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Abstract

From the points of view of programming pragmatics, rewriting and operational semantics,

the syntactic construct used for exception handling in ML-like programming languages, and

in much theoretical work on exceptions, has subtly undesirable features. We propose and

discuss a more well-behaved construct.

Capsule Review

The propositions-as-types principle has often been cited as an influence on the design of

functional programming languages. Often the influence is seen only indirectly. In this short

note the authors draw lessons from the proof theory of disjunction to suggest changes to the

syntax of exception constructs that not only improve their utility in programming, but also

admit simpler expression of common program transformations.

1 Introduction

Many programming languages (from Mesa and PL/I to SML, Java and C#) include

exceptions to provide a structured, but non-local, way of signalling and recovering

from error conditions. Programmers often also use exceptions as convenient, and

sometimes more efficient, way of varying control flow in code which has nothing to

do with what most people would consider error-handling (for example, the parser

combinators in Paulson (1991)).

The basic idea of exceptions is simple and familiar: the evaluation of an expression

may, instead of completing normally by returning a value or diverging, terminate

abnormally by raising a named exception. The evaluation of any expression may

be wrapped in an exception handler, which provides an alternative expression to

be evaluated in the case that the wrapped expression raises a particular exception.

The way in which a raised exception unwinds the evaluation stack until the closest

matching handler is found is syntactically implicit, so the handler may be dynamically

far from the point at which the exception is raised without the intervening calls

having explicitly to test for, and propagate, an error value.

There are many differences between exception mechanisms in different program-

ming languages, but for the purposes of this paper we shall take a simplified version

of the constructs provided in Standard ML (Milner et al., 1997) as paradigmatic

of those used in modern expression-based languages. To the usual simply-typed
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lambda calculus we add a set E of exception names, a new base type exn, and new

constructs with the typing rules

Γ ` E : exn
E ∈ E Γ `M : exn

Γ ` raiseM : A

Γ `M : A {Γ ` Ni : A}i=1...n

Γ `M handle E1 ⇒ N1 | · · · | En ⇒ Nn : A
{Ei}i=1...n ⊆ E

where, in the last rule, the Ei are required to be distinct. We take as basic a form of

handle in which multiple handlers may cover the evaluation of a single expression,

as this is strictly more expressive than the simpler form in which only one named

exception may be caught at once. We will sometimes use an abbreviated notation,

using H to range over finite sets {Ei ⇒ Ni} of handlers, and writing E ∈ H for

∃N. (E⇒N) ∈ H and H(E) for the (unique) N such that (E⇒N) ∈ H if that exists.

We write Γ ` H : A for H = {Ei ⇒ Ni} and ∀i. Γ ` Ni : A.

One way of explaining the intended behavior of these constructs is to give a

big-step operational semantics in which there are two (mutually inductive) forms of

judgement: M ⇓ V means that the closed expression M evaluates to the value V ,

whereas M ↑ E means that the expression M raises the exception E. The rules for

deriving these judgements comprise the usual evaluation rules for a call by value

lambda calculus1 together with at least the following:

E ⇓ E E ∈ E M ⇓ E
(raiseM) ↑ E

M ⇓ V
(M handleH) ⇓ V

M ↑ E
(M handleH) ↑ E E 6∈ H

M ↑ E N ⇓ V
(M handleH) ⇓ V H(E) = N

M ↑ E N ↑ E′
(M handleH) ↑ E ′ H(E) = N

M ↑ E
(M N) ↑ E

M ⇓ λx. M ′ N ↑ E
(M N) ↑ E

There will be further rules, similar to the last two above, which express the way in

which thrown exceptions propagate through whatever other constructs we choose to

add to our language.

