wu et al. (1999).

‡ Heger et al. (2002, 2003) presented linear regression equations of responses of N retention to increasing amino acid supply. The value of e_p^* was calculated as $(\text{slope} \times 6.25/1000) \times \text{protein of amino acid in kg protein}$. **
The lower value of the slope for the smaller pigs can be attributed to the fact that only the protein retained in the carcass was assessed. If 0.9 of total protein is in the carcass then it would be expected that the coefficient for the whole body would be 0.382/0.90 = 0.424, which is not different from that found for the 45–90 kg pigs. These data thus give no reason to suggest that the marginal response will change with live weight.

Other experiments also suggest that live weight does not have an effect on the marginal response of protein retention to a limiting protein supply. de Lange et al. (2001) investigated the marginal response in threonine retention to ileal digestible threonine intake and found no difference at live weights of 40 and 75 kg. The retention of threonine was inferred from the assumed threonine composition of protein retention (determined in a sub-set of the animals on trial). The value of the net threonine efficiency was calculated as 0.734 (SE 0.0111).

Mohn et al. (2000) found no effect of live weight (45 and 70 kg) on the marginal response in inferred lysine retention to ileal digestible lysine intake. The efficiency was stated as 0.75 with no estimate of error. The combined data of the two experiments of Bikker et al. (1995, 1996) for 20–45 kg and 45–85 kg pigs do not reject the idea that live weight affected the marginal efficiency. Susenbeth (1995) also concluded that the marginal response in protein retention to limiting protein supply was not affected by live weight.

Campbell & Dunkin (1983a) found a high response in nitrogen retention to nitrogen intake (R > R*) for pigs from 1.8 to 6.5 kg, the lowest range possible for postnatal animals. The regression equation of nitrogen retention on nitrogen intake had a slope of 0.880 (SE 0.05). However, this high estimate is an exception. Campbell & Dunkin (1983b) used pigs from 7 to 19 kg, after weaning. Their marginal response was a lot lower at 0.616 as was its standard error of 0.011. It is possible that technical difficulties in measuring nitrogen balance in very small pigs, and the presence of a disease (rotavirus) reported by the authors, led to the high estimate found by Campbell & Dunkin (1983a). It is not seen as sufficient to reject the findings of the other experiments that live weight does not affect the marginal response in protein retention when R > R*.

Effects of genotype including sex. Kyriazakis et al. (1995) used entire male Large White × Landrace and pure Chinese Meishan pigs. The estimated values of e_p were 0.785 and 0.760, respectively (SE 0.032). Fuller et al. (1995) used different breeds including Duroc, pure-bred Large White and the three sexes of a commercial hybrid, over the 40–85 kg weight range. Two foods with either 149.1 or 206.1 g crude protein/kg food were given in three allowances. The data of Fuller et al. (1995) where PR < PRmax are shown in Fig. 2.

Fuller et al. (1995) concluded that 'the results indicate that an animal’s superiority may result from a greater efficiency of protein utilisation or a higher lean growth potential but that these two characteristics are not simply related’. A different interpretation of Fig. 2 is possible. There is one data point for the commercial hybrid female that cannot be explained and is clearly indicated on the graph; it was omitted from the analysis here. The slopes for the five genotypes were not significantly different (P > 0.1). The common slope, shown in Fig. 2, was 0.417 (SE 0.025). The conclusion of Fuller et al. (1995) may thus be challenged.

In support of no effects of genotype is the experiment of de Greef et al. (1992) who gave a commercial (S1) and a sire (S2) strain of pigs the same, one limiting level of protein from a food where R > R*. The pigs retained 42 and 43 g protein/d, respectively. The experiment does not support the idea that pigs with greater PRmax, which was determined in the experiment as 187 g/d for S1 and 153 g/d for S2, have different values for e_p.

There is evidence that different sexes of pigs use a limiting protein supply with similar efficiency. Campbell et al. (1984, 1985b) found no difference in e_p between entire males and females. The genetic maximum for protein retention was greater for males in agreement with Black et al. (1995). The data of Batterham et al. (1990) are shown in Fig. 3; they lend strong support to this conclusion. Kyriazakis & Emmans (1992a,b) did not find any effect of sex on e_p.

It would appear safe to conclude from the above experiments that different genotypes (including sex) do not use a limiting protein supply, with different marginal efficiencies, when R > R*.

