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Abstract

Let Bn(x) denote the number of 1’s occurring in the binary expansion of an irrational number x > 0. A
difficult problem is to provide nontrivial lower bounds for Bn(x) for interesting numbers such as

√
2, e

or π : their conjectural simple normality in base 2 is equivalent to Bn(x)∼ n/2. In this article, amongst
other things, we prove inequalities relating Bn(x + y), Bn(xy) and Bn(1/x) to Bn(x) and Bn(y) for any
irrational numbers x, y > 0, which we prove to be sharp up to a multiplicative constant. As a by-product,
we provide an answer to a question raised by Bailey et al. (D. H. Bailey, J. M. Borwein, R. E. Crandall
and C. Pomerance, ‘On the binary expansions of algebraic numbers’, J. Théor. Nombres Bordeaux 16(3)
(2004), 487–518) concerning the binary digits of the square of a series related to the Fibonacci sequence.
We also obtain a slight refinement of the main theorem of the same article, which provides a nontrivial
lower bound for Bn(α) for any real irrational algebraic number. We conclude the article with effective or
conjectural lower bounds for Bn(x) when x is a transcendental number.

2000 Mathematics subject classification: primary 11K16; secondary 11J68, 68R01.

Keywords and phrases: binary expansions, algebraic numbers.

1. Introduction

The integer B(m) is defined to be the number of 1’s in the finite binary expansion of
the nonnegative integer m, with B(0)= 0. It is a classical fact that B is sub-additive
and sub-multiplicative, that is, that for all integers m, n ≥ 0, the two inequalities
B(m + n)≤ B(m)+ B(n) and B(mn)≤ B(m)B(n) hold: see [5, 21] or Section 2,
where we provide a proof for the sake of completeness. These inequalities are sharp,
as the examples 10+ 1= 11 and 111× 100 100= 111 111 (in base 2) show. The
behavior of B(m j ) (m fixed and j→+∞) was studied in [15, 21].

In this article, we first prove related results when m is allowed to be an irrational
number (in Theorem 1) via a study of the function

Bn(x)= #{ j ≤ n | x j = 1}
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96 T. Rivoal [2]

where n ≥ 0 and x = (x−p . . . x−1x0. x1x2x3 . . .)2 is the binary expansion of x ≥ 0.
The case where x is a rational number of the form n/2m (n, m ∈N) is ambiguous: in
this case, there are two possible binary expansions, finite and infinite. The only rational
numbers of this form that we will consider in this text are the integers and we only use
their finite binary expansion; with this convention, for any positive integer x (written
in its finite binary expansion), we have Bn(x)= B0(x)= B(x). In any occurrence of
the quantity Bn(x), it will be tacitly supposed (if not explicitly stated) that x is either
an irrational number or an integer.

Theorem 1 has some interesting consequences, which we now describe as a
motivation for the article. We recall that a real number x is said to be simply normal
in base 2 if Bn(x)∼ n/2 and 2-normal if any blocks of m digits appears with the
frequency 2−m . Certain rational numbers such as 1/3= (0.010 101 01 . . .)2 and
certain artificial irrational numbers are simply normal in base 2 (or even 2-normal
as in the case of the base 2 Champernowne number

∑
k≥1 k2−ck with ck = k +∑k

j=1blog2 jc), nobody knows whether this is the case for more classical numbers.
A simple method to provide lower bound of Bn(x) for more ‘natural’ irrational

numbers x such as e or π is the following. Assume that x has a finite irrationality
exposant, that is, that there exists µx ∈ [2,+∞[ such that |x − p/q| ≥ q−µx−ε for
any ε > 0 and q �ε 1. Then, we have that

Bn(x)≥
log(n)

log(µx + ε)
+O(1) (1)

for n�ε 0. We can apply (1) to e and π because it has been proved that µe = 2
(Bundschuh [7] and Davis [8]) and 2≤ µπ ≤ 8.1 (Hata [11]); surprisingly, these lower
bounds for Bn(e) and Bn(π) are the best known to date. The proof of (1) runs as
follows. Denoting by pk2−nk the truncations of the binary expansion

∑
∞

k=1 2−nk of x ,
we have for all k�ε 0

1

2(µx+ε)nk
≤

∣∣∣∣x − pk

2nk

∣∣∣∣≤ 1

2nk+1−1 ,

from which we deduce that nk+1 ≤ (µx + ε)nk + 1. Hence, nk ≤ cε,x (µx + ε)
k with

cε,x > 0. We now remark that

Bn(x) = #{k : nk ≤ n} ≥ #{k : cε,x (µx + ε)
k
≤ n}

= #{k : k ≤ (n − log cε,x )/ log(µx + ε)}

and (1) follows. See the final section for an elaboration of this method.
When α is a real irrational algebraic number, we can obtain the same kind of

bound by using Roth’s theorem [20] that µα = 2. Ridout’s theorem [18] (which
claims that µα = 1 when q is restricted to a power of an integer) gives a better
result than Roth’s theorem but the improvement is marginal: for all ε > 0, we have
Bn(α)≥ log(n)/ log(1+ ε)+O(1). However, a dramatic improvement was recently
obtained by Bailey et al. [5], who proved that

