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DIAMETERS OF RANDOM GRAPHS 

VICTOR KLEE AND DAVID LARMAN 

1. Introduction. For two nodes x and y of a graph G, the distance 
dG(x,y) is the smallest integer k such that k edges form a path from x to y ; 
ôG(x} x) = 0, and 8G(x,y) = GO when x ^ y and there is no path from 
x to y. The diameter <5G is the maximum of 5G(x, 3/) as x and 3/ range over 
the nodes of G. When G is connected, b(G) is the smallest integer k such 
that any two nodes of G can be joined by a path formed from at most k 
edges. When G is not connected, 8(G) = 00 and there is interest in 
ôc(G), the maximum of 8(C) over the components C of G. 

For 2 ^ n < 00 and 0 S E ^ w(w - l ) / 2 , let ^ O , £ ) denote the 
set of all loopless undirected graphs with the node-set {1, . . . , n\ and 
exactly E edges. Each edge is an unordered pair of distinct nodes, and 
hence 

l ^ , £ ) l = ( M ( w ~ 1 ) / 2 ) -

For 1 g d ^ 00, let & (n, E, <d) [resp. & (w, E, d), G(n, E, > d)} denote 
the set of all G £ ^ ( » , E) such that 5(G) < d [resp. = d, > d]. Let 

P(n,E, < d) = \&(n,E, <d)\/\&(n, E)\, 

the probability that a random labelled graph with n nodes and E edges 
is of diameter <d. The numbers Pin, E, d) and P(n, E, > d) are similarly 
defined. 

Our main results are as follows: 

THEOREM 1. If the positive integers d ^ 2, £ (1) , E(2), . . . are such 
that 

E(n)d~l/nd-+0 as n-^co 

thenP(n,E(n), <d) -» 0. 

THEOREM 2. / / the positive integers d ^ 2, E(l), E(2), . . . are such that 

(E(n)d/nd+l) — log n —» 00 as n —> 00 , 

then P(n,E(n), >d) -> 0. 

COROLLARY. / / /fee positive integers d ^ 2, E(l), E(2), . . . are such that 

E(n)d-l/nd -» 0 ana7 (E(n)d/nd+l) - log n-> œ as n-> 00 , 

thenP(n,E(n),d) -> 1. 
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RANDOM GRAPHS 619 

Under the conditions of the Corollary, the diameter function Ô may 
range widely on &(n, E(n)), for 

min [Ô(G):G 6 & (n, E)} S 2 if and only if E è n - 1 

and 

max {8(G):G e &(n, E)} = oo 

if and only if E S (n - 1)(« - 2)/2. 

However, the Corollary asserts that for large n, "almost all" members of 
S^(w, E{n)) are of diameter d. In addition to its intrinsic interest, this 
result may be useful in the analysis of graph-theoretic algorithms based 
on breadth-first search [1]. 

The study of random graphs was initiated in a series of papers by 
Erdos and Rényi (see [2]), who obtained some beautiful and striking 
results. In our notation, their connectedness theorem [3] asserts that if 
X is a real constant and 

E\(n) = \_\n log n + \n\ 

then 

P(n, E\(n), < GO ) —> exp ( — e~2X) as n —> oo . 

This provides a background for Theorem 2, since when d < co it is clear 
that if P(n,E(n), >d)—>0 then E(n) grows more rapidly than any 
Ex(n). 

In existing work on random graphs, diameters seem to have been 
neglected aside from [3], results of Moon and Moser [5] for 5 = 2 (see 
Section 4 below), and results of Korsunov [4] on the behavior of bc for 
very sparse graphs (see Section 12). Our Theorems 1 and 2 fill most of 
the gap between [3] and [5]. 

Note added in proof. After the present paper was accepted for publica
tion, we learned of a paper by B. Bollobâs that also studies diameters of 
random graphs. We have not seen his paper, but apparently its methods 
are quite different from ours and its results are somewhat sharper. It will 
appear in the Transactions of the American Mathematical Society. 

2. Adjacency matrices. For purposes of counting, graphs are rep
resented by their adjacency matrices. When G is a graph with node-set 
{1, . . . , n) the adjacency matrix AG = (aZJ) is an n X n symmetric 
matrix of O's and l's, with atj — 1 if and only if {i,j} is an edge of G. 
Since G is assumed to be loopless, the main diagonal of A G is 0. It would 
be equally reasonable to assume there is a loop at each node, or to make 
no assumption about loops. The details of the counting would be essen
tially the same and our theorems would remain valid because the diam
eter of a graph is not affected by the addition or removal of loops. 
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620 V. KLEE AND D. LARMAN 

Let BG = A G + I, the adjacency matrix of the graph obtained by 
adding a loop at each node of G. The following three conditions are 
equivalent for each positive integer k: 

(a) 5(G) g k; 
(b) for 1 S i < j S ft, at least one of the matrices A Gj A G

2, . . . , A G
k 

has a positive entry in position (i, j) ; 
(c) all entries of BG

k are positive. 
In studying the diameters of random graphs, the cases of diameter 
5 ^ 3 are much harder to handle than the case 5 = 2 because they 
involve higher powers of the adjacency matrix. 

The set s/(n, E) = {AG:G t @ (n, E)} consists of all n X n sym
metric matrices that have 0's on the main diagonal, n2 — n — 2E addi
tional 0's, and 2E l's. Because of symmetry, members of s/(n, E) are 
determined by their restrictions to the set 12 (n) of positions covered by 
the minor diagonals that are parallel to the main diagonal and start in the 
following positions: 

(1, 2, (1, 4), . . . , (1, n - 1) and (3, 1), (5, 1), . . . , (n, 1) 

when n is odd ; 

(1, 2), (1, 4) (1, n) and (3, 1), (5, 1) (n - 1, 1) 

when n is even. 
In other words, 12(n) is the set 

{(1 + kj + k): 2 g even j g n - l , 0 ^ H n - j \ 

U {(i + k, 1 + k) : 3 < odd i S n, 0 g k g n - i\. 

Note that 

(d) for 1 ^ i < j S n} il(n) includes exactly one of (x,j) and (j, i) ; 
(e) when n is odd, each row and each column of an n X n matrix 

includes exactly (n — l ) /2 positions in 12(n). 