Effect of environmental temperature. Models of growth that consider environmental temperature, e.g. Black et al. (1986) and Wellock et al. (2003b), assume that temperature does not have an effect on the marginal response in protein retention on protein-limiting foods. No evidence is presented in support of this assumption. Campbell & Taverner (1988) grew pigs from 9 to 20 kg at 14 and 32°C. The slopes of protein retention on crude protein intake were 0.524 (SE 0.013) and 0.485 (SE 0.013), respectively, which are not significantly different (P > 0.2). Ferguson & Gous (1997) grew pigs fed ad libitum from 13 to 30 kg on foods with 93–230 g crude protein/kg at 18, 22, 26 and 30°C. The data (Fig. 4) show clearly that the marginal response in protein...
Partitioning of limiting protein and energy

171

Plateaux for males and females are shown.

et al. 1998) are considered first.

of Mohn & de Lange (1998) are considered first.

The marginal response in protein retention when the protein supply

and did not find an effect on the marginal response in nitrogen

and temperature on the response in protein retention

Across four genotypes (1983) who kept young pigs at 22°C and then 10°C

isters (3·97, 5·16, 5·08 and 6·03 when W = 100, 125, 150, 175 g/d), and W varying between 20 and 120 kg, the predicted mean

between 18°C (●), 22°C (○), 26°C (△) and 30°C (▽) as found

lysine intake (g)

The marginal response in protein retention on energy-limting foods

The following sections consider the effects of genotype, live weight and temperature on the response in protein retention to energy intake for foods where R ≃ R*. The conclusions of Mohn & de Lange (1998) are considered first.

Mohn & de Lange (1998) presented a table (their Table 5) with twenty estimates of b (where PR = b × MEI - a) across different genotypes and live weights. Although it cannot be guaranteed that all experiments that they analysed had values of R ≃ R*, a necessary condition for b = μv, their mean value of b was 6·2 (sd 2·3) g protein/MJ ME. In none of the three experiments where the effect of live weight was directly estimated (de Greef & Verstegen, 1993; Quiniou et al. 1995; Mohn & de Lange, 1998) was there any indication of systematic change in the value of b with live weight. Across the twelve experiments on males (from their Table 5) the correlation between b and W was r = 0·23 (P = 0·465). There was an indication, across experiments, that the mean value for castrates (3·97, n 3) was lower than that for females (5·16, n 5), which was lower than that for males (7·17, se 0·64, n 12). With μ estimated as 0·0112 (Kyriazakis & Emmans, 1992a,b) the value of b would be expected to be 7·84, when v = 0·70, and 10·08 when v = 0·90.

The rule of Black et al. (1986) predicts that b will reduce with live weight towards an asymptotic value that is dependent on genotype. Black et al. (1986) presented values for the genetic partitioning parameter Xsm which is defined in equation 2: *Xsm has a value of 1·2, 1·0 and 0·78 for entire males, females and castrates of the fast growing genotype and corresponding values of 1·0, 0·85 and 0·65 for a slow growing genotype*. When the value of the genetic parameter Xsm = 1·2 the value of b falls from 10·0 (W = 1 kg) to 5·0 (W = 250 kg) g protein/MJ ME. With Xsm = 0·65 the equivalent change in b is from 5·4 to 2·7 g protein/MJ ME.

NRC (1998) adapted the approach of Black et al. (1986) and made the response of PR to energy intake depend on genotype, through the value of MPAR and W (equation 3). Across four genotypes (MPAR = 100, 125, 150, 175 g/d), and W varying between 20 and 120 kg, the predicted mean estimate of b was 5·94 g protein/MJ ME. The experiments that are relevant tests of the effects of live weight, genotype and temperature on the value of b are now considered.

Effect of live weight. Quiniou et al. (1995) performed nitrogen balances at 45, 65, 80 and 94 kg. The pigs were given four levels of feeding, all of which provided a constant high supply of protein (420–450 g crude protein/d). The treatments may be viewed either as measuring the response in PR to MEI or as a means of seeing how εp varies with R. The common slope b across live weights was 8·85 (se 0·63). Fitting a model that allowed different slopes (7·39, 8·88, 10·23 and 8·23 at 45, 65, 80 and 90 kg, respectively) at each weight gave no statistical improvement (P > 0·5). In a similar experiment (48, 64, 79 and 94 kg) on three kinds of pigs, Quiniou et al. (1996) concluded, ‘the stage of growth had no significant effect on [b]’.