Bn(α)≥ cα n1/d (1+ o(1)) (2)
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for all real positive algebraic numbers α of degree d ≥ 2 over Q. Denoting by
ad Xd

+ · · · + a1 X + a0 the minimal polynomial of α over Q, they obtained cα =
(1+ log ad)

−1/d when a0 < 0 and a j ≥ 0 otherwise (we call this ‘case S’, for special,
in the rest of the article). They only obtained cα = (2ad)

−1/d in the general case,
whose proof is much more complicated (this result suggests an analogy with the
Liouville–Thue–Siegel–Roth theorem concerning the diophantine approximation of
algebraic numbers α of degree d by rationals: (2) can be viewed as the analogue
of Liouville’s theorem, µα ≤ d , and the expected bound that Bn(α)� n would be the
analogue of Roth’s theorem, µα = 2): it seems that the use of Ridout’s theorem instead
of Roth’s theorem in their proof improves the constant to cα = a−1/d

d . They used the
bound (2) to prove that the number

∑
n≥1 2− f (n) is transcendental over Q provided

that f (n) grows faster than any power of n.
As a consequence of Theorem 1, we provide another proof of case S in Corollary 2

and also obtain a simpler proof of the bound Bn(α)� n1/d for a class of algebraic
numbers α that do not fall obviously into case S. We also note that a recent result
of Adamczewski et al. [1, 2] implies in particular that the binary digits of algebraic
real numbers cannot be generated by an automaton (see [3] for definitions). These
two results are the most important towards the conjectural normality in all bases of
algebraic numbers.

We now state some of the results proved in this article.

THEOREM 1. Let x, y > 0 be real numbers, which are assumed irrational unless
otherwise stated.

(i) If x + y is irrational, we have for all n� 0,

Bn(x + y)≤ Bn(x)+ Bn(y)+ 1. (3)

If x + y ∈N, then we replace Bn(x + y) by n + 1.
(ii) If xy is irrational, we have for all n� 0,

Bn(xy)≤ Bn(x) · Bn(y)+ log2bx + y + 1c. (4)

If y is an integer, we have Bn(xy)≤ Bn(x) · B(y)+ B(y).
(iii) For all integers A > 0, we have for all n� 0,

Bn(x) · Bn(A/x)≥ n − 1− blog2(x + A/x + 1)c. (5)

(iv) The three inequalities (3), (4) and (5) are sharp, up to a multiplicative factor for
the last two.

REMARK. When 0< x, y < 1, results slightly better than (3) and (4) are indicated
in [4, p. 157]: Bn(x + y)≤ Bn(x)+ Bn(y) and Bn(xy)≤ Bn(x) · Bn(y). On the other
hand, inequality (iii) seems to be new. The results proved in Theorem 1 are sufficient
for our purposes.

The sharpness of (3) (up to an additive constant) follows from the examples
x =

∑
k≥1 2−2k

and y =
∑

k≥1 2−3k
. We shall prove the sharpness of (4) and of (5)

(which are less obvious) in Section 4. Theorem 4 of that section answers a question
in [5].
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We obtain lower bounds of Bn(α) for certain classes of algebraic numbers α of the
same form as (2) above.

COROLLARY 2.

(i) Let α be an algebraic number in class S of degree d ≥ 2 and dominant coefficient
ad . We have that

Bn(α)≥ B(ad)
−1/dn1/d(1+ o(1)).

(ii) Let β be a positive irrational algebraic number, of degree d ≥ 2, such that there
exist two polynomials P, Q with positive integers coefficients and two positive
integers a, b such that P(β)= a + bQ(β)−1. Then,

Bn(β)≥ (B(p)B(q))
−1/δn1/δ(1+ o(1)),

where δ = deg(P Q) and p, q are the dominant coefficients of P and Q
respectively.

REMARKS. The lower bound in (i) is a small improvement on [5, Theorem 5.2]
(proved with 1+ log(ad) instead of our B(ad)). It is presented here in order to
illustrate the usefulness of the simple bounds in Theorem 1.

The most favorable case in (ii) is when P(X)Q(X)− aQ(X)− b is the minimal
polynomial of β, in which case δ is the degree of β over Q. For example, the
positive real root β of the polynomial 8x3

− 2x2
+ 4x − 3, which is irreducible

over Q, satisfies the equation 4β = 1+ 2(2β2
+ 1)−1 and therefore, by (ii), we have

Bn(β)≥ n1/3(1+ o(1)). Note that β does not belong to class S and [5, Theorem 7.1]
yields the weaker bound Bn(β)≥ 16−1/3 n1/3(1+ o(1)).