These facts are used frequently without explicit reference. Because of 
(e), counting is simpler in the case of odd n. In our proofs of the main 
theorems, the arguments for even n are omitted because they are similar 
to those for odd n but are technically more complicated in ways that are 
irritating but not interesting. One way of handling even numbers of 
nodes is to treat simultaneously the set CS (n, E) for odd n and the set 
& {n — 1, E) as naturally embedded in ^ (n, E). Under this embedding, 
the members of ^ (n — 1, E) correspond to members of & (n, E) in 
which the node n is isolated and to members of Sïf (n, E) in which the last 
rowr and last column are 0. 

3. Elementary estimates. This section collects some elementary 
estimates that are used throughout the paper and are henceforth referred 
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to by number. We use the combinatorial inequality 

w (ï) = î for l =k = *• 
the analytic inequality 

(2) 1 + x g ^ for all x, 

and the fact that for 0 ^ \x\ < y, 

x \ y ~ ' r ( °° \^ \ °° 1 x k 

When the functions a and /3 are defined for positive integers, 

a ^ jS means lim^^coa(w)//3(w) = 1 

and a-< (3 means a (n) < f3(n) for all sufficiently large n. 
We use the Stirling-de Moivre estimate, 

(4) n\~ V2^nn+1/2e-n 

and the following consequences of (3) and (4): if 0 ^ ^ o(N) then 

if 0 g w ^ o(w) then 

,fiX (m -w)l _M / f> 1 */" \ 
(6) — ^ m exp{ZF(VZT)mH * s w ~+°° • 

Since 

/w — w\ / (w>\ __ (m — ^ ) ! iV! (m — TV) I 
\N - s) / \N) ~ ml (N -~s)l (m- N-w + 7 ) 1 ' 

it follows from (5) and (6) that if 0 g w g 0(w), 0 ^ s ^ tf(iV) and 
0 ^ w — 5 S o(m — N) then 

<" fc:-)/fe)~Ê)'(-â"-(l«^iT 

asm—>oo,7V—>oo,m — iV —> co . 
It is also useful to know that: 

(8) If E ^ F then P(n, E, >d) ^ P(«, /% >d) and 

P ( » , £ , <d) ^ P(n, F, <d). 

To justify this, note that the diameter of a graph cannot be increased by 
adding edges or decreased by removing them. Considering the natural 
subgraph correspondence between members of & (n, E) and members of 
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r3{n, F), we see that if m = n(n - l)/2 then 

l m — E\ 

&(n, F, <d)\ ^ \&(n, E, <d)' ^-~-^-'-

This establishes the second inequality of (8) for all d, and the first 
inequality is a consequence. 

4. T h e case d = 2. I t was proved by Moon and Al oser [5] t ha t when 
E is unrestricted the usual value of 8 is 2. More precisely, if @ (n) is the 
set of all labelled graphs with n nodes and $~in) consists of those of 
diameter 2, then | ^ ( w ) | / | S ? ( w ) | —» 1 as n—>co .Th i s is related to the fact 
tha t the average number of edges in a member of @ (n) is n(n — l ) / 4 , 
which is close to the maximum n(n — l ) / 2 . However, there is interest in 
the diameters of sparse graphs as well as of dense ones, especially since 
graphs associated with practical problems are ap t to be sparse. T h a t is 
the motivat ion for our results. 

When d = 2, Theorem 1 is obvious and Theorem 2 is due to [5] and, 
independently, to Erdôs and Rényi (unpublished). Since the proof in 
[5] is merely sketched, our first lemma t rea ts the case d = 2 in detail , 
aside from ignoring even values of n. 

LEMMA 1. If (E2/n*) — log n —» oo as n —> co then P(n, E, > 2 ) —> 0. 

Proof. For each n, let r(n) — (n — l ) / 2 and m{n) — nr{n). Let 
^ 2 ( n , E) denote the set of all G d ^ (n, E) such t ha t each pair of dist inct 
nodes of G is joined by a pa th of length 2. Lemma 1 is proved by showing, 
under the s ta ted assumption about the growth of E(n), t h a t 

\&2(n,E)\/\&(n,E)\ -> 1 as n -> oo . 

I t suffices to do this for each subsequence of the ns such t ha t the corre
sponding subsequence of m — E is constant or tends to oo as TZ —> oo . 
The first case is obvious and hence we may assume 

(9) m — E —> oo as n —» oo . 

For each G 6 ^ ( w , E) let 

Z(G) = {(i,j) t Î2(«): the ( i , j ) en t ry of AG
2'isO}. 

Since G Ç &2(n, E) if and only if \Z(G)\ = 0, it suffices to show 

f (n, E) —> 0 where Ç(n, E) is the expected value of \Z(G)\ for 

For fixed (s, t) G fi(w), let us count the number of A Ç s/{n, E) such 
t ha t the (5, /) en t ry of ^42 is 0. Suppose t ha t 4̂ has precisely k l ' s in the 
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sth row of fl(w); say in positions (s, j i ) , . . . , (s,jk)- If a&t = 0 then the 
k entries ajlt, . . . , a;-^ of A are 0 and there remain m — r — k places in 
Q(w) to be filled with E — k l's and the rest O's. If as* = 1 and (say) 
j'̂ t = ^ then the k — 1 entries <2;U, ajk^1t of 4̂ are 0 and there remain 
m — r — k + I places in Q(w) to be filled with £ — k l's and the rest 
O's. It follows that the number of A's in question is at most 

\ m — r — k + 1 
E - k J s(V)("B-V)+l; (;:!)(* 

<
ry, (r - l\ (m - r - k + l\ 

whence 

Because of (9), (7) is applicable and it follows that f (n, £ ) is at most 

_ E\ g /r - i\ (EV = L _ s W ^ EV-1 

m/ £i \ k J \m! \ m) \ ml m\ 1 

whence 

f (n ,£ ) ^ mé-BHr-X)/al 

. But then 

-Ë Tl (ft — 

log f (n, E) ^ (log w) ™2 (r - 1) = log — 
i) 

g. (in_\) I ~2Mog» TV2' 

whence log f (w, £ ) —» — oo by hypothesis and consequently f (w, £ ) —* 0 
as n —> oo . 

