OPERATORS ON $C_{0}(L, X)$ WHOSE RANGE DOES NOT CONTAIN c_{0}

JARNO TALPONEN

(Received 27 November 2007)

Abstract

This paper contains two results: (a) if $\mathrm{X} \neq\{0\}$ is a Banach space and (L, τ) is a nonempty locally compact Hausdorff space without isolated points, then each linear operator $T: C_{0}(L, \mathrm{X}) \rightarrow C_{0}(L, \mathrm{X})$ whose range does not contain an isomorphic copy of c_{00} satisfies the Daugavet equality $\|\mathbf{I}+T\|=1+\|T\|$; (b) if Γ is a nonempty set and X and Y are Banach spaces such that X is reflexive and Y does not contain c_{0} isomorphically, then any continuous linear operator $T: c_{0}(\Gamma, \mathrm{X}) \rightarrow \mathrm{Y}$ is weakly compact.

1991 Mathematics subject classification: primary 46B20; secondary 46B28.
Keywords and phrases: Daugavet equation, weakly compact operators, vector-valued function spaces.

1. Introduction

In what follows X, Y and Z are real Banach spaces different from $\{0\}, L$ is a nonempty locally compact Hausdorff space and $C_{0}(L, \mathrm{X})$ denotes the $\|\cdot\|_{\infty}$-normed Banach space of X-valued continuous functions on L vanishing at infinity. This work is related to the result due to Cembranos [2] that if K is an infinite compact and X is an infinitedimensional Banach space, then the Banach space $C(K, \mathrm{X})$ of X -valued continuous functions on K contains a complemented copy of c_{0}. See also the related paper [1] where the Dieudonné property of $C(K, \mathrm{X})$ was studied.

Going in another direction, we study continuous linear operators of the type $(*) T: C_{0}(L, \mathrm{X}) \rightarrow \mathrm{Y}$, where Y does not contain c_{0} isomorphically. There is a structural disparity between spaces $C_{0}(L, \mathrm{X})$ and Y , since typically the former space contains copies of c_{0} in abundance. This difference has a strong impact on the properties of T. Namely, it turns out that the range of T in Y is small in some sense.

If L does not contain isolated points, then an operator $T: C_{0}(L, \mathrm{X}) \rightarrow C_{0}(L, \mathrm{X})$ of type $(*)$ satisfies the Daugavet type equality $\|\mathbf{I}+T\|=1+\|T\|$ (see Theorem 2.1). See [5] for a recent discussion on matters related to the Daugavet property.

If L is discrete, X is reflexive and c_{0} is not contained in Y isomorphically, then an operator $T: C_{0}(L, \mathrm{X}) \rightarrow \mathrm{Y}$ is weakly compact (see Theorem 2.3).

[^0]Preliminaries. Here X and Y denote real Banach spaces. The closed unit ball and the unit sphere of X are denoted by \mathbf{B}_{X} and \mathbf{S}_{X}, respectively. An identity mapping is denoted by \mathbf{I}. An operator $T: \mathrm{X} \rightarrow \mathrm{Y}$ is weakly compact if $\overline{T\left(\mathbf{B}_{\mathrm{X}}\right)}$ is weakly compact. If $\mathrm{X} \neq\{0\}$, then we say that X is nontrivial. For given sets $A \subset B$ the mapping $\chi_{A}: B \rightarrow\{0,1\}$ is determined by $\chi_{A}(t)=1$ if and only if $t \in A$. We refer to $[3,4,6]$ for suitable background information including definitions and basic results.

2. Results

THEOREM 2.1. Let X be a nontrivial Banach space and (L, τ) a nonempty locally compact Hausdorff space without isolated points. Then each linear operator $T: C_{0}(L, \mathrm{X}) \rightarrow C_{0}(L, \mathrm{X})$ whose range does not contain an isomorphic copy of c_{00} satisfies the Daugavet equality

$$
\|\mathbf{I}+T\|=1+\|T\|
$$

Let us first make some preparations before giving the proof. It is easy to see that the range of T contains c_{00} isomorphically if and only if the closure of the range contains c_{0}.