If we allow the case b = 0 in (ii), we recover (i) provided that the constant term of
P is less than a. However, the proof of (ii) requires that b > 0.

We now state a second application of Theorem 1. At first sight, it is not completely
improbable that certain powers of a transcendental number x might not be simply
normal when x itself is not simply normal in base 2: indeed, the rather unpredictable
‘mixing’ effect of carries might produce a smoothing ‘law of large powers’. However,
this is generally not the case as shown by the following result.

COROLLARY 3. There exists a transcendental real number ξ such that none of its
powers ξ j ( j ∈N?) is simply normal in base 2.

REMARK. Let α be a real irrational algebraic number which is not of the form
α = (a/b)1/d , a, b, d ∈N. Then, for all integers j ≥ 1, the number α j is again a
real irrational algebraic number and it is therefore expected that all of the powers of α
are normal in all bases.

PROOF. It is enough to produce transcendental numbers ξ such that, for example,
Bn(ξ)� log(n): inequality (4) implies that Bn(ξ

j )� log(n) j for all integers j ≥ 1,
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and thus the numbers ξ j all fail to be simply normal in base 2. Any one of the numbers
ξ =

∑
∞

n=1 a−bn
, with the integers a ≥ 2, b ≥ 2, is suitable. Its transcendence follows,

for instance, from Roth’s theorem when b ≥ 3 and from Mahler’s method when b = 2
(see [17]).

Incidentally, Kempner [12] was the first to provide a transcendence proof of these
numbers. When b = 2, an unusual and original proof, based on the counting of nonzero
digits of powers of ξ j , was recently given by Knight [13]; as noticed by Bailey et al.,
the lower bound (2) provides a proof in the same ‘digital’ spirit. 2

2. Warmup

In this short section, we provide a proof of the subadditivity and submultiplicativity of
the function B. We follow the presentation in [5].

2.1. Subadditivity of B Let m denote a positive integer written in base 2 as
(mk . . . m0)2 with mk = 1 and mi ∈ {0, 1}. Let L j denote the minimal integer `≥ 0
such that m j+` = 0. The usual rule of add with carry implies that

B(m + 2 j )= B(m)+ 1− L j ≤ B(m)+ 1.

If n is a positive integer written as n =
∑d
`=1 2 j` , then by successive applications

of the previous equality, we obtain

B(m + n) = B

(
m +

d∑
`=1

2 j`

)
≤ B

(
m +

d−1∑
`=1

2 j`

)
+ 1≤ B

(
m +

d−2∑
`=1

2 j`

)
+ 2

≤ · · · ≤ B

(
m +

0∑
`=1

2 j`

)
+ d = B(m)+ d = B(m)+ B(n).

2.2. Submultiplicativity of B We first remark that obviously B(2 j m)= B(m).
Therefore, with n =

∑d
`=1 2 j` ,

B(mn)= B

(
m

d∑
`=1

2 j`

)
≤

d∑
`=1

B(2 j`m)=
d∑
`=1

B(m)= B(m)B(n),

where we have used the subadditivity of B.

3. Proof of Theorem 1, parts (i), (ii) and (iii)

For all integers n ≥ 0, let xn = b2nxc, yn = b2n yc, sn = b2n(x + y)c and
pn = b2nxyc.

(i) For all n ≥ 0, we have xn + yn ≤ sn < xn + yn + 2, hence sn = xn + yn + zn
with zn ∈ {0, 1}. It follows that

B(sn)= B(xn + yn + zn)≤ B(xn)+ B(yn)+ B(zn).
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Let us suppose that x + y is irrational. Then, since

B(sn)= Bn(x + y), B(xn)= Bn(x), B(yn)= Bn(y) and B(zn)≤ 1,

we obtain

Bn(x + y)≤ Bn(x)+ Bn(y)+ 1.

If x + y ∈N, then Bn(x)+ Bn(y)≥ n because the sum of the nth digits after the
point of x and y is 1 (x, y are irrational numbers).

(ii) We now show the second inequality.
We first assume that x , y and xy are irrational. Since there exist two real numbers

zn and σn satisfying

x =
xn

2n + ρn, y =
yn

2n + σn and 0< ρn, σn <
1
2n ,

we have

0< xy −
xn yn

22n
= ρn

yn

2n + σn
xn

2n + ρnσn <
x + y + 1/2n

2n .