5. Standing hypotheses. In order to avoid repetition, we state here 
the standing hypotheses that are used in Sections 6-11. 

d is an integer ^ 3; 
n is an odd integer ^ 3 ; 
r = (n - l ) / 2 ; m = n(n - l ) / 2 ; 
7 is a positive real constant; 
£ is a nonnegative integer-valued function defined for all n, with 

E(n) ^ m; 
/ (») = E(N)/n; M(n) = (2(7 + 7 ) / (» ) logn)1 / 2; 
E(n),f(n) and jut(n) are often written as £ , / a n d /*. 

The reason for assuming w odd was discussed in Section 2. 
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624 V. KLEE AND D. LARMAN 

6. The essential inequalities. The inequalities of this section are 
essential in all that follows. Here [xj and [x~\ are respectively the greatest 
integer g x and the least integer Tzx. 

LEMMA 2. If 

(10) limn^œ(E(n)d-l/nd) - log n < °o 

and 

(11) limn^œ(£(w)/nlogw) = GO 

then 

5 ïi't 
[/-M-l] ! / ord-l\k -, 

and 

,feî+ii £!7 \ ^ « / 8 
- (7+D / 

n eJ. k=[f+n+l\ 

Proof. It follows from (10) that \imn^œ(3f~l/n) - 3 log n < oo, 
whence 

(12) 3f-l/n-< 4c log n 

and 

(ld) »~ ~ W171*-27/ l ^Î7W-2T / ~" °" 
And (11) implies 

(14) f- = (27 + 1 4 ) - 1 / 2 ( r ^ - ) 1 / 2 = (27 + 1 4 ) - 1 / ! ! ( - ^ - ) 1 / 2 

For the first conclusion of Lemma 2, verify that 

[/-M-ll 1 / Qrd-2\fc -, / Q/d-2\/ 

^ ( 4 , 2 ) 

L/ 

2 L / - M J 1 / 2 L / - M J [ 7 ~ ^ ' 

1 1 r l / 2 / f \ 3 / 2 1 / - M 4 

-» ' - (if)»-
! f 2 w-M2 /2 / / - « 4 __ I / | _ ( 7 + l ) / _1 - ( 7 + D _ / 

-(3) 2 J e e n ~ \„) n 6 (12> Q U e ' 

To justify (a), note that if j and k are integers with 0 :g j g & ̂  / then 
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For (b), apply (14) to the first factor, (12) to the fourth factor, and 
use the fact that 

( / - M ) ^ - 3 / 2 - < L / - M J [ / ^ ] . 

For the second conclusion of Lemma 2, note that 

•d-2\ 

I + ^ - — I - < ( 1 2 ) - ' . - -^- -<(14) 1, 7 + 7 1 1 + —) -<(»> - 7 + 7 ^> 
whence 

f + ti <»> sij^'i-^T M — 4 log n ' 

Note also that 

(lb) ^ H —J ~<(2)e ~<(U)e -<(i2) » 

and 

\/+M 

But then 

(17) M + v?/2f-*«.u) log ( l + ^ 

v i ^ d + ^ V 

f 
L/ + M + U 

/ Q r r f -2 \ /+M+l co / r \ k / Q rd -2 \ * 

! \ n I fco V + iU/ \ « / 

_/___ - 1 j+n+1^9/2 / + M 

7) 
C(4,3 (15) /r 1 \ l / 2 / \f+ne U A Î 

( / + M ) I j + £) M - 41ogw 

r3/2 -(7+7) / 9/2 | / \ -(7+1) / ^ 1 -(7+1) / 

~<(u,n)ef n eJn = el —1 w 'T +V-< ( 1 3) Q » ,T V. 

LetJ^ ' (n , E) denote the set of all matrices A £ s/(n, E) such that A 
has at least / — pt and at most / + ju l's in each row and in each column 
of G(w). 

LEMMA 3 / / 

l im^CE*-1 /»*) - log n < co = limn_>œE/(w log n) 

then for all sufficiently large n the probability is <n~y that a random 
member ofstf{n, E) is not instf' {n, E). 

Proof. Let £t- [resp. 77 f] denote the probability that a random member of 
s/(n, E) has fewer than / — M [resp. more than / + JU] l's in the ith. 
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row of ft. Then 

«Tfe)(::;)/fe)— -"tm 
x(-r-<?>(-r 

For (a), note that E/m = f/r and apply (2) to obtain e~f. For (b), 
note that (1 — x)~l < 1 + 2x for 0 < x < §. For the final inequality, 
use the first conclusion of Lemma 2. 

In a similar way, it follows from the second conclusion of Lemma 2 
that 7]i -< w~(7+1)/4, and of course the same inequalities apply to columns 
of ft. To complete the proof of Lemma 3, apply these inequalities to each 
of the n rows and n columns of ft. 

7. Crosses, cemeteries and catacombs. For 1 g ft ^ n let 
®k(n) = {(ijj) £ ft(w):fe G {hj}}- In accordance with our practice of 
suppressing n, ft(n) and Slk(n) aire often denoted by ft and ft* respectively. 

A cemetery is a set of crosses, and a cross is a subset X of ft such that 
2 < 2/ - 2/i g |Z | ^ 2/ + 2M and I C 4 for some ft. The integer ft, 
which is unique because \X\ > 2, is denoted by <rX and called the 
station of the cross X. For each x 6 X, TJX(#) denotes the coordinate of 
x that is different from <rX. 

In discussing paths that join node s to node /, the notion of an 
(/&, s, t)-catacomb is employed. For an integer h ^ 1, and distinct integers 
s and t between 1 and n, this is a sequence C = ( i f i, • . , if»_i, Z) that 
satisfies the following four conditions: 

(a) Z is a cross of station /; 
(b) when h ^ 2, «if i is a cemetery consisting of a single cross Xx of 

station s; 
(c) for 2 ^ ft ^ /̂  — 1, the cemetery i f fc is of the form 

where, for each X £ if/c-i and x ^ I , F ^ x is a cross of station ryx(x); 

(d) for each cross X £ FC = (\J i f J U {Z}, (U FC) H ft,x = X. 

The cemeteries .if i, . . . , if^_i, and {Z} may be regarded as the suc
cessive layers of the catacomb C, and h as the depth of C. The cemetery 
VC consists of all the crosses associated with C, and W VC is the set of 
all positions in ft covered by those crosses. 