We became aware of essentially the same shortcoming of the handle construct in

three different ways whilst working on our Standard ML compiler, MLj (Benton

et al., 1998a). First, when coding in SML to implement both the compiler itself

and its libraries, we occasionally came across situations in which exception-handling

behaviour could only be expressed clumsily. Secondly, when performing rewriting on

the compiler intermediate language, we found that some rewrites were inexpressible if

1 We restrict attention to call by value, as the näıve addition of exceptions to a language with call by
name semantics wrecks the equational theory to the extent that the resulting language is essentially
unusable. The ingenious addition of imprecise exceptions to Haskell does, however, sidestep some of
the problems; see Peyton Jones et al. (1999) for details.
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Γ `M : A Γ, x : A ` P : B {Γ ` Ni : B}i=1...n>0

Γ ` try x⇐M in P unless E1 ⇒ N1 | · · · | En ⇒ Nn : B
{Ei}i=1...n ⊆ E

M ⇓ V P [V/x] ⇓ V ′
try x⇐M in P unlessH ⇓ V ′

M ↑ E N ⇓ V
try x⇐M in P unlessH ⇓ V H(E) = N

M ⇓ V P [V/x] ↑ E
try x⇐M in P unlessH ↑ E

M ↑ E N ↑ E ′
try x⇐M in P unlessH ↑ E ′

H(E) = N

M ↑ E
try x⇐M in P unlessH ↑ E E 6∈ H

Fig. 1. Typing rule and natural semantics for try.

the intermediate language contained the usual exception handling construct. Thirdly,

when formalising the intermediate language in order to prove some theorems about

the validity of optimising transformations (Benton & Kennedy, 1999), we found

that the alternative syntax we had chosen (for the previous reason) allowed a neat

and tractable presentation of the operational semantics in terms of a structurally

inductive termination predicate, which would not otherwise have been possible.

2 The new construct

Since the fix for the problems we observed is actually rather simple, and to avoid

building unnecessary suspense in the reader, we will reverse the usual order of

presentation by giving our solution straight away and then going into the more

technical explanations of the problems it solves.

We replace the ML-style handle construct with a new one, which builds in a

continuation to be applied only in the case that no exception is raised:

try x⇐M in P unless E1 ⇒ N1 | · · · | En ⇒ Nn

This first evaluates M and, if it returns a value, binds that to x and evaluates P . If

M raises the exception Ei, however, Ni is evaluated instead (x is bound in P but not

in any of the Ni). If M raises an exception distinct from all the Ei, then so does the

whole expression.

More formally, figure 2 presents a typing rule2 for try along with its natural

semantics rules. Note that we find it convenient to allow empty handlers in this

construct and that the type of the expressions Ni in a handler is the same as that

of the continuation P , not the same as that of the expression M being covered, as

is the case with the traditional handle.

2 The typing rule for try in our intermediate language is actually a little more complex since it involves
computation types (Benton & Kennedy, 1999).
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3 So what was wrong with handle?

We now describe the problem with the traditional handle construct in each of the

three contexts in which we observed it. To avoid dragging in too much extraneous

material concerning, for example, our compiler intermediate language, we will often

gloss over the non-exceptional details of the various languages mentioned: this

should not (we hope!) obscure our main point.

3.1 The programming problem

Suppose one has a library of ML functions to open, read and close files, all of

which raise the Io exception if something goes wrong. The problem is to write a

function which runs down a list of filenames, concatenating the results of applying

some string-valued function to each file whilst skipping those files which can-

not be opened successfully. One’s first thought might be that the following will

suffice:

fun catpartial [] = ""

| catpartial (n::ns) =

let val s = readIt (openIn n)

handle Io => ""

in s ^ catpartial ns

end

However, this does not quite do what we want, as the function readIt might also

raise the Io exception: when that happens then we want the exception to be passed

up to the caller of catpartial, but the above code will handle the exception and

move on to the next name in the list irrespective of whether the error occured in

openIn or readIt.