Furthermore, we have the binary expansion xn yn =
∑2n+n0
`=0 ε`2` where n0 ∈ Z

(depending only on x and y), ε` ∈ {0, 1} and ε2n+n0 = 1. For all n ≥−n0, we write

xn yn =

n−1∑
`=0

ε`2` +
2n+n0∑
`=n

ε`2` = an + 2nbn

with 0≤ an ≤ 2n
− 1. Thus, we obtain

0< xy −
bn

2n <
x + y + 1/2n

2n +
an

22n
≤

x + y + 1
2n . (6)

We now remark that

2n(pn + 1)= 2n(b2nxyc + 1) > b2nxcb2n yc = xn yn ≥ 2nbn,

which implies that pn > bn − 1 and, hence, pn ≥ bn (these are integers). Therefore,
comparing the bound

0< xy −
pn

2n <
1
2n

and the bound (6), we obtain that pn = bn + vn with vn ∈ {0, 1, . . . , bx + y + 1c}.
Finally, using the fact that B(vn)≤ log2bx + y + 1c and that B(xn yn)≥ B(bn)

(because B(xn yn)= B(an + 2nbn)= B(an)+ B(bn)≥ B(bn)), we obtain that

B(pn)= B(bn + vn) ≤ B(bn)+ B(vn)

≤ B(xn yn)+ log2bx + y + 1c

≤ B(xn) · B(yn)+ log2bx + y + 1c,
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which is nothing but (4) because B(pn)= Bn(xy) (here we use the fact that xy
is irrational).

We now suppose that x is irrational and that y = 2`1 + · · · + 2`k is an integer. Then,
by (i),

Bn(xy) = Bn(2`1 x + · · · + 2`k x)≤ Bn(2`1 x)+ · · · + Bn(2`k x)+ k

= k · Bn(2`1 x)+ k = Bn(x) · B(y)+ B(y).

This concludes the proof of (ii).

(iii) For all integer n ≥ 0, letting xn = b2nxc and yn = b2n A/xc, we have that

0< un = x −
xn

2n <
1
2n et 0< vn =

A

x
−

yn

2n <
1
2n .

(The inequalities for vn hold because A > 0.) Hence,

A = x ·
A

x
=

(
xn

2n + un

)
·

(
yn

2n + vn

)
=

xn yn

22n
+ vn

xn

2n + un
yn

2n + unvn

and

0< vn
xn

2n + un
yn

2n + unvn <
x + A/x + 1

2n .

For n�A,x 1, we have 1− (x + A/x + 1)/2n > 0 and, thus,{
xn yn

22n

}
=

{
A − vn

xn

2n − un
yn

2n − unvn

}
=

{
1− vn

xn

2n − un
yn

2n − unvn

}
> 1−

x + A/x + 1
2n

> 1−
1

2n−b1+log2(x+A/x+1)c
> 0.

(The fact that A is an integer is used to invoke the 1-periodicity of the fractional part
function {·}.) These inequalities imply that we have at least

B(xn yn)≥ n − 1− blog2(x + A/x + 1)c.

Since x and A/x are irrational, we have B(xn)= B(x) and B(yn)= B(A/x). The
submultiplicativity of B finally yields that

Bn(x) · Bn(A/x)≥ n − 1− blog2(x + A/x + 1)c.

https://doi.org/10.1017/S1446788708000591 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000591


102 T. Rivoal [8]

4. Proof of Theorem 1, part (iv)

Borel proved that almost all real numbers are normal in all bases [16, p. 98] and
thus the set of pairs of real numbers which are normal in base 2 is of full measure.
Hence, for almost all pairs of irrational numbers (x, y), inequality (4) is of the trivial
form 2n ≤ n2: therefore, we could expect to prove a stronger inequality. However, this
is not the case; the following examples show that there exist pairs (x, y) for which (4)
is optimal (up to a multiplicative constant) without further hypothesis on x and y. Let

K =

∞∑
n=1

1

22n and F =
∞∑

n=2

1
2Fn

,

where (Fn)n≥0 is the Fibonacci sequence defined by F1 = F2 = 1 and Fn+2 = Fn+1 +

Fn for n ≥ 1. Let φ = (1+
√

5)/2.

THEOREM 4. As n→+∞,

Bn(K )∼
log(n)
log(2)

and Bn(K
2)∼

log2(n)

2 log2(2)
,

as well as

Bn(F )∼
log(n)
log(φ)

and Bn(F
2)∼

log2(n)

2 log2(φ)
.

REMARKS. The powers of K are also considered in [14], where it is proved that their
binary expansions are automatic.

The result for F 2 answers the second question in [5, Section ‘Open problems’,
p. 27]. More generally, numerical computations suggest that, for all j ∈N?,

Bn(K
j )∼

log j (n)

j ! log j (2)
and Bn(F

j )∼
log j (n)

j ! log j (φ)
.

as n→+∞.

PROOF OF THEOREM 4. The statements for Bn(K ) and Bn(F ) are clear. We now
consider the cases of K 2. We have

K 2
=

( ∑
j=k≥1

+2
∑

j>k≥1

)
1

22 j+2k =

∞∑
n=2

1

22n + 2
∞∑

m=1

em

2m ,

where em is the number of ways of writing m as m = 2 j
+ 2k with j > k ≥ 1.

