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NORM ONE MULTIPLIERS ON SUBSPACES OF Z/7 

KATHRYN E. HARE 

ABSTRACT. We present a new elementary proof of the fact that a norm one multiplier 
<j> on LP(T) satisfying ^(0) = 4>{k) = 1 is ^-periodic, and extend this result, when 
possible, to multipliers on translation invariant subspaces of LP. A consequence of our 
work is that all such multipliers on HP(T) are the restriction of a norm one multiplier 
on Lf(T). 

0. Introduction. Let G be a compact abelian group and let T be its dual group. 
A function <j> : T —> C is called a multiplier on a subspace S of LP(G) if the map M^ 
defined on S by M^f(x) = <t> (x)f(x) for/ G S, \ € I\ maps S to Z/(G). The class of all 
multipliers on S will be denoted M(S) and the operator norm of the multiplier <j> G M(S) 
will be denoted by\\<j> \\M(S)- If ^ is a measure on G then /î G M(LP) for 1 < /? < oo, and 
indeed all elements of M(L*) and M(L°°) are of this form. The reader is referred to [3, 
Ch. 16] for standard results on multipliers. 

In this paper we are interested in studying an extreme face of the unit ball of M(S), 
namely 

W(S):{j> €M(S):\\<I>\\M(S)= 1 = 0(1)}-

(Here 1 is the identity element of T.) The space W(LP(G)) was introduced by Shapiro 
[51. For 1 < p < oo the space W(LP(G)^) is known to contain multipliers which are not 
the Fourier Stieltjes transform of a measure [4]. Shapiro and subsequently Benyamini 
and Lin (in [1] and [2]) have shown a striking similarity between certain multipliers 
in W(LP(G)J and the multipliers arising from probability measures on G. For example, 
Benyamini and Lin show that all multipliers (f> G W(LP(TJ) for 1 < p < oo, p ^ 2, 
satisfying <j> (k) = 1 for some k ^ 0, are /c-periodic sequences on Z. The cases p = 1 
and p — oo are easy as any such multiplier </> = fi where [i is a probability measure 
supported on the &-th roots of unity. 

We present new elementary proofs of these results and extend them (when possible) 
to multipliers on translation invariant subspaces of U such as the classical Hardy spaces 
HP(T). A consequence of our results is that any <j> G W(HP(T)) satisfying <j)(k) = 1 for 
some k ^ 0, is the restriction of a norm one multiplier on LP(T). 
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NORM ONE MULTIPLIERS 195 

1. Multipliers on subgroups. Motivated by properties of probability measures, 
Shapiro [5] proved that if p ^ 2, </> £ W(LP(T)) and <j>(-\) = 1, then <f> = 1. Sub­
sequently it was shown that if G was any lea group and <j> G W(lf(G)) for p ^ 2, then 
{7 G T : </»(7) = 1} was a subgroup of V. (See [2] and remark (a) at the end of [5]). 
(Of course the p = 2 case is different since any bounded sequence is an L2-multiplier.) 
Deep results about norm one projections of LP(G) were used by Benyamini and Lin to 
give an elegant proof of this generalization. 

Shapiro's method was to find an appropriate test function/ € LP(G) and show 
M $ = f. Our approach is a little different. We choose test functions/ belonging to the 
translation invariant subspace which is the domain of the map M^ and then use Taylor 
series expansions to estimate the /7-norms of/ and M^f. We make repeated use of the 
fact that if |JC| < r < 1 then 

n ,a , a(a-l), a(a-l)(a-2)x3 a (a - l)(a - 2)(a - 3)x4 

(l+xf = \+ax+ xz+ + +R(x) 

where \R(x)\ < C(a,r)|jt|5. 
First a preliminary estimate: 

LEMMA 1.1. Let I < p < oo, x £T and\2 ^ 1. Ifb is a real number and \r\ < 1, 
then as b —• 0 

|| 1 + bX +rbX-% = l+b2(l-(l + \r\2)+ 1-{P- - 1)| l + r\2)+0(\b\3). 

PROOF. Let _ 
x_2ReX(rb + b) + 2ReX

2b2r 
*=W,r)= 1 + | , | 2 ( 1 + |r |2) • 

With this notation 

|| 1 +bX +rbX'X\\p
p = (l +b2(l + | r |2)) f / ( l +X)5. 

