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Abstract. For any rotation-invariant positive regular Borel measure ν on the
closed unit ball �n whose support contains the unit sphere �n, let L2

a be the closure
in L2 = L2(�n, dν) of all analytic polynomials. For a bounded Borel function f on
�n, the Toeplitz operator Tf is defined by Tf (ϕ) = P(f ϕ) for ϕ ∈ L2

a, where P is the
orthogonal projection from L2 onto L2

a. We show that if f is continuous on �n, then
Tf is compact if and only if f (z) = 0 for all z on the unit sphere. This is well known
when L2

a is replaced by the classical Bergman or Hardy space.
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1. Introduction. As usual, for any integer n ≥ 1, let �n denote the open unit ball
and �n the unit sphere in �n. The closure of �n in the Euclidean metric on �n is
denoted by �n. For z = (z1, . . . , zn) ∈ �n, |z| denotes the Euclidean norm of z. For
any multi-index m = (m1, . . . , mn) in �n (where � denotes the set of all non-negative
integers), zm = zm1

1 · · · zmn
n and z̄m = z̄m1

1 · · · z̄mn
n . We also write |m| = m1 + · · · + mn and

m! = m1! · · · mn!. Let σ denote the rotation-invariant positive Borel measure on �n,
which is normalized so that σ (�n) = 1. Let μ be a positive regular Borel measure on
the closed interval [0, 1] with μ([0, 1]) = 1, and 1 is in the support of μ. Let ν be the
product measure of μ and σ . So ν is a regular Borel measure on �n with unit total
mass, such that for any f ∈ L1(�n, dν), we have the integration in polar coordinate
formula: ∫

�n

f (z) dν(z) =
∫

[0,1]

(∫
�n

f (rζ )dσ (ζ )
)

dr. (1)

Let L2
a(�n, dν) be the closure of the space of all holomorphic polynomials in L2(�n, dν),

and let P denote the orthogonal projection from L2(�n, dν) onto L2
a(�n, dν).

If dμ(r) = 2 �(n+α+1)
�(n) �(α+1) r

2n−1(1 − r2)αdr for some α > −1, then ν is a weighted

Lebesgue measure on �n, and L2
a(�n, dν) is the familiar weighted Bergman space.

If μ is the point mass measure at 1, then L2
a(�n, dν) can be identified with the Hardy

space H2 on �n. See [4] for more detail about Bergman and Hardy spaces.
For any bounded Borel function f defined on �n, the Toeplitz operator Tf is the

operator on L2
a(�n, dν), defined by Tf ϕ = P(f ϕ) for ϕ ∈ L2

a. The function f is called
the symbol of Tf . It is clear that Tf is a bounded operator with ‖Tf ‖ ≤ ‖f ‖L∞(�n,dν). It
follows from the density in C(�n) of polynomials (in z and z̄) that if Tf = 0, then
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f (z) = 0 for ν-almost all z in �n. So the map f �→ Tf from L∞(�n, dν) into the
C∗-algebra B(L2

a(�n, dν)) of all bounded linear operators on L2
a(�n, dν) is an injective

contraction. This map is not an isometry in general. Note that if μ({1}) = 0, then the
values of f on the unit sphere do not affect the operator Tf . On the other hand, the
values of f on the unit sphere play an important role when μ({1}) > 0.

In this paper we are interested in Toeplitz operators whose symbols behave well
near the boundary of �n. Toeplitz operators (on the classical Hardy and Bergman
spaces) whose symbols are continuous functions on �n and the C∗-algebras generated
by them were studied by L. Coburn [1] back in the 1970s. One of many results on this
subject is the theorem given next.

THEOREM 1.1. Suppose f is in C(�n). Then Tf is a compact operator if and only if
f (ζ ) = 0 for all ζ ∈ �n.

In this paper we will show that Theorem 1.1 still holds true for Toeplitz operators
acting on any L2

a(�n, dν). That f |�n ≡ 0 implies the Tf is compact is not new. The proof
is similar to that of the classical case. On the other hand, the proof of the converse
requires a different argument. The usual approach which involves reproducing kernels
does not seem to work for general ν. The reason is that for such a ν, even though
reproducing kernels exist, there is no useful formula for them. Theorem 1.1 for a
general rotation-invariant positive Borel measure ν on the unit disk was shown by T.
Nakazi and R. Yoneda [2]. This paper was in fact inspired by theirs.

2. Toeplitz operators with compactly supported symbols. In this section we show
that if f is a bounded Borel function whose support is contained in a compact subset
of �n, then Tf is a Hilbert–Schmidt operator.