Obviously, by uniqueness of the binary expansion, we have em ∈ {0, 1}. Since the
sets P = {2 j , j ≥ 1} and Q = {2 j

+ 2k
− 1, j > k ≥ 1} have empty intersection,

K 2
=

∑
n∈PtQ

1
2n .

https://doi.org/10.1017/S1446788708000591 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000591


[9] On the bits counting function of real numbers 103

Let P t Q = R = {R1, R2, . . .}: by definition, Bn(K 2)= #{k : Rk ≤ n}. For
all `≥ 1, there exist exactly `− 1 elements in Q ∩ {2` + 1, . . . , 2`+1

}, which are
of the form 2` + 2k

− 1 with 1≤ k < `. Hence, the set Q ∩ {1, 2, . . . , 2n+1
}

has
∑n
`=1(`− 1)= n(n − 1)/2 elements. Furthermore, P ∩ {1, 2, . . . , 2n+1

} = n,
hence R ∩ {1, 2, . . . , 2n+1

} has kn = n(n + 1)/2 elements, whose largest is 2n+1,

that is, Rkn = 2n+1.
Now let j ≥ 1 be any integer: there exists an integer n ≥ 0 such that j ∈ {kn, kn +

1, . . . , kn+1}. We then have

2(n + 1)
(n + 2)

=
log2(Rkn )

2

kn+1
≤

log2(R j )
2

j
≤

log2(Rkn+1)
2

kn
=

2(n + 2)2

n(n + 1)
,

which implies that lim j→+∞ log(R j )
2/j = 2 log2(2) and hence that

#{k : Rk ≤ n} = #{k : log2(Rk)≤ log2(n)} ∼
log2(n)

2 log2(2)
,

as desired.
For F 2, we adapt the previous proof by using the fact that every positive integer

N can be written uniquely in the form N = Fn1 + Fn2 + · · · + Fnk , where the set
{1< n1 < n2 < · · ·< nk} does not contain two consecutive integers. This expansion
is known as Zeckendorf decomposition [22], Z -decomposition in short. We have

F 2
=

( ∑
j=k≥2

+ 2
∑
j=k+1

k≥2

+ 2
∑
j≥k+2
k≥2

)
1

2F j+Fk

=

∞∑
n=2

1
2Fn+Fn

+

∞∑
n=2

1

2Fn+1+Fn−1 +
∑
j≥k+2
k≥2

1

2F j+Fk−1

=

4∑
n=2

1

22Fn
+

∞∑
n=5

1

22Fn
+

∞∑
n=4

1

2Fn−1 +
∑
j≥k+2
k≥2

1

2F j+Fk−1 . (7)

We now show that the terms of the three infinite sums in (7) are pairwise distinct and
thus that these three series provides the binary expansion of F 2, up to the first finite
sum, which implies a possible finite number of harmless carries.

For this, we note that the Z -decomposition of 2Fn + 1 is Fn+1 + Fn−2 +

F2 for n ≥ 5 and that Fm (m ≥ 4) and F j + Fk ( j ≥ k + 2, k ≥ 2) are already
Z -decompositions. We deduce that the equations

2Fn = Fm − 1(n ≥ 5, m ≥ 4), 2Fn = F j + Fk − 1(n ≥ 5, j ≥ k + 2, k ≥ 2) and

Fm = F j + Fk(m ≥ 4, j ≥ k + 2, k ≥ 2)

have no solution, which proves the above claim.
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Thus, we have

F 2
=

4∑
n=2

1

22Fn
+

∑
m∈A1tA2tA3

1
2m

where the sets

A1 = {2Fn, n ≥ 5}, A2 = {Fm − 1, m ≥ 4} and

A3 = {F j + Fk − 1, j ≥ k + 2, k ≥ 2}

have pairwise empty intersections. The rest of the proof is now similar to that of K 2.
We note that for `≥ 4, the set

A3 ∩ {F` + 1, F` + 2, . . . , F`+1}

= {F` + F3 − 1, F` + F4 − 1, . . . , F` + F`−2 − 1}

has `− 4 elements while

A1 ∩ {F` + 1, F` + 2, . . . , F`+1} and A2 ∩ {F` + 1, F` + 2, . . . , F`+1}

have (at most) one element. It follows that Bn(F 2)∼ log2(n)/2 log2(φ). 2

We now consider the optimality of (5). It will be enough to produce an irrational
number E > 0 such that Bn(E )�

√
n and Bn(1/E )�

√
n: such a number was

mentioned in [5] (for another purpose) but no proof of the growth of Bn(E ) was
provided. We therefore give one below. Starting from the binary expansion n =
(x p . . . x1x0)2 of an integer n, we define the sets S = {n ∈N : ∀ j ≥ 0, x2 j = 0} and
T = {n ∈N : ∀ j ≥ 0, x2 j+1 = 0} (which satisfy S ∩ T = {0} and 2T = S) and then the
real numbers

E =
∞∏

n=0

(
1+

1

222n

)
=

∑
s∈S

1
2s and Ê =

∞∏
n=0

(
1+

1

222n+1

)
=

∑
t∈T

1
2t .