The assumption that L does not contain isolated points cannot be removed. Indeed, if L is not a singleton, $t_{0} \in L$ is an isolated point and X contains no isomorphic copy of c_{0}, then the linear operator

$$
T: C_{0}(L, \mathrm{X}) \rightarrow \mathrm{X} ; \quad F \mapsto-\chi_{\left\{t_{0}\right\}}(\cdot) F(\cdot)
$$

is of type $(*)$ and satisfies $\|T\|=\|\mathbf{I}+T\|=1$.
Theorem 2.1 holds analogously for $T: C B(L, \mathrm{X}) \rightarrow C B(L, \mathrm{X})$, essentially with the same proof. Here $C B(L, \mathrm{X})$ is the $\|\cdot\|_{\infty}$-normed Banach space of X -valued bounded continuous functions on L.

For a linear operator $T: C_{0}(L, \mathrm{X}) \rightarrow \mathrm{Y}$ we denote

$$
\operatorname{osc}_{T}(A)=\sup \left\{\|T F\|: F \in \mathbf{B}_{C_{0}(L, \mathrm{X})}, L \backslash A \subset F^{-1}(0)\right\} \quad \text { for } A \subset L
$$

Lemma 2.2. Let $T: C_{0}(L, X) \rightarrow \mathrm{Y}$ be a linear operator, where Y does not contain c_{0} isomorphically. Suppose that $\left(V_{n}\right)_{n \in \mathbb{N}}$ is a sequence of pair-wise disjoint nonempty open subsets of L. Then $\operatorname{osc}_{T}\left(V_{n}\right) \rightarrow 0$ as $n \rightarrow 0$.
Proof. By passing to a subsequence it suffices, without loss of generality, to show that $\inf _{n \in \mathbb{N}} \operatorname{osc}_{T}\left(V_{n}\right)=0$. Indeed, assume to the contrary that there is some $d>0$ such that $\operatorname{osc}_{T}\left(V_{n}\right) \geq d$ for all $n \in \mathbb{N}$. This means that one can find a sequence

$$
\left(F_{n}\right)_{n \in \mathbb{N}} \subset\left(\frac{1}{d}+1\right) \mathbf{B}_{C_{0}(L, \mathrm{X})}
$$

such that F_{n} is supported in V_{n} and $\left\|T\left(F_{n}\right)\right\|=1$ for $n \in \mathbb{N}$. Note that for each finite subset $I \subset \mathbb{N}$ it holds that

$$
\sum_{i \in I} F_{i} \in\left(\frac{1}{d}+1\right) \mathbf{B}_{C_{0}(L, \mathrm{X})}
$$

as V_{n} are pair-wise disjoint. Since T is linear and continuous, we obtain that

$$
\sup _{\epsilon, I}\left\|\sum_{i \in I} T\left(\epsilon_{i} F_{i}\right)\right\| \leq\left(\frac{1}{d}+1\right)\|T\|,
$$

where the supremum is taken over all signs $\epsilon: \mathbb{N} \rightarrow\{-1,1\}$ and finite subsets $I \subset \mathbb{N}$.
Recall the well-known result due to Bessaga and Pelczynski (see for example [4, page 202]) that in a Banach space Y a sequence $\left(y_{n}\right) \subset S_{\mathrm{Y}}$ is equivalent to the standard unit vector basis of c_{0} if and only if

$$
\sup _{\epsilon, I}\left\|\sum_{i \in I} \epsilon_{i} y_{i}\right\|<\infty
$$

(supremum taken as above). By placing $y_{i}=T\left(F_{i}\right)$ we obtain that the range of T contains c_{00} isomorphically, which contradicts the assumptions. Hence, $\inf _{n \in \mathbb{N}} \operatorname{osc}_{T}\left(V_{n}\right)=0$.

Proof of Theorem 2.1. Recall that as (L, τ) is a locally compact Hausdorff space it is completely regular, that is, for each closed set $C \subset L$ and $t \in L \backslash C$ there is a continuous map $s: L \rightarrow \mathbb{R}$ such that $s(C)=\{0\}$ and $s(t)=1$.