There are, of course, various straightforward ways of programming around this

problem. For example, we might use the option datatype:

fun catpartial1 [] = ""

| catpartial1 (n::ns) =

case SOME(openIn n) handle Io => NONE

of NONE => catpartial1 ns

| SOME f => readIt f ^ catpartial1 ns

Or use abstraction to delay the call to readIt so that the handler does not cover it:

fun catpartial2 [] = ""

| catpartial2 (n::ns) =

(let val f = openIn n

in fn () => readIt f ^ catpartial2 ns

end handle Io => fn () => catpartial2 ns

) ()
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Or use another exception:

exception OpenFailed

fun catpartial3 [] = ""

| catpartial3 (n::ns) =

let val f = openIn n handle Io => raise OpenFailed

in readIt f ^ catpartial3 ns

end handle OpenFailed => catpartial3 ns

But none of these seems entirely satisfactory as they all introduce a new value (sum,

closure or exception) only to eliminate it straight away – it is just there to express

some control flow which the handle construct is too weak to express directly.

The fix: programming with try

The try-in-unless syntax nicely solves our programming problem:

fun catpartial [] = ""

| catpartial (n::ns) = try val f = openIn n

in readIt f ^ catpartial ns

unless Io => catpartial ns

end

and also generalises both let and handle:

let x⇐M in N = try x⇐M inN unless {}
M handleH = try x⇐M in x unlessH

3.2 The transformation problem

Like many compilers for functional languages, MLj performs fairly extensive rewrit-

ing in order to optimise programs. The design of MLj’s intermediate language, MIL,

and its rewrites is motivated by a somewhat informal belief in ‘taking the proof

theory seriously’. One instance of this prejudice is that the compiler transforms

programs into a ‘cc-normal form’, in which all of the commuting conversions have

been applied.

In natural deduction presentations of logics (and hence, via the Curry-Howard

correspondence, in typed lambda calculi), commuting conversions occur when logical

rules (usually eliminations) have what Girard (1989) calls a ‘parasitic formula’, a

typical case being that of the sum. The elimination rule for sums is

Γ `M : A+ B Γ, x1 : A ` N1 : C Γ, x2 : B ` N2 : C

Γ ` caseM of in1x1.N1 | in2x2.N2 : C

in which the formula/type C has no connection with that being eliminated. The

presence of such rules introduces undesirable distinctions between proofs and also,

for example, causes the subformula property of normal deductions to fail. These

problems are addressed by adding commuting conversions to the more familiar β
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and η rules. Commuting conversions typically have the general form

···
A

···
C · · ·

···
C E1

C · · · E2
D

;
···
A

···
C · · · E2

D · · ·

···
C · · · E2

D E1
D

where E1 is the ‘bad’ elimination rule for the top-level connective in A, with par-

asitic formula C (which may occur one or more times as a premiss, according to

the connective being eliminated), and E2 is the elimination rule for the top-level

connective in C . For example, if E1 is ∨-elimination and E2 is→-elimination, we get

the following commuting conversion on terms:3

(caseM of in1x1.N1 | in2x2.N2) P

; caseM of in1x1.(N1 P ) | in2x2.(N2 P ).

(Here and elsewhere, we adopt the ‘variable convention’: sufficient α-conversion to

avoid unwanted variable capture is assumed. In the above, this implies that neither

x1 nor x2 is free in P .) Commuting conversions often enable further reductions

which would otherwise be blocked, as in

(caseM of in1x1.λy. y + x1 | in2x2.λy. y) 2

; caseM of in1x1.((λy. y + x1) 2) | in2x2.((λy. y) 2)

; caseM of in1x1.(2 + x1) | in2x2.2

and we also find generating code from cc-normal forms considerably more straight-

forward than for arbitrary terms. Other compilers perform similar rewrites (for

example, the case-of-case and let-floating transformations in Jones & Santos (1998)),

though we are unusually dogmatic in recognising them as instances of a common

pattern and peforming all of them.