Since any integer n can be written exactly once under the form n = s + t with
(s, t) ∈ S × T ,

E Ê =
∑

(s,t)∈S×T

1
2s+t =

∞∑
n=0

1
2n = 2.

The inverse of E is thus simply Ê /2 and it remains to check the property (which
is probably well known, as it is given in [5] without proof) that Bn(E )�

√
n and

Bn(Ê )�
√

n. Only the upper bounds are useful for our purposes.

PROPOSITION 5. As n→+∞, we have that

lim inf
n→+∞

Bn(E )
√

n
≥ 2

√
2/3, lim sup

n→+∞

Bn(E )
√

n
≤
√

2
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and

lim inf
n→+∞

Bn(Ê )
√

n
≥ 2/
√

3, lim sup
n→+∞

Bn(Ê )
√

n
≤ 2.

In particular, for all ε > 0 and all n�ε 0, we have Bn(E ) · Bn(Ê /2)≤ (2
√

2+ ε)n.

REMARK. These inequalities are probably not sharp.

PROOF OF PROPOSITION 5. Let us write the elements of the set

S = {0, 2, 8, 10, 32, 34, . . .} as {S0 < S1 < S2 < . . .}

and those of

T = {0, 1, 4, 5, 16, 17, . . .} as {T0 < T1 < T2 < . . .}.

Clearly,

lim inf
n→+∞

Bn(E , n)
√

n
= lim sup

k→+∞

Sk

k2 and lim sup
n→+∞

Bn(E , n)
√

n
= lim inf

k→+∞

Sk

k2

and similar expressions for Ê and Tk . It can be easily proved that

Sk =

∞∑
j=0

(⌊
k

2 j

⌋
mod 2

)
22 j+1

from which it follows that S2n = 22n+1 and S2n−1 = (2/3)(4n
− 1). For all k ∈

{2n, . . . , 2n+1
− 1}, we thus have

S2n

(2n−1 − 1)2
≤

Sk

k2 ≤
S2n+1−1

22n
.

Hence,

lim inf
k→+∞

Sk

k2 ≥ lim
n→+∞

S2n

(2n+1 − 1)2
=

1
2

and lim sup
k→+∞

Sk

k2 ≤ lim
n→+∞

S2n+1−1

(2n)2
=

8
3
.

Since T = S/2, we also deduce that

lim inf
k→+∞

Tk

k2 ≥
1
4

and lim sup
k→+∞

Tk

k2 ≤
4
3
.

This completes the proof. 2
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The transcendence of E and Ê can be proved thanks to Mahler’s method: the proof
can be found in an article of Blanchard and Mendès-France [6]. It is, in fact, easy
to produce other pairs of numbers which are the inverse of each other and whose
binary expansions are explicitly known: given any given subset A of N, we can use
the identity ∏

n∈A

(1+ z2n
)×

∏
n∈N\A

(1+ z2n
)=

∏
n∈N

(1+ z2n
)=

1
1− z

.

This suggests looking at the inverse of real numbers with few 1’s in base 2: if
ψ :N→N is strictly increasing, of inverse ψ [−1], let Dψ =

∑
∞

n=0 2−ψ(n):

Bn(1/Dψ )≥
n

ψ [−1](n)
(1+ o(1)).

A related problem, due to Mendès-France, is to prove (or disprove) the existence of
an irrational number simply normal in base b whose inverse is not simply normal or
numbers with this property with respect to normality in base b or absolute normality.
Clearly, the answer is positive in the case of simple normality in base 2 if we
allow rational numbers (for example, 3= (11)2 and 1/3= (0.010 101 010 10 . . .)2).
It would be equally interesting to prove (or disprove) the existence a real number
x such that both x and 1/x are simply normal in base b (or b-normal or normal in
all bases).

5. Proof of Corollary 2

(i) Since α is of degree d ≥ 2, the number |a0|/α is irrational, as are the numbers
a jα

j−1 for those j ∈ {2, . . . , d} such that a j 6= 0. Since

|a0|α
−1
= a1 + a2α + · · · + adα

d−1,

the various inequalities in Theorem 1 imply that

Bn(|a0|α
−1) ≤ d + B(a1)+ Bn(a2α)+ · · · + Bn(adα

d−1)

≤ d + B(a1)+ B(a2)(Bn(α)+ 1)+ · · · + B(ad)(Bn(α
d−1)+ 1)

≤ B(ad)Bn(α)
d−1(1+ o(1)).