If \b\ is sufficiently small a Taylor series expansion gives 

/ ( l + X ) f = / ( l + | x + | ^ X 2
+ 0 ( | | X | | ^ ) ) . 

As / x*1 — Sx±2 = 0 the latter integral simplifies to 

?(f-l)fc2 |r+l|2 , ,, 
l + ^2 >_J L+0(bi). 

(l+^(l + | r |2))2 

After taking a Taylor series expansion for (l + b2(\ + \ r\ 2)J2 we see that 

2 2V2 
and one final Taylor series expansion completes the proof. • 

For E C r let LP
E(G) = {/ G L?(G) : / (x) = 0 if x £ £ } . Of course Lp

r(G) = LP(G). 
It is well known that all translation invariant subspaces of LP are of this form; for example 
W{T) = LP

Z+(T). 
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196 K. HARE 

THEOREM 1.2. Let 1 < p < oo, p ^ 2 and suppose <j> G M(LP
E) is a multiplier of 

norm 1. Assume that\, \^ and\ijj2 (or\i>~X) belong toE, and(j)(x) — <t>(x^) = 1. 

Then ^(x^2) (or ^(X^1))— 1-

PROOF. We may assume ^ 2 ^ 1 else there is nothing to prove and we consider the 
cases p — oo and 1 < p < oo but p ^ 2 separately. Note that when £ ^ T the case 
p = oo does not follow by duality from the case p = 1. 

Suppose (j)(x^2) — s ^ 1. (The case c/KxV'-1) 7̂  1 is similar). Replacing 0 if 
necessary by the norm one multiplier ^ E^Li 0,n» w e m a v assume | s\ is arbitrarily small. 

Let/ = x ^ + bx + rbx^2 £ ^£ for | r| < 1 and & real and small. Since 

l l ^ / l lp = 11X̂  + bx + rbsX^2\\p < 

I I / I I P IIX-0 + bx + rbxil)2\\P 

with |s| arbitrarily small, we may as well assume s — 0. (We could also reach this 
conclusion by replacing </> by a weak cluster point of the sequence ^ £ ^ </>n in the 
weak operator topology, but we prefer to keep the proof entirely elementary.) When 
1 < p < 00 Lemma 1.1 shows that 

IWII, = i + ^ + Q(H3) 
11/11, l + f(l + |r|2 + ( f - l ) | l + r|2) + 0(H3)' 

Since <j> is a norm one multiplier, letting b —• 0 we see that 

2 R e r ( | - l ) + | | r | 2 > 0. 

When /? / 2we can clearly choose r with | r\ < 1 but contradicting this inequality. 
Hence s must equal 1. 

For the case p — 00 set r — —1 and b > 0. Then 

\\fWl = sup{ 11 + b(l>-\x) - V W) | 2 :xeG} 

= sup{ | l -2Z?/ Im^W| 2 :xe G} < 1+4Z?2, 

while 

\\M^f\\l>\M^f(0)\2 = \l+b- bs\2. 

As before, if s ^ 1 we may assume s = 0, and since (1 + b)2 > 1 + Ab2 for b small we 
again obtain a contradiction. • 

COROLLARY 1.3. Let 1 < p < 00, /? ^ 2. //"Zi contains the arithmetic progression 
A = {x -m>- • • >X-1> l,x»-- • >X"} for some n,m, G M arc<i(/> G W(L^) WJY/Z </>(X) = 1> 
f/ï̂ n <j> |A= 1-

Next we generalize from arithmetic progressions to subgroups. 
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NORM ONE MULTIPLIERS 197 

THEOREM 1.4. Letl <p<oo,p^ 2 and suppose </> e w(Lp
E(G)).Ifl,x^>xii £ 

E, none ofx, $ or \^ are of order 2 and <j> (x) = 4> ($ ) — 1, then </> (X V7 ) — 1-

REMARK. The condition (\ ip )2 ^ 1 is unnecessary but without it several additional 
cases need to be considered. Our purpose here is not to give as complete a proof as 
possible, just to illustrate the technique. 

PROOF. The case p — oo is easiest and does not require the order 2 condition. For 
c < 0 and a = b — yj\ c\, let/ = 1 + a\ + bip + c\4>. As before, if </> Oc0 ) = ^ 1 we 
can assume s — 0 so M^f = I +ax+bip and HAf̂ /Uoo = 1 +a + b. Certainly 

ll/Hoo < sup{ 11+<*<*+&/? + ca/3| : | a | = \/3\ = 1}. 