For each pair (i,j) of distinct integers between 1 and n, let [i,j] 
denote whichever of (i,j) and (J,i) belongs to ft(w). Let s/(n, E, C) 
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denote the set of all matrices A = (atj) G s/(n> E) such that for each 
cross X G VC and each (i,j) G 0ffI, atj = 1 if and only if [i, j] G X. 

LEMMA 4 If C and D are distinct (h, s, t)-catacombs the sets of matrices 
s/{n> E, C) and se {n, E, D) are disjoint. 

Proof. Note that a catacomb C is completely determined when the 
triple (h, s, t) and the set UVC are specified, for Z = (U VC) H Qt} 

Xi = (U VC) Pi S26, LI = {-X }̂, and the successive layers S^k are then 
determined by conditions (c) and (d). It follows that if C and D are dis
tinct (h, s, t)-catacombs there are distinct crosses X G VC and Y G VD 
such that aX = aY. But then there exists (i\f) G SW such that 
avr ^ 6 ^ , for all A = (atj) G j / ( w , E, C) and B = (6f,) Ç J / ( W , £ , D ) . 

LEMMA 5. If h is a positive integer, s and t are integers between 1 and n, 
and A G s/'{n, E), then A G «i^(w, E, C) for some (h, s, t)-catacomb C. 

Proof. Let Z = {(i,j) G Q:atj = 1 and ; G {i,j}}. If A > 1 let 
^ i = K ^ i ) € « :a^ = l and s G {i,j}},&i = {Zi}.For2 ^ k ^h-1 
let i f , = j ^ ^ ^ ~^V-i}, where 

^.r,x = {(-^i) ê fi:af; = 1 and T/.C(X) G {i,j}}. 

Then set C = ( ^ , , . . . , ^ _ ! , Z ) . 

When yl is a matrix (a^-) we write (a*/) for the >̂th power Ap. 

LEMMA 6. / / C is an (h, s, t)-catacomb ( i f i , . . . , i^ / i_i, Z) and 
s$ = (aif) G A (fiy E, C) then a,t

h+1 ^ 1 if and only if a -̂ = 1 for some 

[i,j] £W= {[vx(x),vz(z)):x G X G if»-i , s G Z}. 

Proof. A straightforward induction on £ shows that 

(18) for 1 S P ^ A ~ 1, a , / ^ 1 if and only if i = Vx(x) 

for some x G X G ^ V 

Now if as/*
+1 ^ 1 there exists j such that a6./ ^ 1 = ajt and con

sequently there exists i such that asi
h~l ^ 1 = ai}. Plainly [j, t] G Z 

and j = ?7z(L/, £]). And by (18), i = ??x(^) for some JC G X G ££n-\-
Suppose, on the other hand, that ast

h+1 = 0, and consider an arbitrary 
[i}j] G H7 with i = ??x(#) for some x ^ l G Jz^-i and j = rjz(z) for some 
s G Z. Then [/, /] G Z so a ; , = 1, and since ast

h+1 = 0 it follows that 
a , / = 0. But asi

h~l è 1 by (18), and since asj
h = 0 it follows that 

atj = 0. 

8. Proof of theorem 1. For each (h, s, /)-catacomb C let p(C) denote 
the probability that ast

h+1 = 0 for a random matrix A = (atj) G 
j / ( » , E, C). 
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LEMMA 7. If \imn_>œ(Ed~l/nd) - log n < oo = \\mn^œE/(n log n) then 
it is true for all sufficiently large n that p(C) > exp( — 2h+zf h+l/r) whenever 
1 <. h ^ d — 2 and C is an (h, s, t)-catacomb. 

Proof. Let C and W be as in Lemma 6. Let q = |7C | , u = |U FC| 
and w = \W\. Then 

(19) g g 1 + £ (2/ + 2M)""1 < 4(2/ + 2M)*"1, 

(20) u < 4(2/ + 2M)*""1 and w < 4(2/ + 2n)h. 

For a random member A oîs/(nf E, C), entries are fully determined in 
the 2qr positions of 12 that belong to \J {QffX:X £ VC) (and are 1 in u of 
those positions) but are unrestricted in the remaining m — 2qr positions 
of 12. Hence 

\*<,.B.o\-{Y_i). 
By Lemma 6, the condition that ast

h+1 = 0 determines the entries of A 
in an additional w positions of 12, whence 

>(C).(«-^--)/(—_v) 
(m — 2qr — w)\ / (m — 2qr)\  

(m — 2qr — w — E + u)\ I (m — 2qr — E + u)\ ' 

and with ck = l/(&2 — &) it follows from two applications of (5) that 

(21) „(C) ~ (l - - V P / «P it ( 7 - ^ f= -^ v \ m - 2qr! I F
 \ J S \ (w - 2qr - wf 

ck(E-u)k \ \ 
(m - 2qr)lc~1!J ' 

With the aid of (13), (14), (19), and (20) it follows that 

(22) ^iOLfr^o and E^^fi^Mrv^ 
m n m n \ n J 

whence 

\ m — 2qrl \ 2m) m — 2qr. 

and 

, / - 3w\ f, 1 /3wA* -2w 
m 
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Hence 

(23) ( 1 - — - - — ) E~U >- e'2wEI'\ 
\ m — 2qrJ 

With the aid of (22) and (13) it follows that 

h\(m- 2qr - wf~l (m - 2qrf~l! ~°W) ~ U\n3J ° 

and for 2 ^ k g 4 that 

c*(E - «)* frÇE - «)* = £*(E - uf  
(m - 2qr - w)k~l (m - 2qr)k~1 (m - 2qr - w)k~l 

X ( l - ( l - — i V ) " " 1 ) ~< 2kck~-kw-*0. \ \ m — 2qrl I m 

Using these inequalities in conjunction with (21) and (23), we conclude 
that for all sufficiently large n, p(C) >- e~2wE/m whenever 1 ^ h ^ d — 2 
and C is an (h, s, t)-catacomb. The proof is completed by noting that 
Ejm = f/rf whence 

e~wE/m >_(2o) e x p (__2*- 2 ( / + M)YA) >-exp(-2 / ?+ 3 /+ 1 / r ) . 