The last inequality holds because Bn(α)→+∞ as n→+∞. Furthermore, we have
that

Bn(|a0|α
−1)≥

n

Bn(α)
− c0,

with c0 > 0 independent of n. Therefore

B(ad)Bn(α)
d(1+ o(1))+ c0 Bn(α)≥ n
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and we finally obtain that

Bn(α)≥ B(ad)
−1/dn1/d(1+ o(1))

as desired.

(ii) Since a and b are positive integers,

Bn(P(β))= Bn(a + b/Q(β))≥ Bn(b/Q(β))− c1 ≥
n

Bn(Q(β))
− c2

where c1 > 0, c2 > 0 do not depend on n. (In the right most inequality, we use the fact
that b > 0.) Hence,

(Bn(P(β))+ c2)Bn(Q(β))≥ n

and essentially the same argument as above yields that

B(p)Bn(β)
deg(P)B(q)Bn(β)

deg(Q)
≥ n(1+ o(1)).

The assertion follows.

6. Binary expansion of roots of analytical functions

One might wonder how to extend the lower bounds in Corollary 2 to the case of
roots of analytical functions. This could provide nontrivial information for numbers
such as 1− e and π which are solutions of the equations log(1− z)= 1 and sin(z)=
0. Such results exist but are far from satisfactory; therefore, we quote them without
details.

Let F be a power series of radius of convergence R > 0,

F(z)=
∞∑

n=1

anzbn ,

with an = pn/qn ∈Q+ and (bn)n≥1 a strictly increasing sequence of integer. Let
dn = lcm(q0, q1, . . . , qn), ω(n)= log2(dn) and∣∣∣∣ ∞∑

n=k+1

anzbn

∣∣∣∣≤ 2−�z(k),

where the function k 7→�z(k) is assumed to be strictly increasing, with inverse
k 7→�

[−1]
z (k).

THEOREM 6. For any rational ρ > 0, let ξρ denote the unique real number ξ ∈ [0, R[
such that F(ξ)= ρ. Then, with k =�[−1]

ξρ
(n),

Bn(ξρ)≥ B(dkak)
−1/k
· (n − ω(k))1/k(1+ o(n)).

The proof is a straightforward adaptation of that of [5, Theorem 5.2]. Nothing
interesting occurs if bn grows slower than cn . With an = 1 and bn = 2n2

, we have
Bn(ξρ)� exp(cρ

√
log(n)). When an = 1, the faster bn grows, the closer Bn(ξρ) is

to n.
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7. Further links between diophantine approximation and normality

We conclude this article with some reflections that could lead, in certain cases, to
refinements of (1):

Bn(x)≥
log(n)

log(µx + ε)
+O(1)

for n�ε 0 for irrational numbers x with finite irrational exposant µx (that is, non-
Liouville numbers). We remark that the proof of (1) only partially uses the strength of
the irrationality measure |x − p/q| ≥ q−µx−ε (valid for all rational p/q with q �ε 1).
Indeed, we used this measure only when q is a power of 2. Therefore, it is enough to
use an irrationality measure of the following form: given an irrational number x and
an integer b ≥ 2, there exists νx,b ≥ 1 such that for all m�ε 0∣∣∣∣x − p

bm

∣∣∣∣≥ 1

b(νx,b+ε)m
. (8)

We deduce a small improvement of (1):

Bn(x)≥
log(n)

log(νx,2 + ε)
+O(1).

For example, Ridout’s theorem yields να,b = 1 for all irrational algebraic numbers α
and all b ≥ 2, where Roth’s theorem only yields να,b ≤ 2. The situation is worse for
numbers such as e or π because, for all b ≥ 2, we only know the trivial upper bounds
νe,b ≤ µe = 2 and νπ,b ≤ µπ ≤ 8.1: we cannot improve on the lower bounds for Bn(e)
and Bn(π) provided by (1) when b = 2. On a more positive note, the author recently
proved in [19] that for the numbers x = log(1− 1/b), we have νx,|b|→ 1 as b→±∞
but this is clearly not as good as Ridout’s theorem for algebraic numbers.

In the most favorable case where νx,2 = 1, the presence of ε rules out the possibility
of getting something better than Bn(x)� log(n). However, as we now show, an
improvement would occur if, in (8), we could replace q1+ε by a more explicit function
of q . It is not difficult to prove that, given a positive-valued and nonincreasing function
ψ defined on the powers (bm)m≥0, for almost all x , the equation∣∣∣∣x − p

bm

∣∣∣∣< ψ(bm)

bm (9)

admits finitely many solutions (p, m) ∈ Z×N if the series
∑

m≥0 ψ(b
m) converges

(this result is a particular case of more general results: see [10, Ch. 2]). The proof runs
as follows: we restrict x ∈ [0, 1[ and consider the set

Em = [0, 1[
⋂ bm

−1⋃
p=0

]
p − ψ(bm)

bm ,
p + ψ(bm)

bm

[
.
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The set E of those x ∈ [0, 1[ such that (9) admits infinitely many solutions (p, m) is
E =

