COMPACT TOEPLITZ OPERATORS WITH CONTINUOUS SYMBOLS

TRIEU LE

Department of Pure Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada e-mail: t29le@math.uwaterloo.ca

(Received 11 May 2008; Accepted 13 Sept 2008)

Abstract. For any rotation-invariant positive regular Borel measure ν on the closed unit ball $\overline{\mathbb{B}}_n$ whose support contains the unit sphere \mathbb{S}_n , let L_a^2 be the closure in $L^2 = L^2(\overline{\mathbb{B}}_n, d\nu)$ of all analytic polynomials. For a bounded Borel function f on $\overline{\mathbb{B}}_n$, the Toeplitz operator T_f is defined by $T_f(\varphi) = P(f\varphi)$ for $\varphi \in L_a^2$, where P is the orthogonal projection from L^2 onto L_a^2 . We show that if f is continuous on $\overline{\mathbb{B}}_n$, then T_f is compact if and only if f(z) = 0 for all z on the unit sphere. This is well known when L_a^2 is replaced by the classical Bergman or Hardy space.

2002 Mathematics Subject Classification. Primary 47B35

1. Introduction. As usual, for any integer $n \ge 1$, let \mathbb{B}_n denote the open unit ball and \mathbb{S}_n the unit sphere in \mathbb{C}^n . The closure of \mathbb{B}_n in the Euclidean metric on \mathbb{C}^n is denoted by $\overline{\mathbb{B}}_n$. For $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, |z| denotes the Euclidean norm of z. For any multi-index $m = (m_1, \ldots, m_n)$ in \mathbb{N}^n (where \mathbb{N} denotes the set of all non-negative integers), $z^m = z_1^{m_1} \cdots z_n^{m_n}$ and $\overline{z}^m = \overline{z}_1^{m_1} \cdots \overline{z}_n^{m_n}$. We also write $|m| = m_1 + \cdots + m_n$ and $m! = m_1! \cdots m_n!$. Let σ denote the rotation-invariant positive Borel measure on \mathbb{S}_n , which is normalized so that $\sigma(\mathbb{S}_n) = 1$. Let μ be a positive regular Borel measure on the closed interval [0, 1] with $\mu([0, 1]) = 1$, and 1 is in the support of μ . Let ν be the product measure of μ and σ . So ν is a regular Borel measure on $\overline{\mathbb{B}}_n$ with unit total mass, such that for any $f \in L^1(\overline{\mathbb{B}}_n, d\nu)$, we have the integration in polar coordinate formula:

$$\int_{\overline{\mathbb{B}}_n} f(z) \, \mathrm{d}\nu(z) = \int_{[0,1]} \left(\int_{\mathbb{S}_n} f(r\zeta) \mathrm{d}\sigma(\zeta) \right) \mathrm{d}r. \tag{1}$$

Let $L^2_a(\overline{\mathbb{B}}_n, d\nu)$ be the closure of the space of all holomorphic polynomials in $L^2(\overline{\mathbb{B}}_n, d\nu)$, and let *P* denote the orthogonal projection from $L^2(\overline{\mathbb{B}}_n, d\nu)$ onto $L^2_a(\overline{\mathbb{B}}_n, d\nu)$. If $d\mu(r) = \frac{2 \Gamma(n+\alpha+1)}{\Gamma(n) \Gamma(\alpha+1)} r^{2n-1} (1-r^2)^{\alpha} dr$ for some $\alpha > -1$, then ν is a weighted

If $d\mu(r) = \frac{2 \Gamma(n+\alpha+1)}{\Gamma(n)} r^{2n-1} (1-r^2)^{\alpha} dr$ for some $\alpha > -1$, then ν is a weighted Lebesgue measure on \mathbb{B}_n , and $L^2_a(\overline{\mathbb{B}}_n, d\nu)$ is the familiar weighted Bergman space. If μ is the point mass measure at 1, then $L^2_a(\overline{\mathbb{B}}_n, d\nu)$ can be identified with the Hardy space H^2 on \mathbb{B}_n . See [4] for more detail about Bergman and Hardy spaces.