Interestingly, cc-normal form for our intermediate language, which is based on

Moggi’s computational metalanguage (Moggi, 1991), turns out to be almost the same

thing as Sabry and Felleisen’s A-normal form (Sabry & Felleisen, 1993; Flanagan

et al., 1993), which was derived from an analysis of CPS-based compilation. A nice

discussion of the connection between CPS and Moggi’s metalanguage may be found

in Hatcliff & Danvy (1994).

For most of the type constructors of our intermediate language, MIL, we have

well-behaved introduction and elimination rules for which it is clear how to derive

the commuting conversions. For the exception-related constructs, the situation is

messier (since part of the point of exceptions is that they are not explicitly visible

in source-language types), but it is nevertheless obvious that there are some cc-like

rewrites which we would like to perform. For example

(M handle E ⇒ N) P

3 Applied näıvely, of course, the duplication of terms in conversions like this one could lead to an
unacceptable blowup in code size. MLj avoids this by selective use of a special abstraction construct
which compiles to a block of code accessed by jumps.
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looks as though it should convert to something like

(M P ) handle E ⇒ (N P )

so that if, for example, N is a λ-abstraction, we get to perform a compile-time

β-reduction. But this transformation is not generally sound if either P or the

application of the value of M to the value of P might raise the exception E.

Furthermore, there is no correct transformation which we can use instead. It should

be remarked at this point that the limited expressibility of an intermediate language

based on a λ-calculus with handle is not shared by lower-level target languages.

Using Java bytecodes, for example, a code sequence corresponding to a correct

version of the above transformation is easily written:

L1: Code to evaluate M

L2: Code to evaluate P

invokevirtual <Method resultype apply(argtype)>

L3: Code for rest of computation

L4: pop // throw away the actual exception object

Code to evaluate N

Code to evaluate P

invokevirtual <Method resultype apply(argtype)>

jmp L3

Exception table:

from to target type

L1 L2 L4 <Class E>

and the same is true of target languages in which exception handlers are explicitly

pushed onto and popped from a stack.

In fact, because of the separation of computations from values in MIL, we would

have to express the first term above as

let f⇐ (M handle E ⇒ N) in let v⇐P in (f v)

but the essential point remains unchanged: there is simply no correct way to write

the transformation which we feel we should be able to perform.

Of course, one could simply accept the inexpressibility of such transformations

and generate slightly lower quality code. Alternatively, one can observe that the

commuting conversions are not in themselves generally optimisations; they are

reorganisations of the code which enable more computationally significant β redexes

to be exposed. Hence the same optimisations might well be obtained by using non-

local rewrites which look for larger patterns in the term. This would, however,

significantly increase the complexity of the rewriting function and, we believe, would

make it less efficient (despite the fact that the non-local steps would combine the

effect of more than one local rewrite).
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πj(try x⇐M in P unless {Ei ⇒ Ni}) proj-try

; try x⇐M in πj(P ) unless {Ei ⇒ πj(Ni)}

(try x⇐M in P unless {Ei ⇒ Ni}) Q app-try

; try x⇐M in (P Q) unless {Ei ⇒ (Ni Q)}

case (try x⇐M in P unless {Ei ⇒ Ni}) of in1y1.Q1 | in2y2.Q2 case-try

; try x⇐M in case P of in1y1.Q1 | in2y2.Q2

unless {Ei ⇒ caseNi of in1y1.Q1 | in2y2.Q2}

try x⇐ (caseM of in1y1.N1 | in2y2.N2) in Q unless {Ei ⇒ Pi} try-case

; try z ⇐M in

case z of in1y1.try x⇐ N1 in Q unless {Ei ⇒ Pi} |
in2y2.try x⇐ N2 in Q unless {Ei ⇒ Pi} unless {Ei ⇒ Pi}

try x⇐ (try y ⇐M in P unless {Ei ⇒ Ni}i∈I ) in Q unless {E ′j ⇒ N ′j}j∈J try-try

; try y ⇐M in

try x⇐ P in Q

unless {E ′j ⇒ N ′j}j∈J
unless {Ei ⇒ try x⇐ Ni in Q

unless {E ′j ⇒ N ′j}j∈J}i∈I ∪ {E ′j ⇒ N ′j}E′j 6∈{Ei}i∈I

Fig. 2. Conversions.