Suppose that there are no isolated points in (L, τ). Let $T: C_{0}(L, \mathrm{X}) \rightarrow C_{0}(L, \mathrm{X})$ be a linear operator. If the operator norm of T is 0 or ∞, then the Daugavet equation holds trivially, so that we may concentrate on the case $\|T\|=C \in(0, \infty)$. Let $k \in \mathbb{N}$. Fix $F \in \mathbf{S}_{C_{0}(L, \mathrm{X})}$ such that $G=T F$ satisfies $\|G\|>C-(1 / k)$. Consider the open subspace $U=\{t \in L:\|G(t)\|>C-(1 / k)\}$ of L.

We can pick a sequence $\left(V_{n}\right)_{n \in \mathbb{N}} \subset U$ of pair-wise disjoint open subsets as follows. Clearly \bar{U} is also a locally compact (even compact) Hausdorff space which does not contain isolated points. Hence, U itself is not a singleton, and we may take two points $t_{0}, t_{1} \in U, t_{0} \neq t_{1}$. Since U is a Hausdorff space, there are disjoint open neighbourhoods $U_{0}, U_{1} \subset U$ of t_{0} and t_{1}, respectively. By repeating the same reasoning, pick $t_{10}, t_{11} \in U_{1}, t_{10} \neq t_{11}$ and disjoint open neighbourhoods U_{10}, $U_{11} \subset U_{1}$ of t_{10} and t_{11}, respectively. Similarly, pick $t_{110}, t_{111} \in U_{11}, t_{110} \neq t_{111}$ and the corresponding disjoint open neighbourhoods $U_{110}, U_{111} \subset U_{11}$. Proceeding in this manner yields a sequence of pair-wise disjoint open subsets by letting $V_{n}=U_{s}$, $s \in\{1\}^{n} \times\{0\}$ for $n \in \mathbb{N}$.

Since $c_{0} \not \subset \overline{T\left(C_{0}(L, \mathrm{X})\right)}$ we obtain, by using Lemma 2.2, that $\operatorname{osc}_{T}\left(V_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Fix $n \in \mathbb{N}$ such that $\operatorname{osc}_{T}\left(V_{n}\right)<(1 / k)$. Let $u_{0} \in V_{n}$. By using the complete regularity of L one can find a continuous map $s: L \rightarrow[0,1]$ such that $s\left(L \backslash V_{n}\right)=\{0\}$ and $s\left(u_{0}\right)=1$. Observe that the mappings $s(\cdot) F(\cdot)$ and $\left(s(\cdot) / \max \left(1,\|G(\cdot)\|_{\mathrm{X}}\right)\right) G(\cdot)$ are elements of $\mathbf{B}_{C_{0}(L, X)}$. Hence,

$$
\begin{equation*}
\|T(s(\cdot) F(\cdot))\|_{C_{0}(L, \mathrm{X})} \leq \frac{1}{k} \quad \text { and }\left\|T\left(\frac{s(\cdot)}{\max \left(1,\|G(\cdot)\|_{\mathrm{X}}\right)} G(\cdot)\right)\right\|_{C_{0}(L, \mathrm{X})} \leq \frac{1}{k} \tag{2.1}
\end{equation*}
$$

by the definition of $\operatorname{osc}_{T}\left(V_{n}\right)$. Note that

$$
\left\|(1-s(t)) F(t)+\frac{s(t)}{\max \left(1,\|G(t)\|_{\mathrm{X}}\right)} G(t)\right\|_{\mathrm{X}} \leq(1-s(t))\|F(t)\|_{\mathrm{X}}+s(t) \leq 1
$$

for all $t \in L$. Hence,

$$
E(\cdot) \doteq(1-s(\cdot)) F(\cdot)+\frac{s(\cdot)}{\max (1,\|G(\cdot)\| \mathrm{X})} G(\cdot)
$$

defines an element of $\mathbf{B}_{C_{0}(L, \mathrm{X})}$. Note that E is a kind of interpolation of F and G.
Observe that

$$
\|G-T(E)\| \leq \frac{2}{k}
$$

according to (2.1), and that

$$
\begin{aligned}
\|E+G\|_{C_{0}(L, \mathrm{X})} & \geq\left\|(E+G) u_{0}\right\|_{\mathrm{X}}=\left\|\frac{s\left(u_{0}\right)}{\left\|G\left(u_{0}\right)\right\|_{\mathrm{X}}} G\left(u_{0}\right)+G\left(u_{0}\right)\right\|_{\mathrm{X}} \\
& =1+\left\|G\left(u_{0}\right)\right\|_{\mathrm{X}}>1+C-\frac{1}{k}
\end{aligned}
$$

Thus,

$$
\|\mathbf{I}+T\| \geq\|E+T(E)\| \geq\|E+G\|-\|G-T(E)\|>1+C-\frac{3}{k}
$$

and by letting $k \rightarrow \infty$ we obtain that $\|\mathbf{I}+T\| \geq 1+C=1+\|T\|$. By the triangle inequality $\|\mathbf{I}+T\| \leq 1+\|T\|$ and we have the claim.