To justify the last inequality, note that if 0 ^ p ^ h and h + p < 2d — 2 
then for appropriate constants \p and i/s 

(24) f^-'/r ~ #<»+">/2(log nYh+p)/2/n 

= ^(f r f-l/^)(^+2 J)/(2rf-2)(]0g nyh+p)/2/n\-{h+p)/{2d-2) 

~< {12)$'fag fl)(h+P) /(2^-2)+(A+P/2)/nl-(h+p) /(2d-2) _> Q 

For each k ^ 1 let Pk(n, E) denote the probability, for a random 
A — (dij) Ç A(n, E), that ai2

p ^ 1 for some p ^ k. This is equal, for 
each pair (s, t) of distinct integers between 1 and n, to the probability 
that ast

p ^ 1 for some p ^ k. 

LEMMA 8. 7/ l im^0 0(£ r f-1)^) — log n < oo = \im„_>œE(n/log n) and 
I <> h <. d ~ 2 then 

/Wi~< $n + n~y + 1 - exp(-2*+4/*+1A). 
Proof. Let fih+i [resp. ft+i"] denote the probability, for a random 

A = (a 0 ) e j / ( « , £ ) , that ai2*+1 ^ 1 and A £ j / ' ( w , £ ) [resp. 
,4 g j / ' ( n , £ ) ] . Then of course 

AH-I ^ A + / W + /W'-
It follows from Lemmas 3-7 that /3h+i' —< n~y and 

&+,'-< 1 - exp(-2"+T+1/r). 

We are now ready for 
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THEOREM 1. If E{n)d'l/nd -> 0 as n -> oo, then P(n, £(»), < d) -> 0. 

Proof. Note that if E'(n) = n(log w)2 then 

£ / ( w ) d - 1 - ^ 0 and E'{n)/(n log ») -> co . 

In view of (8), it suffices to prove Theorem 1 with E replaced by 
max(£, E'), and then Lemma 8 is applicable. 

We claim that fih+i(n, E) —> 0 for 0 ^ h ^ d — 2. First observe that 

17 / 77d- l \ l / (d- l ) -, 

ft = à _ 2 ( ^ V -2=4=1) - 0 . 
m \ n J n 

Then proceed by induction, using Lemma 8 and the fact that 

f+l/r è f-l/r ~ 2Ed-l/nd. 
Now let r(n, E) denote the probability, for a random A G se (n, E), 

that all entries of the matrix A + A2 + . . . + Ad~l in positions that 
belong to fi(w) are nonzero. Then r(n, E) is at most the probability /3rf_i 
that the entry in position (1, 2) is nonzero. As /3rf_i —» 0, the probability 
tends to 1 that the matrix /I + ^42 + . . . + Ad~~l has a zero entry in 
at least one position belonging to i1(n). Hence as n —» oo the probability 
tends to 1 that a random graph in 3^(n, E) is of diameter ^ o\ 

9. Spiders and their legs. For 1 ^ k S n let 

^*(») = {(i,i) G Î2(w):i = fe}. 
For each x = (i, i ) G 0, let 7?(x) = j , the column coordinate of x, and for 
X C filet y]X = {T](X):X G X}. 

A /eg is an ordered pair L = (Z/, L") of disjoint subsets of fi such that 
L' \J L" C Rk for some k, f - » ^ \L'\ S f +M and |L"| g 2M. The 
leg L is said to be of row k, and i£fc to be the row of L. The sets L' and V 
are respectively the /arge part and the 5ma/Z par/ of L. A /egs^ is a set of 
legs no two of which are of the same row. WhenJ^7 is a legset, <if ' denotes 
the set of large parts \Lf :L G <if}. 

In discussing paths that join node s to node /, the notion of an (h, s, t)-
semispider is employed. For an integer h è 1, and distinct integers s and 
t between 1 and n, this is a sequence S = (J^ i , . . . , Jzf^-i, Z) that 
satisfies the following four conditions: 

(a) Z is a subset of the £th column of 12, w i t h / — M ^ |Z| ^ / + M; 
(b) for 1 ^ & fg fe — l,<iffc is a legset of the form {Lp:p G P*}, where 

Pk is a subset of the set Cfc_i = rç(U «if *_/) (except that C0 = {s}) and 
where, for each p G P*, £P is a leg of row p; 

(c) fo r i g * g ft - 2, P* = C,_ i ; 

(d) with FS = ( U t î i ^ / ) U {Z}, any two points of the set U FS 
that have a common coordinate are related in one of the following three 
ways: 
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(i) both points belong to Z and hence have the same column co
ordinate ; 

(ii) for some L 6 ^J^i^k, both points belong to V and hence have 
the same row coordinate; 

(iii) for some k with 1 ^ k ^ ft — 2, the two points are x 6 W S£k' 
and y £ Lx, so that the row coordinate of y is the column coordinate of x. 

The sets S£i, . . . , «ifA_i, and Z may be regarded as the successive 
layers of the semispider S, Z as the body of S, and ft as the height of S. The 
set FS consists of the body of S and the large parts of the legs of S, while 
yj VS is the set of all positions in 12 that are covered by members of VS. 

When ft ^ 2 and the semispider S is as just described, the set Ch-2 ~ 
Ph-u which indicates the rows of "missing legs" of S, is called the blemish 
of S and denoted by BS. The (ft, s, i)-semispider ( i f i, . . . , if/j-i, Z) is 
a spider if it is unblemished, meaning that BS is empty or, equivalently, 
that condition (c) holds for k = h — 1 as well as for 1 ^ k g ft — 2; 
the extension 

S* = ( if l f . . . , ^ _ ! , 0 , Z ) 

is then an (ft + 1, 5, /)-semispider with BS* = rj(U J£h_i). Note that 
the (1, s, /)-semispiders and (1, s, t)-spiders are the same, being of the 
form (Z) where Z satisfies condition (a). The (2, s, 0- s e r m spiders are of 
the form («if i, Z), where «if i is empty or consists of a single leg of row s; 
only those of the latter sort are spiders. 

Semispiders and spiders are used as aids in counting adjacency matrices. 
For each (ft, s, /)-semispider S = ( i f i , . . . , «if/*_i, Z), let s/(n, E,S) 
denote the set of all matrices A = (a if) £ se{n, E) such that 

(e) au = 1 if and only if (i, t) £ Z, and 
( / ) if S has a leg L of row i, then atj = 1 if and only if (i,j) £ 

L' \J L". 