For multi-indexes m, k ∈ �n, from formula (1) and Propositions 1.4.8 and 1.4.9 in
[3], we have

∫
�n

zmz̄k dν(z) =
∫

[0,1]

(∫
�n

ζ mζ kdσ (ζ )
)

r2|m| dμ(r)

=
⎧⎨
⎩

0 if m �= k,
(n − 1)! m!

(n − 1 + |m|)!
∫

[0,1]
r2|m|dμ(r) if m = k.

For s ∈ �, let αs = ∫
[0,1] r2sdμ(r). For m ∈ �n and z ∈ �n, put

em(z) =
(

(n − 1 + |m|)!
(n − 1)! m! α|m|

)1/2

zm.

Then from the above computation and the definition of L2
a(�n, dν), it follows that the

set {em : m ∈ �n} is an orthonormal basis for L2
a(�n, dν).

PROPOSITION 2.1. Let f be a bounded Borel function on �n, such that for some
0 < δ < 1, f (z) = 0 whenever |z| > δ. Then Tf is a Hilbert–Schmidt operator.
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Proof. For z ∈ �n with |z| ≤ δ, we have

∑
m∈�n

|em(z)|2 =
∑

m∈�n

(n − 1 + |m|)!
(n − 1)! m1! · · · mn!

|z1|2m1 · · · |zn|2mn

α|m|

=
∞∑

M=0

(n − 1 + M)!
(n − 1)! M! αM

∑
|m|=M

M!
m1! · · · mn!

|z1|2m1 · · · |zn|2mn

=
∞∑

M=0

(n − 1 + M)!
(n − 1)! M! αM

(|z1|2 + · · · + |zn|2)M

≤
∞∑

M=0

(n − 1 + M)!
(n − 1)! M! αM

δ2M . (2)

Now limM→∞(αM)1/M = limM→∞(
∫

[0,1] r2Mdμ(r))1/M = ‖r2‖L∞([0,1],dμ) = 1, where
the last identity follows from the fact that 1 is in the support of μ. Thus the infinite
sum in (2) is convergent. So for each 0 < δ < 1, there is a constant C(δ) < ∞, such
that

∑
m∈�n |em(z)|2 ≤ C(δ) for all |z| ≤ δ.

Now suppose f satisfies the hypothesis of the proposition. Then

∑
m,k∈�n

|〈Tf em, ek〉|2 ≤
∑

m,k∈�n

(∫
�n

|f (z)em(z)ek(z)|dν(z)
)2

≤
∑

m,k∈�n

∫
�n

|f (z)|2|em(z)|2|ek(z)|2dν(z)

(by Holder’s inequality)

=
∫

|z|≤δ

|f (z)|2
( ∑

m∈�n

|em(z)|2
) (∑

k∈�n

|ek(z)|2
)

dν(z)

≤ (C(δ))2
∫

|z|≤δ

|f (z)|2dν(z) < ∞.

This shows that Tf is a Hilbert–Schmidt operator. �
The corollary given below proves the ‘if ’ part of Theorem 1.1. The ‘only if ’ part

will follow from a more general result which will be presented in Section 3.

COROLLARY 2.2. If f ∈ C(�n) such that f (ζ ) = 0 for all |ζ | = 1, then Tf is compact.

Proof. Since f can be uniformly approximated on �n by continuous functions with
compact supports in �n, Proposition 2.1 shows that Tf can be approximated in the
operator norm by Hilbert–Schmidt operators. Hence Tf is a compact operator. �

3. Compact Toeplitz operators with continuous symbols. We begin this section
with a proposition that relates the boundary values of f with 〈Tf em, em〉 as |m| → ∞.

PROPOSITION 3.1. Let f be a bounded Borel function on �n, such that for σ -almost all
ζ ∈ �n, we have f (ζ ) = limr↑1 f (rζ ). If lim|m|→∞〈Tf em, em〉 = α, then

∫
�n

f (ζ )dσ (ζ )
= α.
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Proof. Without loss of generality, we may assume that α = 0. For any function g
in L1(�n, dν) and any positive integer M we have∑

|m|=M

〈Tgem, em〉

=
∑

|m|=M

(n − 1 + |m|)!
(n − 1)! m! α|m|

∫
�n

g(z)zmz̄mdν(z)

= (n − 1 + M)!
(n − 1)! M! αM

∫
�n

g(z)

⎧⎨
⎩

∑
|m|=M

M!
m1! · · · mn!

|z1|2m1 · · · |zn|2mn

⎫⎬
⎭ dν(z) (3)

= (n − 1 + M)!
(n − 1)! M! αM

∫
�n

g(z)(|z1|2 + · · · + |zn|2)Mdν(z)

= (n − 1 + M)!
(n − 1)! M! αM

∫
[0,1]

(∫
�n

g(rζ )dσ (ζ )
)

r2Mdμ(r).