One can verify by routine calculations that for c sufficiently small ||/||oo is strictly less 
than || Afy/Hoo, contradicting the fact that the norm of <j> is 1. 

Now assume 1 <p< oo, p ^ 2. Without loss of generality we may assume none of 
the following products is 1; for if so then the fact that ^(xVO — 1 is either obvious or 
follows immediately from Theorem 1.2: 

xV>» xV>> x 2 ^ , V x , x 2 ^ , V>2x-

Choose A = Xp with À 2 real so that 

(1) if x 3 ^ = 1 = V3X then X2(p - 2)p(§ - 1) + £ < 0; 

(2) if precisely one of x V or V>3X = 1 then (A2/? + § - 2)f (f - 1) + ^ < 0; or 

(3) if neither x 3 ^ nor ^3X is 1 then ^A2(f - 1) + £ < 0. 
(Note that as p ^ 2 these are always possible to do.) 

In either case 1 or 3 we let/ = 1 + A c(\ + xfj ) + c2\ V> where c is a small real number. 
If x3-0 = 1 but V̂ 3X 7̂  1 l e t / = 1 +CX + A2r0 +c 2 x^ (case 2a) and if V>3X = 1 but 
X3^ ^ 1 let/ = 1 + A2cx + ex/) + c 2^^ (case 2b). For a, b € C, d G R let 

X(a,b,d) := - — . . . (2Re(x(a + dS) + ^(fc + <te) + x<M + xJba)). 
(1 + |A|2 + \b\l + \d\z)v v " 

As usual we may assume <j> (x V> ) — 0> thus 

| ^ = (i + H2
 + l*l2 + |c|4y /7(1 + x< f l '*'c 2)r / 2 

and 

| |A^/ | | ; = (1 + \a\2 + \b\2f'2j{\ +X(a,b,0)f/2 

where a = b = Ac in (1) or (3), a — c,b — \2c in (2a) and a = A2c, b = c in (2b). 
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198 K. HARE 

Taylor series expansions show that 

ll/li; - \\Mf\\p
p = (1 + \a\2 + \b\2 + |c|4)§ J{X(a,b,c2)-X(a,b,0) 

E(Z _ I) 

f ( f - l ) ( f -2) 
3! 

(X3(a,b,c2)-X3(a,b,0)) 

?(f-l)(f-2)(f-3) 
4! 

+ | c 4 / ( l + X ( « , ^ 0 ) ) f + 0 ( | c | 5 ) . 

Our assumptions clearly imply that 

Jx(a,b,c2) = Jx{a,b,0) = 0 

in each case, and that 

Jx4(a,b,c2)-X4(a,b,0) 

= ((i + |f l|2 + H2 + |c|4)4 - ( T T H W ? ) ° ( k | 4 ) + 0(k|5) 

= 0(|e|5). 

Similarly it can be seen that 

Jx2(a,b,c2)-X2(a,bJ0) 

= 2( . , l 4 , 2 - M , l2 , , | 2 . 2 ) ( | f l | 2 + |fc|2 + |flfc|2 + g2Re(flg)2) 
V(l + |a|2 + |/?|2 + |c|4)2 (1 + |tf|2 + | 6 | 2 ) 2 / v y 

2 
+ 7^—rr^—TTT^—rT7^-(2 R e «c2Z? + I c2b\2 + 2 Re bc2a + I c V l + I c\4) 

(1 + \a\2 + |fr|2 + | c | 4 ) 2 ' i i i i 

where £ = 1 if (xV>)2 — 1 a nd e ~ ® otherwise. This simplifies to 

2c4 + 8c4A2+0(|c|5) 

in each of the cases. 
The most complicated term to examine is JX3(a,b,c2) — X3(a,b,0). This is where 

the differences occur depending on whether or not x 3 ^ and/or ip3x 1S 1- Let E\ = 1 if 
X3^ — 1 a nd 0 otherwise and let £2 = 1 if V^X ~ 1 anc* 0 otherwise. A careful analysis 
of all the terms appearing in X3 shows that 

Jx\a,b,c2)-X3(a,b,0) 

= V( l+ |a | 2 + |fc|2 + |c|4)3 ~ (1 + |« |2 + | ^ | 2 ) 3 ) ° ( | C ' } 

+ -—r-rz—r-p:—rT-7-T(e16Rea2c2 + \2Re abc2 + ei6Re b2c2) 
(1 + \a\z + \b\z + | q 4 ) 3 

= ei6a2c2 + 12aZ?c2 + e26b2c2 + 0(|c|6). 
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To finish off consider each case separately. In case 1 for example, e\ — £2 — 1, 
a = b = X c so 

ll/li; - IK/l i ; = c4{£ + \2(p - 2)p{P- - D) + 0(|c|5). 