Mohn et al. (2000) gave pigs six levels of energy intake at two levels of protein at both 45 and 75 kg. Protein retention is plotted against MEI in Fig. 5 with the two highest levels of MEI excluded in all four cases because PR could have reached PRmax on these treatments. The common slope for the two weights was 7·18 (se 0·53) g protein/MJ ME. Allowing different slopes did not improve the fit of the model (P > 0·5).

Dunkin & Black (1985) presented estimates of b, for pigs of a range of live weights (30, 46, 74 and 90 kg) that were fed eight levels of an energy-limiting food. The values of b were

![Graph](https://example.com/image1.png)

Fig. 3. Response in lysine retention (Rlys, g/d) to ileal digestible lysine intake (Idlys, g/d): the regression line is \(R_{lys} = 0.763(Idlys - 1.245) \) for the combined data of male (●) and female (○) Large White (20–45 kg) pigs used by Baterham et al. (1990). Separate plateaux for males and females are shown.

![Graph](https://example.com/image2.png)

Fig. 4. The response in protein retention to crude protein intake for pigs fed ad libitum foods that were limiting in protein at four different temperatures: 18°C (●), 22°C (○), 26°C (△) and 30°C (▽) as found by Ferguson & Gous (1997). The solid line is described by \(PR = 0.525(CPI - 4.92) \) until the plateau of 117·4 g/d is reached.
75 kg pigs (—).

2 with a common slope and different intercepts:

PR as found by Mohn et al. energy intake (MEI) such that of

R et al. for the 75 kg pigs of Mohn value for the 90 kg pigs of Dunkin & Black (1985) or that regression as 7·61 (0·31), which is not different from the value of

ME/kg DCP. The value of

The food can be seen as energy limiting with

£ (1994) gave pure Chinese Meishans and Large White
genotypes, boars (bPPx) and castrates (cPPx) of a Large White × Pietrain breed and castrates of a Large White breed (cLW). The response in PR (determined by nitrogen balance) to four levels of energy intake at a constant high protein intake was considered at four live weights. Quiniou et al. (1996) concluded that the response in protein retention to increasing supplies of metabolisable energy intake above maintenance, MEp (MJ/d), was independent of live weight, but did depend on genotype. The values of b for the bPPx, cPPx and cLW pigs were 6·0, 4·0 and 3·4 (g/MJ), respectively, with no standard errors given.

However, in the regressions of Quiniou et al. (1996) of PR on MEp the intercept was fixed by the authors at 64 g/d for all three genotypes. Here a model with a common slope that allowed different intercepts for the three genotypes was also tested. It is not possible to distinguish between the two models from a formal statistical point of view as is shown in Table 2. The variation seen in this data set may partly be attributed to different foods being used for each genotype.

When considering the data where PR is plotted against MEp it is difficult to decide whether a particular point belongs to a positive response or to the plateau. This problem is present in the data of Quiniou et al. (1996) and J van Milgen (personal communication). The data for the individual Pietrain castrates are in Fig. 6, in which the linear regression is shown. The value of the regression coefficient, estimated assuming that there was no plateau, was 4·223 (SE 0·648). Using the method described below the same data were used to estimate the values of the parameters of the linear–plateau model that is also shown in Fig. 6. The linear–plateau model gave a better fit, but not significantly so. The value of the linear coefficient was 4·815 (SE 0·862), which was 1·4 times as great as the estimate where no plateau was allowed.

Effects of temperature. Neither the model of Black et al. (1986) nor that of Wellock et al. (2003a), who consider the effects of temperature, assume that temperature has any effect on the marginal response in protein retention to

Table 2. The response in protein retention, PR (g/d), to the metabolisable energy available for production, MEp (MJ/d)†

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>RSS</th>
<th>RMS</th>
<th>b (cPPx – bPPx)</th>
<th>se (cPPx – bPPx)</th>
<th>a (cPPx – cLW)</th>
<th>cLW</th>
<th>se (cPPx – cLW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>141</td>
<td>48125</td>
<td>341</td>
<td>3·81</td>
<td>0·38</td>
<td>85·5</td>
<td>6·05</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>141</td>
<td>48030</td>
<td>341</td>
<td>4·06</td>
<td>0·38</td>
<td>24·36</td>
<td>3·80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1·61</td>
<td>0·24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−1·07</td>
<td>0·22</td>
<td>−17·67</td>
<td>3·80</td>
<td></td>
</tr>
</tbody>
</table>