For any bounded Borel function f defined on $\overline{\mathbb{B}}_n$, the Toeplitz operator T_f is the operator on $L^2_a(\overline{\mathbb{B}}_n, d\nu)$, defined by $T_f \varphi = P(f\varphi)$ for $\varphi \in L^2_a$. The function f is called the symbol of T_f . It is clear that T_f is a bounded operator with $||T_f|| \le ||f||_{L^{\infty}(\overline{\mathbb{B}}_n, d\nu)}$. It follows from the density in $C(\overline{\mathbb{B}}_n)$ of polynomials (in z and \overline{z}) that if $T_f = 0$, then

TRIEU LE

f(z) = 0 for v-almost all z in $\overline{\mathbb{B}}_n$. So the map $f \mapsto T_f$ from $L^{\infty}(\overline{\mathbb{B}}_n, dv)$ into the C^* -algebra $\mathfrak{B}(L^2_a(\overline{\mathbb{B}}_n, dv))$ of all bounded linear operators on $L^2_a(\overline{\mathbb{B}}_n, dv)$ is an injective contraction. This map is not an isometry in general. Note that if $\mu(\{1\}) = 0$, then the values of f on the unit sphere do not affect the operator T_f . On the other hand, the values of f on the unit sphere play an important role when $\mu(\{1\}) > 0$.

In this paper we are interested in Toeplitz operators whose symbols behave well near the boundary of \mathbb{B}_n . Toeplitz operators (on the classical Hardy and Bergman spaces) whose symbols are continuous functions on $\overline{\mathbb{B}}_n$ and the *C**-algebras generated by them were studied by L. Coburn [1] back in the 1970s. One of many results on this subject is the theorem given next.

THEOREM 1.1. Suppose f is in $C(\overline{\mathbb{B}}_n)$. Then T_f is a compact operator if and only if $f(\zeta) = 0$ for all $\zeta \in S_n$.

In this paper we will show that Theorem 1.1 still holds true for Toeplitz operators acting on any $L^2_a(\mathbb{B}_n, d\nu)$. That $f|_{\mathbb{S}_n} \equiv 0$ implies the T_f is compact is not new. The proof is similar to that of the classical case. On the other hand, the proof of the converse requires a different argument. The usual approach which involves reproducing kernels does not seem to work for general ν . The reason is that for such a ν , even though reproducing kernels exist, there is no useful formula for them. Theorem 1.1 for a general rotation-invariant positive Borel measure ν on the unit disk was shown by T. Nakazi and R. Yoneda [2]. This paper was in fact inspired by theirs.

2. Toeplitz operators with compactly supported symbols. In this section we show that if f is a bounded Borel function whose support is contained in a compact subset of \mathbb{B}_n , then T_f is a Hilbert–Schmidt operator.

For multi-indexes $m, k \in \mathbb{N}^n$, from formula (1) and Propositions 1.4.8 and 1.4.9 in [3], we have

$$\begin{split} \int_{\overline{\mathbb{B}}_n} z^m \overline{z}^k \, \mathrm{d}\nu(z) &= \int_{[0,1]} \left(\int_{\mathbb{S}_n} \zeta^m \zeta^k \mathrm{d}\sigma(\zeta) \right) r^{2|m|} \, \mathrm{d}\mu(r) \\ &= \begin{cases} 0 & \text{if } m \neq k, \\ \frac{(n-1)! \, m!}{(n-1+|m|)!} \int_{[0,1]} r^{2|m|} \mathrm{d}\mu(r) & \text{if } m = k. \end{cases} \end{split}$$

For $s \in \mathbb{N}$, let $\alpha_s = \int_{[0,1]} r^{2s} d\mu(r)$. For $m \in \mathbb{N}^n$ and $z \in \mathbb{C}^n$, put

$$e_m(z) = \left(\frac{(n-1+|m|)!}{(n-1)!\,m!\,\alpha_{|m|}}\right)^{1/2} z^m.$$

Then from the above computation and the definition of $L^2_a(\overline{\mathbb{B}}_n, d\nu)$, it follows that the set $\{e_m : m \in \mathbb{N}^n\}$ is an orthonormal basis for $L^2_a(\overline{\mathbb{B}}_n, d\nu)$.

PROPOSITION 2.1. Let f be a bounded Borel function on $\overline{\mathbb{B}}_n$, such that for some $0 < \delta < 1$, f(z) = 0 whenever $|z| > \delta$. Then T_f is a Hilbert–Schmidt operator.