By (1) this is negative if |c| is sufficiently small, contradicting the fact that \\<t> || = 1. 
The other cases are similar. • 

Since there are no elements of order 2 in Z the following corollaries are obvious. 

COROLLARY 1.5. If'</> is any norm one multiplier on LP
E{T) with (/>(!) = <j>(n) = 

(f> (k) — 1, and n + k G E, then (f>(n + k) — 1. 

COROLLARY 1.6. lf§ e W(lf(TJ) then {n: <j)(n) = 1} is a subgroup ofl. 

3. Periodicity on cosets. Benyamini and Lin were able to generalize the results 
of the first section to show that if <f> was a norm one multiplier on LP(G), then <f> was 
constant on each coset of{7 G f : (/>(7)= 1}. This answered a question of Carleson 
(see [5]). We will show that this result does not generalize to norm one multipliers on 
LP

E, although it is true for multipliers on HP{T). 

EXAMPLE 2.1. Let E = {0,1,4,5} and let <j>: Z —• C satisfy c£(0) = 1 = <£(4), 
</>(l) = s, (j>(5) = t. We will show that there exists an s > 0 such that if |s|, \t\ < e 
then (j> is a norm one multiplier on LE(T). 

PROOF. Let/ = d + aelx + belAx + cel5x. It is routine to verify that 

ll/IU4 - m/Wt < \a\\l - \s\4) + |c|4(l - \t\4) 

-H4(l- |1y|2)( |^ |2 + | ^ | 2 ) + 4 ( l - | r | 2 ) ( | ^c | 2 + |cJ|2) 

+ 4 ( 1 - \st\2)\ac\2 + 8Readbc(l - sî). 

If d — 0 then clearly \\f\\% > \\M4fW* for all choices of 5, t provided |^|, |̂ | < 1. Thus 
assume d = 1. Now 

8| Rcabc(l - st)\ < 2(1 - st\(\ab\2 + \c\2 + \a\2 + \bc\2). 

Hence if s, t are chosen so that 

2|1 -st\ < m i n ( 4 ( l - |/|2),4(1 - | ^ | 2 ) ) 

then II/H4 > ||M^/||4, hence <j> is norm one. • 
It is well known that there are multipliers on Hx (T) which are not multipliers on L1 (T). 

Our next example shows there are multipliers in W^T/^r)) which are not in W(Ll(T)Y 

EXAMPLE 2.2. Let </>(0) = 1, 0 < (f)(1) = a < \ and </> in) = 0 for all other inte­
gers. The norm of <j> as a multiplier on L1 (T) is equal to || 1 + aelt \\ \ which by Lemma 1.1 
is greater than one if a is small enough. Thus <j> $. W(Ll(T)Y 
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200 K. HARE 

Let/ e H\T), say/(r) = b + celt + g(t\ where g G Hl(T), g(0) = g(l) = O.lfb = 0 
then clearly ||M^/||i < | | / | | i , so assume b = 1. If |c| > 2 then 

| | M ^ / | | i < l + |ac| <\c\ < | | / | | i . 

Thus assume |c\ < 2.LetF(f) = 1+ £(<?* +éT*). As ||F||i = l , | |F* / | | i < ||/| |i.But 

Il^*/l|l = l|l + p l | l = ll(l + p)1/2|l22-

Since \c/2\ < 1 we can compute a Taylor series expansion for (1 + |<?")1//2 to obtain 
the inequality 

| |F*/ | | ,>l + ̂ L . 