† The regression is $PR = a \cdot b \cdot ME_p$. Two different models were fitted to the data of Quiniou et al. (1996), for three pig genotypes (cPPx, bPPx and cLW). Model I, used by Quiniou et al. (1996), fitted a common intercept but allowed different slopes for each genotype. Model II used a common slope that allowed different intercepts for each genotype. The differences in the slopes (Model I) and intercepts (Model II) compared to cPPx are shown here.
The response in protein retention (PR, g/d) to metabolisable energy intake above maintenance (MEI, MJ/d) for the individual Pietrain castrate pigs (Quiniou et al. 1996; J van Milgen, personal communication). The linear regression (− −) and the linear–plateau model (—) are both shown.

The testing performed here supports the view that there are general partitioning rules where the marginal response in protein retention to protein- or energy-limiting foods is independent of live weight, genotype and temperature.

There appears to be no experiment where MEI has been varied at different temperatures, using energy-limiting foods (R < R*). In the absence of any evidence to the contrary it is provisionally concluded that there are no effects of temperature on the marginal response in protein retention to energy-limiting foods. An experiment to test this conclusion is warranted.

The questions that remain from the testing are considered in the discussion. Attempts are now made to determine the values of the key partitioning parameters.

The estimation of the values of the parameters e_p*, μ and R*

The general rule e_p* = μR requires two of its three partitioning parameters to be determined, from which the third can be calculated. The statistical methodology for determining R* and e_p* is first described, after which the parameter estimates are given.

Statistical methodology

Two kinds of regression were performed. The response in protein or amino acid retention to protein or amino acid intake was examined by eye. Where it was judged to be linear over the range below any visible plateau, set either by energetic or genetic limits, a standard linear regression was performed. The other regression used was for a continuous linear–plateau model. This was used to describe the relationship between e_p and R (equation 8).

A linear–plateau model for e_p has a constant derivative for e_p < e_p* and 0 for e_p > e_p*. Fitting such a function in a statistical software package is not straightforward. However, the important parameter R* needs determining with estimates of its error. For this reason the derivative of the plateau model was approximated by the continuous function:

\[A(e_p) = 0.5 \mu \times (1 + \tanh \frac{w(R - R*)}{2}) \]

(7)

For large values of w, A (e_p) converges to \(\mu \) for R < R* and to 0 for R > R*. This equation can be integrated to yield equation 8, which is a good approximation of the linear–plateau model.

\[e_p = e_p^* + 0.5 \mu R - 0.5 w \mu \ln(\cosh(wR)) + \ln(\cosh(w(R - R^*))) \]

(8)

The continuous approximation of a linear–plateau model (equation 8) was fitted in the statistical software SigmaPlot version 7.0 (SPSS Inc., Chicago, IL, USA). This permitted estimation of the values of the slope (\(\mu \)), the break point (R*) and the maximum marginal efficiency (e_p*) with their errors. SigmaPlot uses the Marquardt–Levenberg algorithm for least squares estimation of the parameters (Marquardt, 1963). The parameters are assigned initial estimates from which the best estimates are determined by the least squares method from 100 iterations. The larger the value of w the more abrupt the transition between the linear part and the plateau part of the relationship. This approach is preferred to an alternative approach, piecewise, linear regression, where again the slope of the second phase is constrained to zero (Hudson, 1966).

Parameter values

The determination of the value for e_p* in some experiments has relied by necessity on assumptions about digestibility, protein quality and protein requirements for maintenance.
The approach to determine e_p^* with a minimum amount of assumption is done by regressing determined ileal digestible amino acid intake on determined amino acid retention when $R > R^*$. This assumes that the ileal digestibility is representative of the ‘truly’ available amino acid.