The fix: rewriting with try

The try-in-unless syntax comes with unsurprising β-like reductions, similar to those

for handle and let

try x⇐ raise E in P unlessH ; N (N = H(E))

try x⇐ raise E in P unlessH ; raise E (N 6∈ H)

try x⇐ V in P unlessH ; P [V/x] (V a value)

but, unlike handle, also has well-behaved commuting conversions, which allow us

to express useful compiler transformations. We present in figure 2 a general list of

conversions for try-in-unless against itself and the eliminations for sums, products

and functions. Although these look complex, it should be noted that in a language

like MIL (which separates values from computations at both the type and term

levels) or that of Pitts (1997) (which has term-level restrictions on the places where

non-values may occur), most of these cases either do not occur or only occur in

a simplified form. In MIL, for example, only try-case and try-try are well typed,

because projection, application and case can only be applied to values, whereas a try

is always a computation. Furthermore, the restriction that M in the try-case rewrite

be a value simplifies it to

(try-case’):

try x⇐ (case V of in1y1.N1 | in2y2.N2) in Q unless {Ei ⇒ Pi}
; case V of in1y1.try x⇐ N1 in Q unless {Ei ⇒ Pi} |

in2y2.try x⇐ N2 in Q unless {Ei ⇒ Pi}
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The try-in-unless construct is the one which we use in MIL, and the MLj compiler

actually does perform the try-try and try-case’ rewrites.

As an interesting example of MIL rewriting, showing the try construct working

with our monadic effect analysis (Benton & Kennedy, 1999), consider the following

ML function for summing all the elements of an array:

fun sumarray a =

let fun s(n,sofar) = let val v = Array.sub(a,n)

in s(n+1, sofar+v)

end handle Subscript => sofar

in s(0,0)

end

Because the SML source language does not have try, the programmer has made the

handler cover both the array access and the recursive call to the inner function s.

But this would prevent a näıve compiler from recognising that call as tail-recursive.

In MLj, the intermediate code for s looks like (in MLish, rather than MIL, syntax):

fun s(n,sofar) =

try val x = try val v = Array.sub(a,n)

in s(n+1, sofar+v)

unless {}

end

in x

unless Subscript => sofar

end

The try-try rewrite turns this into

fun s(n,sofar) = try val v = Array.sub(a,n)

in try val x = s(n+1, sofar+v)

in x

unless Subscript => sofar

end

unless Subscript => sofar

end

(The two identical handlers are actually abstracted as a shared local block.) The

effect analysis detects that the recursive call to s cannot, in fact, ever throw the

Subscript exception, so the function is rewritten again to

fun s(n,sofar) = try val v = Array.sub(a,n)

in s(n+1, sofar+v)

unless Subscript => sofar

end

which is tail recursive, and so gets compiled as a loop in the final code for sumarray.
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3.3 The semantics problem

There are several different styles in which one can specify the operational semantics

of ML-like languages. We have already seen (in section 1) a big-step, natural

semantics presentation, but this is not always the most convenient formulation with

which to work when proving results about observational equivalences. A popular

alternative is to use a small-step semantics presented using Felleisen’s notion of

evaluation context (Felleisen & Hieb, 1992). In this style, one first defines axioms for

the primitive transitions R → M, saying that redex R reduces to term M, and then

gives an inductive definition of evaluation contexts as terms E[·] containing a single

‘hole’ in the place where the next reduction will take place. A simple lemma that

every non-value is uniquely of the form E[R] then allows the one-step transition

relation to be defined as E[R] → E[M] for every evaluation context E[·] and

primitive transition R → M (and the evaluation relation to be defined in terms of

the reflexive transitive closure of the transition relation). Wright & Felleisen (1994)

give an evaluation context semantics for ML with exceptions which uses a second

kind of context for propagating exceptions.