Two (ft, s, /)-spiders 

(25) S = (&l9 . . . , <£h_u Z) and S* = ( i f x*, . . . , i f ,_!*, Z*) 

are said to be equivalent if Z = Z*, «i^ = «if ** for 1 ^ ft < ft — 1, and 

(26) {U VJ L"\L e S£h\ = {£*' \J L*":L* £ if**} 

when fe = ft — 1. Thus the legsets «if h-i and «if ̂ _i* need not be equal, but 
they differ only in the ways in which their members are divided into 
large and small parts. 

LEMMA 9. If S and S* are both (ft, s, t)-spiders then the sets of matrices 
s/(n> E, S) and se (n, £ , S*) are the same if S and S* are equivalent and 
disjoint if S and S* are not equivalent. 
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Proof. The first assertion follows immediately from the relevant 
definitions. For the second, suppose the (h, s, f)-spiders (25) are not 
equivalent. If Z 9^ Z* there exists i' such that aVt ?*• a^* whenever 

(27) (a{j) e sé{n, E, S) and (atj*) € s/(n, E, S*). 

Suppose, on the other hand, that Z = Z*, and let k be the smallest 
index for which if* ^ iffc*. If (26) fails then 

(28) there exists i' such thato$f k includes a leg L of row i', 

&k* a leg L* of row i', and L' U L" ^ Z*' U Z*". 

Hence by ( / ) there exists f such that a^y 9^ a^y* whenever (27) 
holds. If (26) holds then k < h - 1 and (28) holds with L 9* L* but 
V \J L" = Z*' U Z,*", whence Z/ ^ Z,*'. But if (say) x G Z/ — Z,*', 
it can be verified with the aid of (c) and (d) that «if fc+i includes a leg of 
row 77 (x) but FS* does not include any leg of row 77 (x). Then there exists 
f such that arj(X)j' 9e a>n{,x)3* whenever (27) holds. 

LEMMA 10. Suppose that S is an (h, s, t)-semispider, I is the number of 
legs ofS, and q [resp. u] is the number of positions in 12 that are covered by 
the rows of the legs or by the tth column of 12 [resp. by L' \J L" for some leg 
L of S or by Z]. Let w = \WS\, where 

WS = [w'.w G {i,j} for some (i,j) 6 VJ VS}. 

Then 

(29) I.*•(*, E,S)| = ( j Z * ) 

(30) / g ( / + M)" ' 2 and ( / + l ) r - / g g g (/ + l)r. 

Z/ l inv^CE*- 1 /^ ) - log w < 00 = l i nv^E /Oz logn) /fee» 

u-< U + ^Y~l and w-<3(f + n)h~\ 

Proof. To prove (29), note that for a random member A ofs/(n } E,S), 
entries are fully determined in q positions of 12 and are 1 in u of those 
positions, but are unrestricted in the remaining m — q positions of 12. 
The inequalities (30) are immediate from the relevant definitions. For 
(31), note that 

u S f + M + / ( / + 3/0 S (BO)(/ + »)h-2(f + 3M + 1) 

-< ( / + 4 M ) * - 1 

and 

w S 2(1 + 1) ( / + M) g ( 3 0 )2((/ + M)'"2 + 1) ( / + M) 
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LEMMA 11. If \\mn^co{Ed-l/nd) — log n < oo = \imn_>œE/(n log n) 
then the following is true for all sufficiently large n: whenever s and t are 
distinct integers between 1 and n, S is a (d — 1, s} t)-spider, and w(S) is the 
probability that ast

d = 0 for a random member A = (aif) G <$/(n> E,S), 
then 

r(S) éexp(-(f-ny/r). 

Proof. If A — {aif) G A (n} E) and au
d = 0, then every product of the 

form 

^sk(l)^k(l)k(2) • • • ak(d-2)k(d-l)<-lk(d-l) t 

is 0. When A £ <$/(n, E, S) it follows from the definitions of spiders and 
of s/(n, E, S) that there are at least ( / — n)d~2 distinct choices of 
k(d — 2) appearing at the ends of sequences (s, k(l), . . . , k(d — 2)) 
that satisfy the following two conditions: 

(a) 0 , fe(l)) G L' for some leg (Z/, L") G i ? i and hence a^(1) = 1; 
(b) for 2 g i g d - 2, (k(i - 1), kit)) G V for some leg {V, L") G 

i f , and hence a^ - ina ) = 1. 

Also, there are at least / — \x choices of k(d — 1) for which 
(k(d — 1), /) G Z and hence ak{d^i)t = 1. Hence there are at least 
s è ( / - M)*"1 pairs (k(d - 2),k(d - 1)) in fl(w) for which all 
A = (a 0 ) 6 j / ( n , E, S) have 

<3/t(rf-2)A;(d-l) — 0 . 

Referring to Lemma 10 and its notation, we see that for A G J?/(n, Ey S) 
with ast

d — 0, entries are fully determined in at least q + z positions of 
12. Hence with ck = l/(k2 — k) we have 

-<*>* te *)/(;:.') 
(m — q — z)l / (m — q)l  

(w — q — z — E -\- u)\ I (m — q — E + w)! 

«V1 - sr=i; /exp IS Ur=i ,(m - q - zf~l 

(m - g)*"1/ ' 

Estimating the infinite sum as in the proof of Lemma 7, we conclude that 

7 r ( S ) - < ( l - — — ) ^ ( 2 ) ^ X , \ m — q! 
where 

m — a m m 
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10. Adding legs to spiders. Recall that each (1, s, /)-semispider 
Si is in fact a spider and consists merely of a body. That is, Si = (Z) for 
some subset Z of the tth column of 12 with / — /* ^ \Z\ ^ / + M- The 
sequence S20 = (0, Z) is then a (2, s, /)-semispider and can perhaps be 
extended to a (2, s, /)-spider S2 = (=£f 1, Z) by replacing the first "co
ordinate" 0 with a legset ££\ consisting of a single leg of row 5. The 
(3, 5, /)-semispider S30 = («if 1, 0, Z) can then perhaps be extended by 
successive augmentations of its second coordinate, producing a sequence 
S3°, S31 = ( J^ i , J^V,Z) ,S 3

2 = (J&fx, J&f2
2, ^ ) , . . . , with L21 C L22 C . . -

until at last a (3, 5, /)-spiderS3 = ( ^ 1,^2, Z) is obtained. The (4, 5, t)-
semispider («if 1, ^ 2 , 0, Z) can then . . . . It may be possible, continuing 
in this manner, to obtain an (h — 1, s, t)-spider S^_i that extends the 
initial (1, s, /)-spider Si. 