Proof. For $z \in \mathbb{B}_n$ with $|z| \leq \delta$, we have

$$\sum_{m \in \mathbb{N}^{n}} |e_{m}(z)|^{2} = \sum_{m \in \mathbb{N}^{n}} \frac{(n-1+|m|)!}{(n-1)! \ m_{1}! \cdots m_{n}!} \frac{|z_{1}|^{2m_{1}} \cdots |z_{n}|^{2m_{n}}}{\alpha_{|m|}}$$

$$= \sum_{M=0}^{\infty} \frac{(n-1+M)!}{(n-1)! \ M! \ \alpha_{M}} \sum_{|m|=M} \frac{M!}{m_{1}! \cdots m_{n}!} |z_{1}|^{2m_{1}} \cdots |z_{n}|^{2m_{n}}$$

$$= \sum_{M=0}^{\infty} \frac{(n-1+M)!}{(n-1)! \ M! \ \alpha_{M}} (|z_{1}|^{2} + \cdots + |z_{n}|^{2})^{M}$$

$$\leq \sum_{M=0}^{\infty} \frac{(n-1+M)!}{(n-1)! \ M! \ \alpha_{M}} \delta^{2M}.$$
(2)

Now $\lim_{M\to\infty} (\alpha_M)^{1/M} = \lim_{M\to\infty} (\int_{[0,1]} r^{2M} d\mu(r))^{1/M} = ||r^2||_{L^{\infty}([0,1],d\mu)} = 1$, where the last identity follows from the fact that 1 is in the support of μ . Thus the infinite sum in (2) is convergent. So for each $0 < \delta < 1$, there is a constant $C(\delta) < \infty$, such that $\sum_{m \in \mathbb{N}^n} |e_m(z)|^2 \le C(\delta)$ for all $|z| \le \delta$. Now suppose *f* satisfies the hypothesis of the proposition. Then

$$\begin{split} \sum_{m,k\in\mathbb{N}^n} |\langle T_f e_m, e_k \rangle|^2 &\leq \sum_{m,k\in\mathbb{N}^n} \left(\int_{\overline{\mathbb{B}}_n} |f(z)e_m(z)e_k(z)|d\nu(z) \right)^2 \\ &\leq \sum_{m,k\in\mathbb{N}^n} \int_{\overline{\mathbb{B}}_n} |f(z)|^2 |e_m(z)|^2 |e_k(z)|^2 d\nu(z) \\ & \text{(by Holder's inequality)} \\ &= \int_{|z|\leq\delta} |f(z)|^2 \left(\sum_{m\in\mathbb{N}^n} |e_m(z)|^2 \right) \left(\sum_{k\in\mathbb{N}^n} |e_k(z)|^2 \right) d\nu(z) \\ &\leq (C(\delta))^2 \int_{|z|\leq\delta} |f(z)|^2 d\nu(z) < \infty. \end{split}$$

This shows that T_f is a Hilbert–Schmidt operator.

The corollary given below proves the 'if' part of Theorem 1.1. The 'only if' part will follow from a more general result which will be presented in Section 3.

COROLLARY 2.2. If $f \in C(\overline{\mathbb{B}}_n)$ such that $f(\zeta) = 0$ for all $|\zeta| = 1$, then T_f is compact.

Proof. Since f can be uniformly approximated on $\overline{\mathbb{B}}_n$ by continuous functions with compact supports in $\overline{\mathbb{B}}_n$, Proposition 2.1 shows that T_f can be approximated in the operator norm by Hilbert–Schmidt operators. Hence T_f is a compact operator.

3. Compact Toeplitz operators with continuous symbols. We begin this section with a proposition that relates the boundary values of f with $\langle T_f e_m, e_m \rangle$ as $|m| \to \infty$.

PROPOSITION 3.1. Let f be a bounded Borel function on $\overline{\mathbb{B}}_n$, such that for σ -almost all $\zeta \in \mathbb{S}_n$, we have $f(\zeta) = \lim_{r \uparrow 1} f(r\zeta)$. If $\lim_{|m| \to \infty} \langle T_f e_m, e_m \rangle = \alpha$, then $\int_{\mathbb{S}_n} f(\zeta) d\sigma(\zeta)$ $= \alpha$.