Pitts (1997) has argued that for reasoning about contextual equivalences it is

convenient to reify the notion of evaluation context and give a small-step operational

semantics in which a configuration is a pair of a term and an explicit context

(continuation). The advantages of this approach include the fact that the right-hand

sides of transitions are all defined by structural induction over the left-hand side

and that there is a Galois connection between relations on terms and relations on

contexts which has proved useful in reasoning about, for example, equivalence of

polymorphic functions. This style of presentation is also particularly natural if the

language includes first-class continuations, in the style of Scheme or SML/NJ (see

Harper et al. (1993), for example).

Pitts formalises contexts by introducing new syntactic categories for defining

continuation stacks: a configuration looks like

〈(x1).N1 ◦ · · · ◦ (xn).Nn , M〉
where M is the term being evaluated (in a λ-calculus with a strict let construct

and a restriction that only values and variables may occur in eliminations) and

(x1).N1 ◦ · · · ◦ (xn).Nn is a sequence of (closed) abstractions representing the context

in which the evaluation takes place. The rules defining the transition relation include

〈K ◦ (x).N , V 〉 → 〈K , N[V/x]〉
〈K , let x⇐M inN〉 → 〈K ◦ (x).N , M〉

〈K , (λx.M) V 〉 → 〈K , M[V/x]〉
which, it should be apparent, amounts to defining a kind of abstract machine.4

4 Actually, since Pitts is interested in which configurations lead to termination, for reasoning about
contextual equivalence, the one-step transitions are implicit in inference rules defining the termination
predicate ↘ directly, such as

〈K , N[V/x]〉 ↘
〈K ◦ (x).N , V 〉 ↘

.
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This style of semantics has been applied by Pitts (2000), Pitts & Stark (1998) and

Bierman (1998), and the relational operators it induces are further discussed in

Abadi (2000). Coincidentally, the current implementation of MLj uses essentially

the same representation internally for efficient rewriting of terms in context.

Pitts gives the relationship between the stack-based semantics and a natural

semantics using the following lemma: For all appropriately-typed, closedK ,M and V

〈K , M〉 →∗ 〈· , V 〉 ⇐⇒ K@M ⇓ V
where · is the empty continuation stack and the ‘unwinding’ operator @ is defined by

·@M = M

(K ◦ (x).N)@M = K@(let x⇐M inN).

Note how the place where the action (reduction) happens is at the root of the syntax

tree of a stack configuration but buried deep in that of its unwinding, as

((x1).N1 ◦ · · · ◦ (xn).Nn) @M

=

let x1 ⇐ (

let x2 ⇐
(. . . (let xn ⇐M in N) . . . )

in N2)

in N1

It is straightfoward to extend Pitts’s semantics to a language with exceptions:

one simply allows (closed) handlers H (which we previously introduced as an

abbreviation for part of the syntax of the handle construct and are now making

slightly more first-class) to appear as a new kind of element in continuation stacks,

with the new transitions

〈K ◦H , V 〉 → 〈K , V 〉
〈K ◦H , raise E〉 → 〈K , N〉 if H(E) = N

〈K ◦H , raise E〉 → 〈K , raise E〉 if E 6∈ H
〈K ◦ (x).N , raise E〉 → 〈K , raise E〉
〈K , M handleH〉 → 〈K ◦H , M〉