In the extension process just described, each augmentation may reduce 
the set of associated matrices. That is, 

s/(n,E) D ^ ( » , £ , S i ) = J^ (n ,£ ,S 2 ° ) D^(n, £ , S2) 

= j / ( » , £ , S 3 ° ) 

D ^ ^ ^ S a 1 ) D ^ ( n , £ , S 3
2 ) D . . . D ^ ( n , E , S 3 ) 

D . . . D ^ ( » , £ , S ^ i ) , 

and each of the inclusions D may in fact be a strict inclusion. The goal 
of this section is to prove Lemma 13, asserting that for each pair (s, t) of 
distinct integers between 1 and n, "almost all" members of s/(n, E) 
belong to A (n, E, S) for some (d — 1,5, t)-spider S. It is proved by suc
cessively adding legs, thus reducing and finally removing blemishes and 
extending semispiders to spiders. The extension is carried out with the 
aid of Lemma 12 below. 

Recall that the family VS consists of the body of S and the large parts 
of the legs of S, while VJ VS is the set of all positions in 12 that are covered 
by members of VS. Recall that 

WS = [w'.w G {i,j} for some (i, j) £ U VS} 

and Rp denotes the pih row of Q. 
When S is a semispider and BS is its blemish C\_2 ^ Pn-i, indicating 

the rows of "missing legs" of S, let 

Rv($) = i(iJ) € Rv'.jt WS} 

for each p G BS. Lets/P(n, E, S) denote the set of all A G s/{n, E, S) 
such that A has at leas t / — fx and at m o s t / + /x l 's in the positions of 
RP(S) and at most 2 pi l 's in the positions of Rp ~ RP(S). 

LEMMA 12. If\imn_)œ(Ed-~l/nd) — log n < 00 = \\mn_,œE/(n log n) it is 
true for all sufficiently large n that whenever 1 ^ h ^ d — 2, S is an 
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(h, s, t)-semispider, and p Ç BS, then the probability is at most n~(y~6) that 
a random member ofs/(n, E, S) does not belong tos/p(n, E, S). 

Proof. The probability in question is at most a + fi + a + /3', where 
a [resp. a] is the probability that A has fewer than / — \x l's in the 
positions of i^p(S) [resp. i?p] and 0 [resp. $'\ is the probability that A has 
more than / + M l's in the positions of RP(S) [resp. i?p]. We shall establish 
appropriate bounds for a, 13, a and $'. 

To bound a, note that 

a = S U / l E - u - k J/KE-U!1 

whence by (1) and (7), 

(32) .J^'U&ZJÙrYL.BzJ.) 
fco k\ \ ma J \ m — qj 

r—w—k 
Tk 

with 

/•m r - V - 1 -JL~J»)L *' 
{66) Ik~ hjif-inm-qY^1 ~{E-u)t=l 

(m — w — k)3 _ 
~ (m - g - £ + w)jrT 

By (2), 

(34) ( i - ^ - p W » with * = I^Z^AK^) . 
\ m — qj m — q 

But 

and 

£ " < ( 2 . ) ^ (14) - g " - — - (13 ) 0 

m - ( 2 8 ) ^ -<a4,2 — - > ( 1 „ 0 , 

(35) ^ . ( « L i M . 
m m 

Since r £ / w = / and 

"m~~ =(31) m h m~^n 

'(12) 7 l O g » , 
» » 
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we conclude from (34) and (35) t ha t 

\ m — ql 

From the facts t ha t m — 2q >-(3) 0 and q ^ (29) (I + l)r it follows t ha t 

___^L__ m + 2r{l + 1) 
m — q m 

whence 

(37) ULziÙL^ *(1 + M/_±.il) ^ J x + 2LL±£^). 
m — q m \ m I \ n / 

By reasoning similar to t ha t of Lemma 7, Tk —> 0 as n —> oo , the conver
gence being uniform in k. From this fact, in conjunction with (32)-(37) 
and Lemma 2, we conclude tha t 

(38) a-< ne 
\f-H-l] -, / Q ^ - 3 \ 1 

w E hfU + ̂ —l-^kn-™. 
fco &r \ n / 8 T o bound j3, note t ha t 

A M Im - q - 4 + w\ / Im - q\ 
= *»i/+£+u W \ E - u - k ! I \ E - u l } 

whence by (1) and (7), 

<30) ^ £ I (<*- •*)'(, _£.-)"">, 
fc=i^5+ij k\ \ m — q J \ m — ql 

where Tfc is given by (33). I t follows with the aid of (37) tha t 

\ m — ql r \ n J 

so combining (37) and (40) we have 

(41) ^=JÙL U _ *=»Yl^f(l + ^ ) . 
m — g \ m — ql \ n I 

Combining (40) and (41), and using (39), 

(42) , -<(i-^)~ E iiWi + Ŝ ) 
\ m - ql it-iAri+ii *! \ w / 

e~& 

(r — w)(E — u) 

*=l/+H-U 
where 

m — q 
-/• 
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Using (42) and Lemma 2, 

(43) 0£e-' £ ~/( l+- /-1T-^i^ ( 7 + 1 ) . 

To bound a', note that 

(44) «'-t}t)(mE-q
u:Ù/{mEZÙ 

(8) é8 Â! \tn -q 1 V ~ m -~ql 
f/-M-H -, / 0rd-Z\k -, 

jfco &! \ n I 8 

Note finally that 

as in (43). Combining (38), (43), (44) and (45) yields Lemma 12. 

LEMMA 13. Ifï\mn_>œ(Ed-1/nd) — log n < oo = \imn^œE/(n\ogn) it is 
true for all sufficiently large n that whenever s and t are distinct integers 
between 1 and n the probability is at least 1 — n~A that a random member 
ofs/(n, E) belongs tos/(n, E, S) for some {d — 1,5, i)-spider S. 