Surprisingly few experiments were found in pigs that considered the response in ileal digestible amino acid intake to a large range of amino acid supplies, where above-mentioned dimensions were measured. The experiments that are used here to estimate the value of e_p^* are those of Batterham et al. (1990), Chung & Baker (1992) and Bikker et al. (1994b). The response of Chung & Baker (1992) was at three levels of methionine intake, while Batterham et al. (1990) used eight levels of lysine and Bikker et al. (1994b) used fifteen levels of lysine. The results of the regressions of amino acid retention on ileal digestible amino acid intake are presented in Table 3.

The determined values for e_p^* in Table 3 are overall lower than that proposed for e_p^* by Kyriazakis & Emmans (1992a,b) of 0·814. The slightly lower value for methionine may be because Chung & Baker (1992) took the ileal digestibility of methionine to equal unity from a companion experiment and the authors did not give any estimate of error of the parameter estimates. The residual of Bikker et al. (1994b) is much higher than that of Batterham et al. (1990).

The estimate of Batterham et al. (1990) is taken as the best with a value of e_p^* of 0·763 (SE 0·0130). The lower estimate of Bikker et al. (1994b) of 0·699 (0·0384) was not as well estimated and is not significantly different. The experiments of de Lange et al. (2001) considering threonine (e_p^*, 0·73 (SE 0·011)) and Mohn et al. (2000) considering lysine (e_p^*, 0·75) are in support of this estimate. In addition, the value for e_p^* determined by the continuous linear–plateau regression for the combined data of Kyriazakis & Emmans (1992a,b) and Kyriazakis et al. (1994) for two genotypes and two sexes was 0·783 (SE 0·0112), not significantly different from the value of Batterham et al. (1990). The values of μ, R^* and e_p^* for these experiments are shown in Table 4.

The value of R^* from the continuous linear–plateau regression of the combined data (Table 4) is similar to the above values and was equal to 67·9 (SE 1·65). Then, taking the best estimate of e_p^* from the experiment of Batterham et al. (1990), permits calculation of the slope μ as 0·763/67·9 = 0·0112.

Therefore, the best parameter estimates are: e_p^*=0·763 (SE 0·0130) and R^*=67·9 (SE 1·65) with the subsidiary parameter μ estimated as 0·0112. These estimates are seen as applying across live weight, genotype (including sex) and temperature. Partitioning rules, which permit loss of lipid, require another parameter that sets the lower limit to the pigs’ lipid content.

The lower limit to body fatness in pigs

It is a necessary condition for a partitioning rule that permits loss of lipid when protein retention is positive to have some lower limit for the amount of lipid that can be lost (Sandberg et al. 2005). Whittemore (1995) stated that ‘there may be postulated a value for $(L/P)_{\text{min}}$, a crisis value below which the metabolic system may experience trauma’. A value for $(L/P)_{\text{min}}$ of 0·5 was proposed. However, it was recognised that the value could be lower (Whittemore, 1995). Green & Whittemore (2003) state that the value of $(L/P)_{\text{min}}$ is likely to be dependent on genotype, but did not give the values. Green & Whittemore (2003) also have an absolute minimum fatness defined as 0·05W. Wellock et al. (2003a) stated ‘that an animal cannot lose lipid that is not present, and must have some minimum lipid content (L_{min}) necessary for survival’. They proposed that the minimum value was 0·1P, where P is the protein mass in the body, which is conceptually equivalent to 0·05W as proposed by Green & Whittemore (2003).

The lower limit to a pig’s lipid content, of relevance to a partitioning rule, is the ratio of lipid to protein at which the pig reduces its rate of protein retention to maintain its lipid content. This may be due to the limit for the biological structures of the pig (Wellock et al. 2003a: 0·1P) or some higher limit (Whittemore, 1995: 0·5P). It is not clear whether these ratios depend on either live weight or genotype. Experimental data where the rates of retention of protein and lipid were measured at low body lipid to protein ratios would help to decide this point. The food would need to be sufficient in protein to ensure that the animal was only limited in energy.