The connection with the natural semantics extends to

〈K , M〉 →∗ 〈· , raise E〉 ⇐⇒ K@M ↑ E
where the definition of @ is extended by

(K ◦H)@M = K@(M handleH)

and this is the formulation we initially used when working on the equational theory

of MIL. However, there is a certain amount of clutter involved in using stacks

(extra syntax, type rules, etc.), and we noticed that if one’s syntax is sufficiently

well-behaved then it is possible to obtain an equally tractable presentation of the

transition relation just using terms of the original language. For Pitts’s language
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without exceptions, the idea is to axiomatise directly transitions between terms of

the form let x⇐M in N by using commuting conversion transitions to ‘bubble up’

the next redex in M until it is at the top (and its surrounding context within M has

been pushed into N). For example:

let x⇐V inN → let y⇐N[V/x] in y (N 6= x)

let x⇐ (let y⇐M inN) in P → let y⇐M in let x⇐N in P

let x⇐ (λy.M) V inN → let x⇐M[V/y] inN

Using this style of presentation, the relationship between the big-step and small-step

semantics becomes

(let x⇐M in x)→∗ (let x⇐V in x) ⇐⇒ M ⇓ V .
Intuitively, the stack-free transition relation is defined directly on a variant of Pitts’s

‘unwound’ terms, in which the let s associate the other way around from the original

definition:

(K ◦ (x).N)@M = let x⇐M in (K@N).

The equivalence of the two definitions of @ depends on the validity of the associa-

tivity of let (which, as discussed in Benton et al. (1998b), is a commuting conversion

in the logic corresponding to Moggi’s computational metalanguage).

However, if we add exceptions and the handle construct, the definition of the

stack-free transition relation fails to extend. Once again, the problem is the lack

of commuting conversions which would allow an exception handler to be pushed

into a surrounding context so that the evaluation of the expression convered by

the handler ‘bubbles’ to the top. More concretely, consider the following putative

transition:

let x⇐ (M handle E ⇒ N) in P → ?

We would like to put something on the right-hand side in which the evaluation of

M is at the top of the syntax tree, but there is no rewrite to anything of the form

letx⇐M in . . .. Nor can we extend the collection of top-level forms to include handle

as well as let constructs: there’s no rewrite to something of the form MhandleE ⇒ . . .

either.

The fix: operational semantics with try

If our language includes try-in-unless, then there is no difficulty in giving a stack-

free presentation of a structurally inductive transition semantics. Figure 3 presents

transitions between terms of the form try x ⇐ M in P unless H (recall that try-in-

unless generalises let). The syntax (H catch H ′ in x.Q) is an abbreviation for the

covering of one handler by the other handler and continuation used in the try-try

conversion (as in figure 2).

The connection between the transition semantics and the big-step semantics is
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try x⇐ V in P unlessH → try y ⇐ P [V/x] in y unless {} (P 6= x)

try x⇐ raise E in P unlessH → try y ⇐ H(E) in y unless {}
try x⇐ (λy.M) V in P unlessH → try x⇐M[V/y] in P unlessH

try x⇐ (try y ⇐M in P unlessH) in Q unlessH ′
→ try y ⇐M in (try x⇐ P in Q unlessH ′) unless (H catch H ′ in x.Q)

{Ei ⇒ Ni} catch {E ′j ⇒ N ′j} in x.Q
def
= {Ei ⇒ try x⇐ Ni in Q unless {E ′j ⇒ N ′j}}

∪{E ′j ⇒ N ′j |6 ∃i.Ei = E ′j}
Fig. 3. Transition semantics.

then expressed by

M ⇓ V ⇐⇒ try x⇐M in x unless {}
→∗ try x⇐ V in x unlessH

M ↑ E ⇐⇒ try x⇐M in x unless {}
→∗ try x⇐ raise E in P unlessH (E 6∈ H)

This formulation of the transition semantics is the one which we have used when

reasoning about observational congruence for MIL in order to validate effect-based

transformations (Benton & Kennedy, 1999).5

4 Remarks on concrete syntax

Using try-in-unless in theoretical work or in a compiler intermediate language is

straightforward. But adding the construct to a programming language requires a

human-friendly concrete syntax to be chosen and, annoyingly, there does not seem

to be an obviously ‘right’ choice here. The main problem is choosing whether the

handlers or the continuation expression should come first, i.e. between

try x = M try x = M

in N unless E=>P

unless E=>P and in N

end end

Neither of these is entirely satisfactory. In the first case the fact that the handler

only covers M and not N is obscured; this is particularly bad if N is large. In the

second, that x is bound in N but not in P is certainly not what one would expect.