From Lemma 1.1 

I 12 

\\M^f\\{ = || 1 +ace,''||1 < 1 + ^ - +0(|ac|3), 

so for a sufficiently small ||Af0/||i > ||/||i proving that <j> G W(Hl(T)). m 

This example shows that properties of multipliers in w(jHl(Tf) do not follow auto­
matically from the corresponding results for w(Ll(r?) ; however it is possible to modify 
[1] to prove 

THEOREM 2.3. Let 1 < p < oo, p ^ 2. Suppose cj> is a norm one multiplier on 
HP(T) with </> (0) = <j> (k) = 1 for some k ^ 0. Then if m and n are positive integers and 
m = n mod k then <\> (ni) — <f> (n). 

PROOF. The cases 1 <p< 2, 2 < /? < oo and p = oo are treated separately. 
(a) 2 < p < oo: Assume </>(m) ^ <t>(n) for some m = n modk. Let/(f) = eïm' — emr. 

Note that/ is ^f periodic, and a s / is continuous and/(0) = 0 an application of the 
mean value theorem shows that there is a neighbourhoodIe of 0 such that \le\ = Ce (for 
C = r ^ y ) and | / | < e on /e. Since Afy (/)(0) = </> (m) — </> (n) ^ 0 there is an interval / 
and constant Co such that \M^ (f)\ > CQ> 0 on /. Without loss of generality lE Ç / and 
|/£ | < ^ . L e t / £ =U/j0

1(/£ + 2 f ) . By periodicity l/l <EOXVJE. 

Choose 0 < r < p — 2 and s > 1 + 2/ r. Choose a polynomial g\ — g\(e) such that 
(i) l~ss <\gi\ < 1 on kle, 

(ii) \\g\ \(ki£y \\p <£ 5 , and 
(iii) IUi | |oo<l. 

Let g2(t) = g\(kt) so g2 is supported on kl.. Furthermore notice that 
(Ï) l-£s < \g2\ <lonJ£ and 

(ii') \\g2\j£c\\P<es. 

Since g^/T^ G Ll(T), it follows from the Riemann Lebesgue lemma that we can choose 
N = #(e) G N such that 

|j£ eiNkt
g2fdt\ + |jj é f ^&f <fc| < ss. 
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If in addition we choose TV large enough we can assume g = éNktg2 G HP(T). Notice that 
g has properties (i') and (ii'), and suppg C kZ, so g is ^f periodic. 

Now we make some estimates. By (ii;) it follows that 

Also 

Jc\g + £l/rf\P <2p(esp+sp'r2p). 

j \g + tllrf\p = j{\ +^2/r|/|2 + \g\2 ~ 1 +2Re£/V/0i. 

Since \f\ <eonJ£ and ||g|2 — l| < 1 — (1— z)2s on J£, we can use our usual Taylor 
series expansion (provided e is small enough) to obtain 

f \g + e'lj\P^ j(\+
P-(e2lr\f\2

 + \g\2-\+2Kt8fexlr) + 0(mMe2ln\e2s))) 

Recalling further the definition of g we see that 

1/ Reg/I <£*, 
\JJE I 

thus combining these results we get that 

lk + £ 1 / 7 l i ;<k £ | ( l+0 (max( £
2 / r + 2 , £ 5 ) ) )+0(max(^^ 1 / r ^^ ,^ / r ) ) 

= *| / e | ( l +0(max( £
2 / r + V))) + 0(max(es+l/r^p/r)). 

Next we estimate ||M^(g + ellrf)\\p. By Corollary 1.3 we see that </>(z) = 1 for 
z G kZ +, so since g is supported on kZ +, M$ (g) — g. Thus 

\\M^g + e
l/j)rp>ljg + el/rM^(f)\P. 

The definition off ensures that 

A W + ^ ) - M*/X0exp27r^. 

Thus 
k-i 

Mt(g + el/rf)\\P
P>i; L I g + £ 1 / ^ / ( 0 e x p 2 7 r ^ | " 

> ( l - T E / | l + £
1 / ^ e x p 2 7 r f r 

Holder's inequality and orthogonality show that a lower bound for the sum is 
(cf. [1, p. 43]), thus 

\\M*(g + exlrf)\\p
p > (1 - eT|/e |*(l + C0e

2lf). 

Upon considering the ratio 

l|AMg + £'/yC 
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and recalling that | /e | < Ce we see that we must have 

(l -p£
s+0(£2s))(\ + C0e

2/r) < \+0(max(e2'r+\E\£s+]/r-\6sp-\£p/r-~])). 