Proof. If the hypotheses of Lemma 12 are satisfied and S = 
(. . . , i?w_i, Z) then all but at most (1 - n~^-&))\j^'(», £ , S ) | matrices 
in s/(n, E, S) are also in s/(n, E, S*) for some (h, s, £)-semispider 
S* = (. . . ,o£?A_i*, Z) that agrees with S in all coordinates except that 
the legset oSf̂ _i* includes a leg of row p and hence BS* = BS ~ [p]. 
Applying this successively to each p £ BS, we find in |J5S| S ( / + 4 J U ) ^ ~ 1 

steps that all but at most 

(1 - n- (?-6))i*s ' 

matrices in s/(n, E, S) are also in s/(n, E, S') for some (h, s, /)-spider 
S' = (. . . ,oSf A_i', Z) that extends S. If h + 1 ^ d - 2 the same exten
sion process can then be applied to the (h + 1,5, /)-semispider 

(. . . . u 0,z). 
By choosing an appropriate body Z consisting of at least / — n and at 

most / + M members of the tth column of 12, and then initiating the above 
extension process with the (2,5, O-semispider (0,Z), we find that all 
but at most 

(1 - n-(v~v)a\s/(n, E)\ 
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members of s/(n, E) are in s/(n, E, S) for some (d - 1, s, /)-spider S, 
where 

a Û E (/ + 4M)""1 -< 2d-y~* -< 2 n log n/f. 

Thus 

( 1 _ w - ( 7 - 6 ) ) a > - ( 1 - w - ( 7 - 6 ) ) 2 n l o g n / / 2 >_ j _ ^ - 4 

if 7 ^ 12. 

11. Proof of theorem 2. We are now ready for the proof of Theorem 
2, which depends on Lemmas 1, 3, 9, 11, and 13. 

THEOREM 2. / / (E(n)d/nd+l) — log n —> GO as n —> GO /&<?» 

P(n,E{n), > d ) - > 0 . 

Proof. It suffices to consider the case in which there exists (possibly 
infinite) 

X(c) = l im^ œ (£( rc) c /^ + 1 ) - log» 

for each integer c between 1 and d. Since X(l) = - c o and \(d) = oo , 
there exists c with 2 ^ c ^ d such that X(c — 1) < GO = \(c). The case 
c — 2 is settled by Lemma 1, so we may assume c ^ 3. And it suffices to 
prove P(n,E(n), > c) —-> 0, for then surely P(n,E(n), >d) —> 0. In 
other words, we may assume without loss of generality that d ^ 3 and 

limn^œtE(»)d-1/»d) - log» < oo = \imn_>00(E(n)d/nd+l) - log n. 

We may also assume the existence of 

r = lim^œ(E(n)d-i/nd)n(n). 

To justify the application of certain lemmas, note that 

,,A, _£ ^ __£ / ^ V ' * ^ 
( 4 b ) n log » > nT2d+iy/M log n " I n * " / log » "^ °° ' 

Now consider an arbitrary pair (s, t) of distinct integers between 
1 and n, and let {SLU G 1} be a family of (d — 1, s, t)-spiders S t that 
includes precisely one representative from each equivalence class. By 
Lemma 9, the sets of matrices s/(n,E,SL) and s/(n, E, S t ' ) are disjoint 
whenever i 9^ i , and the union 

is equal to the union of the sets s/(n, E, S) for all (d — 1, s, t)-spiders S. 
Lemmas 11 and 13 imply that for all sufficiently large n, both of the 
following are true for all (s, t): 
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The probability is at least 1 — w-4 that a random member of s/(n, E) 
belongs to \JlÇiIs/{n, E, S t) ; 

For each i Ç / , the probability is at most exp(— (/— n)d/r) that 
ast

d = 0 for a random member A = (ai3) ofJ</(n, E, S t). 

It follows that for all sufficiently large n, 

(47) Trst^ n-4 + e x p ( - ( / - M )Y0, 

where 7rs* is the probability that as
d = 0 for a random member^/ = 

(a^) of -4(w, E) . 
Let 0(w, E) denote the expectation, for a random A ^ s/{n, E), of the 

number of zero entries of the matrix Ad in positions that belong to Q(n). 
If d(ny E) —> 0 it follows from the observations in Section 2 that 
P(n,E, > d ) - > 0 . By (47), 

*(»,£) = £ ^ , - < m ( W - 4 + e x p ( - ( / - / x ) d A ) . 
(«,oefi(n) 

Since m/nA -> 0, f/n~*oo by (14), and fp^d~p/r^0 by (24) when 
0 -^ p < d — 2, it remains only to show that 

m exp \ r r / 

We establish the slightly stronger fact that 

rd rd—1 
J— - -—— - 2 log n -> co . 
r r 

Since jd~x\x/r —» 2r, it suffices when r < co to observe that 

fd / £ d \ 
-- - 2 log n ~ 21 -d+r - log w I -> oo. 
r \n J 

For the case in which r = oo, note that 
1/2 

and hence 

£(U&nY' I- I --ZJ2— I v oo 

rd rd—l rd I \ 

£--f-£_2logn=f- 1 - * - 2 
r r r \ j / 

log w 

(s^n. - »,+M)"(M")-'"*-«-• Uogw/ \ \ / 

To justify (a), use the fact that 

f'L _ _ £'/2 _ / £ \mnllu 

(log w)57* " nlT\\og nf* - W2d+W2d log n) log « ^ ( 4 6 ) °° ' 
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12. Directions for further research. It seems likely that Theorem 1 
holds under the weaker assumption that 

lE(nY~l \ 
(48) limn^œ \---i— ~ log n J < co 

but our argument does not establish this. 
It would be interesting to study the gap between our theorems and 

the connectedness result of [3], especially the case in which (48) holds 
for all finite d but 

(E(n)/n) — \ log n —> oo . 

Plainly the expected diameter of a connected graph in CS (n, E) tends to 
oo as n —» co in this range. Probably for 0 < p < 1 it is possible to choose 
E in this range so that the expected diameter in @ (n, E) is of the order 
of nv as n —> oo . 

Finite-state automata are defined in terms of directed graphs, and for 
them the parameters 8 and 5C are of fundamental importance. Results 
of Barzdin' and Korsunov (see [4] for references) show that in certain 
classes of directed graphs associated with automata, the expected values 
of 8C are much less than the maximum values. A later result of Korsunov 
[4] is that if X is a real constant ^ 2 , E\(n) = l^n], and P\(n) is the 
probability, for a random G G ^(w, E\(n)), that 

Jlogx^ < 5C(G) < lOlogxw, 

then P\(n) —> 1 as n —> co . So far as we know, a proof of this interesting 
result has never been published. It is described in [5] as being "not 
trivial at all." 
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