Proof. Without loss of generality, we may assume that $\alpha = 0$. For any function g in $L^1(\overline{\mathbb{B}}_n, d\nu)$ and any positive integer M we have

$$\sum_{|m|=M} \langle T_g e_m, e_m \rangle$$

$$= \sum_{|m|=M} \frac{(n-1+|m|)!}{(n-1)! m! \alpha_{|m|}} \int_{\overline{\mathbb{B}}_n} g(z) z^m \overline{z}^m d\nu(z)$$

$$= \frac{(n-1+M)!}{(n-1)! M! \alpha_M} \int_{\overline{\mathbb{B}}_n} g(z) \left\{ \sum_{|m|=M} \frac{M!}{m_1! \cdots m_n!} |z_1|^{2m_1} \cdots |z_n|^{2m_n} \right\} d\nu(z) \quad (3)$$

$$= \frac{(n-1+M)!}{(n-1)! M! \alpha_M} \int_{\overline{\mathbb{B}}_n} g(z) (|z_1|^2 + \cdots + |z_n|^2)^M d\nu(z)$$

$$= \frac{(n-1+M)!}{(n-1)! M! \alpha_M} \int_{[0,1]} \left(\int_{\mathbb{S}_n} g(r\zeta) d\sigma(\zeta) \right) r^{2M} d\mu(r).$$

In particular, if g(z) = 1 for all $z \in \overline{\mathbb{B}}_n$, then $\frac{(n-1+M)!}{(n-1)! M!} = \sum_{|m|=M} 1$. This shows that the set $\{m = (m_1, \ldots, m_n) \in \mathbb{N}^n : m_1 + \cdots + m_n = M\}$ has $\frac{(n-1+M)!}{(n-1)! M!}$ elements. This formula can, of course, be shown directly by an elementary combinatoric argument.

Let $\epsilon > 0$ be given. There is an integer M_{ϵ} such that for all $m \in \mathbb{N}^n$ with $|m| > M_{\epsilon}$ we have $|\langle T_f e_m, e_m \rangle| < \epsilon$. Thus for any $M > M_{\epsilon}$, (3) with f in place of g gives

$$\begin{aligned} \left| \frac{1}{\alpha_M} \int_{[0,1]} \left(\int_{\mathbb{S}_n} f(r\zeta) \mathrm{d}\sigma(\zeta) \right) r^{2M} \mathrm{d}\mu(r) \right| &\leq \frac{(n-1)! \ M!}{(n-1+M)!} \sum_{|m|=M} |\langle T_f e_m, e_m \rangle| \\ &\leq \frac{(n-1)! \ M!}{(n-1+M)!} \sum_{|m|=M} \epsilon \\ &= \epsilon. \end{aligned}$$

This shows that

$$\lim_{M \to \infty} \frac{1}{\alpha_M} \int_{[0,1]} \left(\int_{\mathbb{S}_n} f(r\zeta) \mathrm{d}\sigma(\zeta) \right) r^{2M} \mathrm{d}\mu(r) = 0.$$
(4)

For each $0 \le r \le 1$, let us put $\varphi(r) = \int_{\mathbb{S}_n} f(r\zeta) d\sigma(\zeta)$. Since f is bounded on $\overline{\mathbb{B}}_n$ and $f(r\zeta) \to f(\zeta)$ as $r \uparrow 1$ for σ -almost all $\zeta \in \mathbb{S}_n$, Lebesgue's dominated convergence theorem implies that $\varphi(r) \to \varphi(1)$ as $r \uparrow 1$. We now show that $\lim_{M\to\infty} \frac{1}{\alpha_M} \int_{[0,1]} \varphi(r) r^{2M} d\mu(r) = \varphi(1)$. Let $\epsilon > 0$ be given. There is a δ in [0, 1) such that $|\varphi(r) - \varphi(1)| < \epsilon$ for all $a \le r \le 1$. Therefore,