Since 2 / r< s-l < s the left hand side is at least \+0{s2lr). Also sp-1 > 2s-1 > 2/ r 
and/?/ r — 1 > (r+2)/ r — 1 = 2/ r, so for e sufficiently small the right hand side is less 
than the left, providing the contradiction. 

(b) 1 < p < 2: Again assume </>(m) ^ (f>(n) for some m = nmodk. Construct/, I£ 

and J£ as before and choose 0 < r < 2 — p and s > 1 + pj r. Choose a polynomial 
g e//pCT) such that ||g||oo < 1, HgUllp <es, \g\ > 1 - es on Jc

£, g is supported on kZ 
and 

I^Re^l + I^RegÂ/^l 
Again simple estimates show 

<es. 

JJe 

and 

/ \g + el,rf\p < 2p(eps + £p?r+p\J£\) = 0(max(eps,ep'r+p+lj) 

JJ£C.\g + el,rf\p < \Jl\ +0(max(^ , £
2 /0) 

Jj£c 

This time Holder's inequality will not help in finding a lower bound for 
\\M+(g + e*/rf)\\p. Instead we observe that since s > 1/ r+ 1/ p 

lh \M+(g + el/'f)\P > \{jh \e'l^f\")'-{Jh \g\")'\P 

>[ |y e | i e ' / ' c 0 - e ' r 
s-\/p-\/r 

>kce0e
l+^r(\--—;—Y 

(kC)rCo 

for some constant C\ > 0. (Assume e is very small.) 
Arguments similar to those used in the 2 < p < oo case of the proof for estimating 

Sjc\g + e1/rf\", show that 

flM^g + e^W > \re\ +0(max(^e
2/ r)). 

JJ£ 

\M^g + ex'rf)\\p> \fE\ + C i e
1 ^ / r + 0(max(^,e

2/'")), 
Thus 

while 
Ik + e 1 7 ? ! ! ^ ! ^ ! +0(max(^ ,£ 2 / r , ^ / r ^ + 1 ) ) . 

But 1 + /?/r < max(s,2/r,/?/r + p + 1), so we cannot have ||M0(g + e1^/)!!^ < II £ + 
e^Tll^ for £ sufficiently small, again giving a contradiction. 

(c) p = oo : Once again assume <f)(n) ^ c/>(m) for some n = mmodk and construct 
/ , I£ and 7e as before. Choose an H°°(T) function g with suppg Ç kZ, |g(0)| > 1 — e, 
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IMIoo < 1 and \g\ < s on Jc
£. Suppose |M^/(0)| > C0 > 0 and let | A | = 2e / C0 where 

sgnAM^/(0) = sgng(0). Then, for e small, 

||* + A/Uoo = max \g + Xf(t)\ < 1 + ^r 
t Co 

while 
||Af^te + A/)||oo > U(0) + AM^(0)| 

> ( l - £ ) + ^ = l + e . 
Co 

Again when e is small this contradicts the fact that \\(j>\\ < 1. • 
Our final result, an application of the previous theorem, should be contrasted with 

Example 2.2. 

COROLLARY 2.4. Let 1 < p < oo. Suppose (j> is a norm one multiplier on HP(T) 
with <j> (0) = <f> (k) = 1 for some k ^ 0. Then <j> is the restriction of a norm one multiplier 
on LP(T). 

PROOF. The case p = 2 is obvious so assume p ^ 2. By the previous theorem <f> is 
a /^-periodic sequence on Z +. Let p be the measure on T given by 

j=o K 

where Xj — 2nj/ k. 
Since <j)(n) = fi(n) for n E Z+ , <j> is the restriction of the U multiplier fi to HP(T). 

Clearly the multiplier norm of fi is at least one. 
Let/ be a trigonometric polynomial and assume g(t) = f(t)elNkt E HP(T). 
Since g(rc) = /(« — M), and </> and /2 are ^-periodic, if n E Z + 

M^(«) = <f> (n)g(n) = fi(n - Nk)f(n - Nk) = Afji/(n - M). 

If « is a negative integer M^g{n) = 0 = Mçf{n — Nk). Thus M^g — elNktMçJ and 
II^WHP — I I ^ ^ I I P ^ II#IIP

 =
 II/IIP- Since the trigonometric polynomials are dense in 

LP, fi is a norm one multiplier on LP(T). m 
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