Our own preference for SML is firstly to retain the handle construct in the source

syntax, since it is simpler and suffices for most situations, and then either to add the

first alternative above or (more radically) to allow both of them. Since try-in-unless

generalises let, it also seems sensible to do without the try keyword and just allow

unless to be an optional part of let-expressions. We have tweaked MLj so that it

will accept syntax like the following:

5 Though, embarassingly, the HOOTS paper gives an incorrect shorthand for one handler covering
another in the operational semantics.
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fun f ((n1,n2)::rest) =

let val s1 = openIn n1

val s2 = openIn n2

in combine(s1,s2)

unless Io => f rest

end

Note that SML allows multiple sequential declarations in a single let expression.

None of the variables in the left-hand sides are bound in the handler, which is

evaluated if any of the right-hand sides raise a matching exception.

5 Remarks on try-finally

Some imperative languages have a try statement which allows execution of a com-

mand to be covered not only by a set of handlers, but also by an optional finally

clause. This specifies a command which is to be executed once control has left the

covered command (and any of the handlers), irrespective of whether the exit was

normal or by raising an exception. The try-(catch)-finally construct is typically used

for imperative ‘cleanup’ code which needs to be executed whether or not an error

occurs, the usual example being closing open files.

One way to extend ML with a similar feature would be by new syntax M finally

N, the typing rule for which requires N to be of type unit, and whose behaviour may

be specified by the translation:

let val x = M handle e => (N ; raise e)

M finally N = in N ; x

end

where x is not free in N. In the absence of special syntax, one has to program directly

in terms of the translation, which involves the unpleasant duplication of N. This

duplication may be minimised by abstracting (thunking) N, and by doing the same

to M one can write a higher-order function finally of type (unit -> ’a) * (unit

-> unit) -> ’a. One might (and the referees did) wonder whether our alternative

syntax for exception handling allows the behaviour of finally to be obtained in a

more convenient first-order way. Unfortunately, the answer is no. The translation of

M finally N in our syntax is

let val x = M

in N ; x

unless e => N ; raise e

end

which, although it arguably makes the control flow a little clearer, is not really any

better than the translation in terms of handle – it still duplicates N.6

6 This duplication differs from those introduced by commuting conversions in that the continuations
of the two copies of N are different, so the sharing cannot be captured by MIL’s special ‘local block’
abstractions. This problem with finally is the reason that the JVM includes a very restricted and ad
hoc form of subroutine.
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6 Conclusions

Although the point is undeniably a small one, we hope we have convinced the reader

that the try-in-unless syntax for exception handling really is more well-behaved than

the traditional handle construct. It is also probably worth noting that if one translates

a language with exceptions into one without them, by using sums to encode the

exceptions monad (if the set of exceptions is infinite then this requires either infinite

syntax or defaults in pattern matching), then the derived elimination construct for

computations is essentially try-in-unless. (The difference is that all exceptions are

always caught, though all but a finite number are then rethrown.)

As far as we know, MIL is the first language to use try-in-unless, though we are

not the only people to have spotted that it might be a useful programming construct

– whilst we were writing this Judicael Courant (1999) suggested the essentially same

thing on the CAML mailing list.

From a methodological perspective, we feel that this is another small piece of

evidence for the benefits of taking insights from proof-theory seriously when doing

language design. Although the solution seems obvious in retrospect, and other

people might have reached it by a different route, we personally would not have

recognised that there was an identifiable problem in the first place (as opposed to

some ugly bits of code and slightly messy proofs) had we not been thinking in terms

of proof-theoretic normal forms.
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