Table 3. The regression of amino acid retention (g/d) on ileal digestible amino acid supply (g/d) from three sources (all diets had more than 83 MJ metabolisable energy per kg digestible crude protein)

<table>
<thead>
<tr>
<th>Source†</th>
<th>Slope SE</th>
<th>Intercept SE</th>
<th>Residual SD g(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0·783</td>
<td>0·0130</td>
<td>−0·950</td>
</tr>
<tr>
<td>2</td>
<td>0·699</td>
<td>0·0384</td>
<td>2·536</td>
</tr>
<tr>
<td>3</td>
<td>0·717</td>
<td>−0·041</td>
<td>NA</td>
</tr>
</tbody>
</table>

Table 4. The response in the efficiency of retaining ideal protein, e_p^*, to the ratio of metabolisable energy to digestible crude protein (R, MJ ME/kg DCP) in the food, estimated by the continuous linear–plateau model†

<table>
<thead>
<tr>
<th>Source‡</th>
<th>Genotype</th>
<th>n</th>
<th>R</th>
<th>μ SE</th>
<th>e_p^* SE</th>
<th>R^* SE</th>
<th>Residual SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Large White × Landrace</td>
<td>40, 44</td>
<td>43–125</td>
<td>0·0138</td>
<td>0·0015</td>
<td>0·795</td>
<td>0·0151</td>
</tr>
<tr>
<td>2</td>
<td>Large White × Landrace</td>
<td>23, 22</td>
<td>33–119</td>
<td>0·0143</td>
<td>0·0114</td>
<td>0·709</td>
<td>0·0185</td>
</tr>
<tr>
<td>3</td>
<td>Chinese Meishan</td>
<td>25, 25</td>
<td>33–119</td>
<td>0·0145</td>
<td>0·0013</td>
<td>0·822</td>
<td>0·0168</td>
</tr>
<tr>
<td>All</td>
<td>Both</td>
<td>132</td>
<td>33–125</td>
<td>0·0131</td>
<td>0·0009</td>
<td>0·783</td>
<td>0·0112</td>
</tr>
</tbody>
</table>

† Regression coefficient of e_p^* on R; e_p^*, plateau value for e_p; R^*, the value of R at which e_p reaches e_p^*.

Campbell & Dunkin (1983a) performed a similar experiment to that preferred. Pigs between 1·8 and 6·5 kg were given four allowances of a food that contained 359 g crude protein/kg DM and 25·4 MJ gross energy. At the lowest allowance of food, the pigs were retaining 24 g/d of protein, and the marginal response was linear in relation to the protein supply. The ratio of lipid to protein in the body was 0·29P. This suggests the estimate of Whittemore (1995) to be too high as an estimate of the minimum ratio of lipid to protein in the body.

Close & Stanier (1984) determined that newborn pigs (1·34 kg) had a ratio of 0·23P and stated that these pigs grew normally up to weaning. It is therefore not possible to reject the ratio of 0·1P proposed by Wellock et al. (2003a). The above values suggest that the minimum ratio may be less than 0·23P–0·29P. The question that remains is whether this ratio is different for genotype and/or live weight.

Discussion

The rules of partitioning proposed by Black et al. (1986), Kyriazakis & Emmans (1992a,b) and Whittemore (1995) withstood the qualitative criticisms in the companion paper (Sandberg et al. 2005). The problem raised is the marginal response in protein retention to limiting protein or energy supplies for different genotypes at different live weights (Black et al. 1986; Kyriazakis & Emmans, 1992a,b). In models which predict lipid loss coupled with protein gain it is necessary to define the ratio of lipid to protein in the body at which the pig reduces its rate of protein retention to maintain the lipid content (Whittemore, 1995).

It has been discussed here and elsewhere that b, the slope of PR on MEI, is equal to μ, given that R < R*. The distinction between the approach where $e_p = \mu R$ and the approach where $PR = b \times MEI$, is made by $R*$. This was not recognised by van Milgen & Noblet (2003) who stated in relation to $e_p = \mu R$ ‘. . .as this function intersects the origin, the approach is essentially similar to a linear–plateau function between energy intake and PD [protein deposition]’. The view that there is considerable real variation in the value of b (e.g. de Greef & Verstegen, 1995; Schinckel & de Lange, 1996; van Milgen & Noblet, 1999) can be explained, at least in part, by the variation in the energy to protein ratios of the food. In addition, some of the variation in b may be attributed to variation in calculating v from variation in amino acid compositions of food and pig proteins, which may either actually exist, or, may arise from differences in analytical methods (Moughan, 2003).

There is a significant amount of evidence suggesting that live weight does not have an effect on the marginal response in protein retention to protein- or energy-limiting foods. The evidence for no effect of genotype was not as abundant. The data reviewed here suggest that it is safe to assume that different genotypes have the same marginal responses to protein- and energy-limiting foods. Temperature does not appear to affect the marginal responses in protein retention to protein-limiting foods. In the absence of evidence no conclusions could be drawn for energy-limiting foods. The questions that remain unresolved and some possible experiments that could address these questions are considered below.