$$\begin{split} \left| \left(\frac{1}{\alpha_M} \int_{[0,1]} \varphi(r) r^{2M} \mathrm{d}\mu(r) \right) - \varphi(1) \right| &= \left| \frac{1}{\alpha_M} \int_{[0,1]} (\varphi(r) - \varphi(1)) r^{2M} \mathrm{d}\mu(r) \right| \\ &\leq \frac{1}{\alpha_M} \int_{[0,a]} |\varphi(r) - \varphi(1)| r^{2M} \mathrm{d}\mu(r) \\ &+ \frac{1}{\alpha_M} \int_{[a,1]} |\varphi(r) - \varphi(1)| r^{2M} \mathrm{d}\mu(r) \\ &\leq 2 \|\varphi\|_{\infty} \frac{1}{\alpha_M} \int_{[0,a]} r^{2M} \mathrm{d}\mu(r) + \epsilon. \end{split}$$

Now since 1 is in the support of μ , an elementary argument shows that $\lim_{M\to\infty} \frac{1}{\alpha_M} \int_{[0,a]} r^{2M} d\mu(r) = 0$. (See [2, Lemma 2] for a detailed proof.) By taking $M \to \infty$ in the above inequalities, we conclude that

$$\limsup_{M\to\infty}\left|\left(\frac{1}{\alpha_M}\int_{[0,1]}\varphi(r)r^{2M}\mathrm{d}\mu(r)\right)-\varphi(1)\right|\leq\epsilon.$$

Since ϵ was arbitrary, we get

$$\lim_{M \to \infty} \frac{1}{\alpha_M} \int_{[0,1]} \varphi(r) r^{2M} \mathrm{d}\mu(r) = \varphi(1).$$
(5)

Now (4) and (5) imply that $\varphi(1) = 0$, which means $\int_{\mathbb{S}_n} f(\zeta) d\sigma(\zeta) = 0$.

COROLLARY 3.2. Suppose f is a bounded Borel function on $\overline{\mathbb{B}}_n$, such that for σ -almost all $\zeta \in S_n$, $f(\zeta) = \lim_{r \uparrow 1} f(r\zeta)$ and that T_f is a compact operator on $L^2_a(\overline{\mathbb{B}}_n, d\nu)$. Then $f(\zeta) = 0$ for σ -almost all ζ in S_n . From this, the 'only if' part of Theorem 1.1 follows.

Proof. For all multi-indexes $l_1, l_2 \in \mathbb{N}^n$, the operator $T_{fe_{l_1}\bar{e}_{l_2}} = T_{\bar{e}_{l_2}}T_fT_{e_{l_1}}$ is compact. Thus we have $\lim_{|m|\to\infty} \langle T_{fe_{l_1}\bar{e}_{l_2}}e_m, e_m \rangle = 0$. By Proposition 3.1 and the fact that for σ -almost all $\zeta \in S_n$, $\lim_{r\uparrow 1} f(r\zeta)e_{l_1}(r\zeta)\bar{e}_{l_2}(r\zeta) = f(\zeta)e_{l_1}(\zeta)\bar{e}_{l_2}(\zeta)$, which is a positive multiple of $f(\zeta)\zeta^{l_1}\bar{\zeta}^{l_2}$, we conclude that $\int_{S_n} f(\zeta)\zeta^{l_1}\bar{\zeta}^{l_2}d\sigma(\zeta) = 0$. Since this is true for all multi-indexes l_1 and l_2 , we have $f(\zeta) = 0$ for σ -almost all $\zeta \in S_n$. \Box

ACKNOWLEDGEMENTS. This work was completed when the author was a postdoctoral fellow at the Department of Mathematics and the Fields Institute for Research in Mathematical Sciences, University of Toronto. The author is grateful for their support.

REFERENCES

1. Lewis A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, *Indiana Univ. Math. J.* 23 (1973–1974), 433–439. MR 0322595 (48 #957)

2. Takahiko Nakazi and Rikio Yoneda, Compact Toeplitz operators with continuous symbols on weighted Bergman spaces, *Glasgow Math. J.* **42**(1) (2000), 31–35. MR 1739694 (2000i:47052)

3. Walter Rudin, *Function theory in the unit ball of* \mathbb{C}^n , vol. 241 (Springer-Verlag, New York, 1980). MR 601594 (82i:32002)

4. Kehe Zhu, *Spaces of holomorphic functions in the unit ball*, vol. 226 (Springer-Verlag, New York, 2005). MR 2115155 (2006d:46035)