⋂
n≥0

⋃
m≥n Em and to conclude it is enough to prove that the Lebesgue measure

λ(E) of E is 0. However,

λ(E)≤
∞∑

m=n
λ(Em)≤ 2

∞∑
m=n

ψ(bm)→ 0

as n→+∞ by hypothesis.
The converse is also true but more difficult to prove: this a consequence of a

theorem of Duffin–Schaeffer [9, p. 245], see also [10, Theorem 2.9]. Hence, with
ψ(q)= 1/(log(q) log log(q)), (9) admits infinitely many solutions and, as pointed
out by Harman, this implies that, for almost all x , there exist infinitely many n such
that Bn+m(x)= Bn(x)+ m for m = bλ log2(n)c when λ= 1 and only finitely many n
when λ > 1.

On the other hand, for all ρ > 1, (9) admits almost surely only finitely many
solutions with ψ(q)= 1/ log(q)ρ and we can also draw some conclusions on Bn(x)
from this when b = 2.

PROPOSITION 7. Let x be an irrational number. We suppose that there exists
a constant ρ > 1 (depending at most on x) such that, for all p ∈ Z and m ∈N
with m� 0, ∣∣∣∣x − p

2m

∣∣∣∣≥ 1
2m logρ(2m)

. (10)

Then,
Bn(x)≥

n

ρ log(n)
(1+ o(1)). (11)

REMARK. Since for almost all x , estimate (10) holds, we also have that, for almost all
x , (11) holds. However, we already know that, for almost all x , the much stronger
estimate Bn(x)∼ n/2 holds. Furthermore, it seems difficult to deduce something
better than (11) from (10) without further information on x . Thus, general methods
based on diophantine inequalities such as (10) are probably not strong enough to prove
the normality of natural constants. On the other hand, estimates of the form (10) might
be simpler to prove than normality.

PROOF. We denote by pk2−nk the truncations of the binary expansion
∑
∞

k=1 2−nk

of x . For all k� 0,

1
2nk logρ(2nk )

≤

∣∣∣∣x − pk

2nk

∣∣∣∣≤ 1

2nk+1−1 ,

which implies that

nk+1 ≤ nk + ρ log(nk)+ ρ log log(2)+ 1 for k ≥ k0.

Clearly, we have nk ≤ uk where uk is defined by

uk0 = nk0 and uk+1 = uk + ρ log(uk)+ ρ log log(2)+ 1
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and it will be sufficient to bound uk . We remark that in the absence of further
information on x , bounding uk is in fact the best we can do here since we cannot
exclude that nk+1 ≥ nk + ρ log(nk)+O(1).

Below we prove the following fact. For any a ≥ 1 and b > 0, let vk be defined
by v1 = a and vk+1 = vk + log(vk)+ b (the conditions on a and b ensure that vk is
defined for all k ≥ 1). Then there exists a constant d = d(a, b) such that

vk ≤ k log(k + d)+ k log log(k + d)+ bk. (12)

Applying (12) to vn = un+k0/ρ (with a suitable b), we obtain that uk ≤ ρ k log(k)+
g(k) with g(k)=O(k log log(k)) for k ≥ 1. Hence,

Bn(x) = #{k ≥ 1 : nk ≤ n}

≥ #{k ≥ 1 : uk ≤ n}

≥ #{k ≥ 1 : ρ k log(k)+ g(k)≤ n} ∼ R(n)

where R is the inverse function of k 7→ ρ k log(k)+ g(k). Since R(k)∼ k/(ρ log(k))
as k→+∞, Equation (11) follows.

It remains to prove (12). We choose d such that firstly

log(d + 1)+ b + log log(d + 1)≥ a (13)

and, secondly, for all k ≥ 1,

b + log log(d + k)≤ log(d + k) (14)

(obviously, this is possible if d is large enough with respect to b). The inequality
log(1+ x)≤ x for all x >−1 and (14) imply that, for all k ≥ 1,

log
(

1+
b + log log(k + d)

log(k + d)

)
≤ 1. (15)

By calculus, one proves that

k log(k + d)+ log(k)+ 1≤ (k + 1) log(k + d + 1). (16)

Inequalities (15) and (16) will be implicitly used below. We now proceed by induction.
We first remark that (13) implies that (12) is true for k = 1. We suppose that (12) is
true for k. Then,

vk+1 ≤ k log(k + d)+ k log log(k + d)+ bk

+ log(k log(k + d))+ log
(

1+
b + log log(k + d)

log(k + d)

)
+ b

≤ k log(k + d)+ log(k)+ 1+ (k + 1) log log(k + d)+ b(k + 1)

≤ (k + 1) log(k + d + 1)+ (k + 1) log log(k + d + 1)+ b(k + 1),

which completes the proof of the induction. 2
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