The overall conclusion of the analysis done here is that the rule of Black et al. (1986) and its modified form (NRC, 1998) does not agree as well with literature data as the general rule of Kyriazakis & Emmans (1992a,b). The parameters of the rule were determined as $e_p^* (0·763 (SE 0·013), R^* (67·9 (SE 1·65)) and μ (0·0112). For modelling purposes and future experiments, it is useful to identify general rules. The partitioning rule in this case is general as its parameters are independent of genotype, live weight and temperature, which increases the flexibility of using a rule within larger models. In addition, as the rule is seen as general it may be useful for investigating the partitioning of scarce resources during times of disease and/or social stress (as discussed below).

A difficulty in determining parameter values for models that aim to predict the response of an individual animal is that experimental data usually come from experiments on more than one animal. Even if a linear–plateau model correctly represents the response of any individual at a time, it is still possible that a population of animals will have a response that is curvilinear (Fisher et al. 1973) at a time. Curnow (1978) has described the underlying mathematics. Ferguson et al. (1997) and Pomar et al. (2003) have applied similar arguments to populations of growing pigs. In addition to the variation between individual pigs at a time possibly causing curvilinearity, there is also the effect of each of the individuals changing with time (Pomar et al. 2003). Fuller & Garthwaite (1993) attempted to describe the responses of individual pigs experimentally and presented parameter values for linear–plateau and exponential models for individual animals. The authors concluded that the exponential model was to be preferred, but there were problems with the statistical analyses and with the way in which protein retention was scaled to live weight, to take out period effects.

It may be useful to consider experimentally the marginal responses of different genotypes, at both very low and high live weights, to help to solve the problem raised by one set of data (Campbell & Dunkin, 1983a) on very small pigs. To determine the effect of live weight on the maximum efficiency of protein retention, the energy to protein ratio of the food would need to be greater than 67·9 MJ ME/kg DCP and it would be necessary to ensure that $PR < PR_{max}$ on all treatments. To assess the effects of live weight on R^* and μ, a range of energy to protein ratios above and below 67·9 MJ ME/kg DCP would be needed.

There may be effects of temperature on the partitioning rule used by pigs for energy-limiting foods. This could not be assessed here, as suitable data were not identified. The effect of temperature should be assessed for pigs kept in environments that are cold, thermoneutral or hot for a pig of a particular genotype and state (Wellock et al. 2003a). The estimation of e_p^*, R^* and μ, and quantification of the parameters of the energy system used, would strengthen the test of any partitioning rule in such a situation.

The value of the maximum material efficiency of protein (amino acid) utilisation is a debated area (Whittemore et al. 2001). The assumption that has been made here is for the same value to be used for the material efficiency of using
all amino acids that constitute ‘ideal’ protein. There appears
to be a lack of evidence of sufficient detail (such as Batter-
ham et al. 1990) for the estimation of e_p^* for different amino
acids in pigs. A large range of values for the maximum
material efficiency of protein (amino acid) utilisation has
been proposed for pigs ranging from 0.55 (Susenbeth,
1995) to 0.94 (Leibholz, 1985). However, in both these
cases e_p^* was calculated using a number of assumptions.
The experimental data from the poultry literature are in sup-
from poultry and murine literature that different amino
acids are used with different efficiencies. However, he
also concluded that ‘utilisation efficiency of individual diet-
ary amino acids varies around the 76% figure [taken from
Velu et al. 1971], with slow-turnover amino acids such as
lysine being used more efficiently (80%) than fast-turnover
amino acids such as isoleucine (61%).’