In particular, if g(z) = 1 for all z ∈ �n, then (n−1+M)!
(n−1)! M! = ∑

|m|=M 1. This shows that the

set {m = (m1, . . . , mn) ∈ �n : m1 + · · · + mn = M} has (n−1+M)!
(n−1)! M! elements. This formula

can, of course, be shown directly by an elementary combinatoric argument.
Let ε > 0 be given. There is an integer Mε such that for all m ∈ �n with |m| > Mε

we have |〈Tf em, em〉| < ε. Thus for any M > Mε , (3) with f in place of g gives∣∣∣∣ 1
αM

∫
[0,1]

(∫
�n

f (rζ )dσ (ζ )
)

r2Mdμ(r)

∣∣∣∣ ≤ (n − 1)! M!
(n − 1 + M)!

∑
|m|=M

|〈Tf em, em〉|

≤ (n − 1)! M!
(n − 1 + M)!

∑
|m|=M

ε

= ε.

This shows that

lim
M→∞

1
αM

∫
[0,1]

(∫
�n

f (rζ )dσ (ζ )
)

r2Mdμ(r) = 0. (4)

For each 0 ≤ r ≤ 1, let us put ϕ(r) = ∫
�n

f (rζ )dσ (ζ ). Since f is bounded on

�n and f (rζ ) → f (ζ ) as r ↑ 1 for σ -almost all ζ ∈ �n, Lebesgue’s dominated
convergence theorem implies that ϕ(r) → ϕ(1) as r ↑ 1. We now show that
limM→∞ 1

αM

∫
[0,1] ϕ(r)r2Mdμ(r) = ϕ(1). Let ε > 0 be given. There is a δ in [0, 1) such

that |ϕ(r) − ϕ(1)| < ε for all a ≤ r ≤ 1. Therefore,∣∣∣∣
(

1
αM

∫
[0,1]

ϕ(r)r2Mdμ(r)
)

− ϕ(1)

∣∣∣∣ =
∣∣∣∣ 1
αM

∫
[0,1]

(ϕ(r) − ϕ(1))r2Mdμ(r)

∣∣∣∣
≤ 1

αM

∫
[0,a)

|ϕ(r) − ϕ(1)|r2Mdμ(r)

+ 1
αM

∫
[a,1]

|ϕ(r) − ϕ(1)|r2Mdμ(r)

≤ 2‖ϕ‖∞
1

αM

∫
[0,a)

r2Mdμ(r) + ε.
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Now since 1 is in the support of μ, an elementary argument shows that
limM→∞ 1

αM

∫
[0,a) r2Mdμ(r) = 0. (See [2, Lemma 2] for a detailed proof.) By taking

M → ∞ in the above inequalities, we conclude that

lim sup
M→∞

∣∣∣∣
(

1
αM

∫
[0,1]

ϕ(r)r2Mdμ(r)
)

− ϕ(1)

∣∣∣∣ ≤ ε.

Since ε was arbitrary, we get

lim
M→∞

1
αM

∫
[0,1]

ϕ(r)r2Mdμ(r) = ϕ(1). (5)

Now (4) and (5) imply that ϕ(1) = 0, which means
∫

�n

f (ζ )dσ (ζ ) = 0. �

COROLLARY 3.2. Suppose f is a bounded Borel function on �n, such that for σ -almost
all ζ ∈ �n, f (ζ ) = limr↑1 f (rζ ) and that Tf is a compact operator on L2

a(�n, dν). Then
f (ζ ) = 0 for σ -almost all ζ in �n. From this, the ‘only if’ part of Theorem 1.1 follows.

Proof. For all multi-indexes l1, l2 ∈ �n, the operator Tf el1 ēl2
= Tēl2

Tf Tel1
is

compact. Thus we have lim|m|→∞〈Tf el1 ēl2
em, em〉 = 0. By Proposition 3.1 and the fact

that for σ -almost all ζ ∈ �n, limr↑1 f (rζ )el1 (rζ )ēl2 (rζ ) = f (ζ )el1 (ζ )ēl2 (ζ ), which is a
positive multiple of f (ζ )ζ l1 ζ̄ l2 , we conclude that

∫
�n

f (ζ )ζ l1 ζ̄ l2 dσ (ζ ) = 0. Since this
is true for all multi-indexes l1 and l2, we have f (ζ ) = 0 for σ -almost all ζ ∈ �n. �
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