Recent experimental data in poultry suggest smaller
differences. The values for e_p^* were lysine 0.76 (Edwards
et al. 1999), valine 0.73 (Baker et al. 1996), threonine 0.82
(Edwards et al. 1997) and methionine 0.68 (Edwards &
Baker, 1999). The methodology used was similar to that
of Batterham et al. (1990), although the true digestibility
of the crystalline amino acids used was assumed as
100% from another experiment. The mean of the above
estimates is 0.75, which is not different from our proposed
best estimate, 0.763, and the central value of 0.76 proposed

There is not complete agreement for the estimates of e_p^*
for the different amino acids from the pig and poultry lit-
erature. In pigs the estimate for threonine of 0.734 (de Lange
et al. 2001) is very similar to that for methionine of
0.717 (Chung & Baker, 1992). In poultry the estimate
for threonine of 0.82 (Edwards et al. 1997) was very
much greater than that of 0.68 for methionine (Edwards
& Baker, 1999). Rather than the difference between
amino acids truly varying between species it is likely
that all of these four estimates do not differ from each
other. Their mean does not differ from 0.763 taken here
for e_p^*. It may be useful to experimentally determine
the maximum efficiency of amino acid utilisation in pigs
(and poultry) using a standardised procedure. The standard-
dised procedure would include attempts to minimise the
variation of amino acid analysis (Moughan, 2003),
ensure that $R > R^*$ and to implement a range of amino
acid supplies that is similar to that of Batterham et al.

It is necessary for the chosen partitioning rule to have a
complementary constraint to the limit of lipid to maintain
positive protein retention. Wellock et al. (2003a) proposed
a value of 0.1P calculated on biological grounds of what
the lowest amount of lipid in a biological structure may
be. This is taken forward, but it is possible that this
would be too low an estimate. The selection for lean geno-
types at higher weights may have reduced the ‘desired
ratio’ of lipid to protein in the body at a protein weight
(Emmans & Kyriazakis, 2000). This may increase the like-
lihood that pigs of an improved genotype will meet the
minimum ratio at a faster rate than those of an unimproved
genotype. Experiments may be warranted to explore the
value of the minimum ratio across different genotypes.

The general rule of Kyriazakis & Emmans (1992a,b) which
considers both available protein and energy supplies is
preferred to other rules of partitioning considered here and
in the companion paper (Sandberg et al. 2004). The par-
titioning of scarce resources is of current interest in relation
to stressors such as disease (Lochmiller & Deerenberg, 2000;
Coop & Kyriazakis, 2001; Houdijk et al. 2001; Powanda
& Beisel, 2003) and social stress (Wellock et al. 2003b). It is
useful to have a general rule as a starting point to consider
any effects of disease or social stress. The values of the
key parameters e_p^* and R^* may be explored experimentally
in relation to such stressors to further explore scarce resource
partitioning. The particularly relevant stressor is that of
pathogen challenges as there is a current lack of such infor-
mation. Therefore, it may be useful to determine the value of
e_p^* as done by Batterham et al. (1990) and R^* in relation
to the exposure of pigs to different pathogens to further our
understanding of resource partitioning in such circum-
stances. The pathogens considered should include bacteria,
viruses and parasites of a range of challenge doses to
permit comparisons to be made of these. Challenge with
pathogens may increase body temperature, stimulate the
immune response and require resources to be directed
towards the repair of damaged tissues. In addition, challenge
with a pathogen may reduce the voluntary food intake
(Kyriazakis et al. 1998).

The purpose of this and the companion paper (Sandberg
et al. 2005) was to describe the partitioning problem, ident-
ify solutions, and then criticise these qualitatively and
quantitatively. It has been possible to choose a general
rule which, when combined with an energy system, permits
prediction of protein and lipid retention from protein and
energy supplies. General rules are useful for models of
growth as they permit models to expand and consider
new areas of research. The work done here will contribute
to future considerations of scarce resource partitioning
and growth modelling in the pig. Future work will include
quantitative descriptions of the infectious environment on
scarce resource partitioning.

Acknowledgements
This work was supported by the Biotechnology and Bio-
logical Sciences Research Council of the United Kingdom
and the Scottish Executive, Environment and Rural Affairs
Department. F.S. is in receipt of a BBSRC Industrial CASE
studentship, supported by Sygen International Plc. We are
grateful to Dr Pieter Knap of Sygen International Plc, who
in his role of the industry supervisor has encouraged us
throughout, Dr Andrea Doeschl-Wilson of Sygen Interna-
tional Plc for her input on the continuous linear–plateau
regression analysis and Dr Jaap van Milgen for the kind
provision of the detailed data for an experiment that was
used in this paper.

References
metabolic functions: efficiency and priority considerations.
Poult Sci 70, 1797–1805.

Fisher C, Morris TR & Jennings RC (1973) A model for the