Let us recall a few classical results due to James which are applied here frequently: a closed convex subset $C \subset \mathbf{X}$ is weakly compact if and only if each $f \in \mathbf{X}^{*}$ attains its supremum over C, and X is reflexive if and only if \mathbf{B}_{X} is weakly compact (see, for example, [4, Chapter 3]).

THEOREM 2.3. Let Γ be a nonempty set and X , Y be Banach spaces such that X is reflexive and Y does not contain c_{0} isomorphically. Then any continuous linear operator $T: c_{0}(\Gamma, \mathrm{X}) \rightarrow \mathrm{Y}$ is weakly compact.

The above result holds similarly for $\ell^{\infty}(\Gamma, X)$ in place of $c_{0}(\Gamma, X)$, essentially with the same proof. Note that the operators $\mathbf{I}: c_{0}(\mathbb{N}, \mathrm{X}) \rightarrow c_{0}(\mathbb{N}, \mathrm{X})$ and $T: c_{0}(\mathbb{N}, \mathrm{Y}) \rightarrow \mathrm{Y} ;\left(y_{n}\right) \mapsto\left(y_{1}, 0,0, \ldots\right)$ are not weakly compact for any nontrivial X and nonreflexive Y according to the James characterization of reflexivity. Hence, neither of the assumptions about the reflexivity or the noncontainment of c_{0} can be removed.

Proof of Theorem 2.3. Let $T: c_{0}(\Gamma, \mathrm{X}) \rightarrow \mathrm{Y}$ be a continuous linear operator such that Y does not contain c_{0}. One may write $c_{0}(\Gamma, \mathrm{X})=C_{0}(\Gamma, \mathrm{X})$ isometrically where Γ on the right-hand side is interpreted as a discrete topological space.

We claim that the sum

$$
\sum_{\gamma \in \Gamma} \operatorname{osc}_{T}(\{\gamma\})
$$

is defined and finite. Indeed, otherwise one can extract pair-wise disjoint (open) subsets $\Gamma_{n} \subset \Gamma, n \in \mathbb{N}$, such that

$$
\sum_{\gamma \in \Gamma_{n}} \operatorname{osc}_{T}(\{\gamma\}) \geq 1
$$

for $n \in \mathbb{N}$. However, since $c_{0} \not \subset \mathrm{Y}$, Lemma 2.2 yields that this case does not occur. Thus there exists a sequence $\left(\gamma_{n}\right)_{n \in \mathbb{N}} \subset \Gamma$ such that $\operatorname{osc}_{T}\left(\Gamma \backslash\left\{\gamma_{n}\right\}_{n \leq k}\right) \rightarrow 0$ as $k \rightarrow \infty$.

In order to verify the statement of the theorem we must show that $\overline{T\left(\mathbf{B}_{c_{0}(\Gamma, \mathrm{X})}\right)}$ is weakly compact. In doing this we apply the James characterization of weakly compact sets. Fix $f \in \mathrm{Y}^{*}$. It suffices to show that f attains its supremum over $\overline{T\left(\mathbf{B}_{c_{0}(\Gamma, \mathrm{X})}\right)}$. Observe that $f \circ T$ defines an element of $C_{0}(\Gamma, \mathrm{X})^{*}$. For each $k \in \mathbb{N}$ define a contractive linear projection

$$
P_{k}: c_{0}(\Gamma, \mathrm{X}) \rightarrow c_{0}(\Gamma, \mathrm{X}) \quad \text { by } P_{k} f(\cdot)=\chi\left\{\gamma_{n}\right\}_{n \leq k}(\cdot) f(\cdot)
$$

Put $g_{k}=f \circ T \circ P_{k}$ and $\mathrm{Z}_{k}=P_{k}\left(c_{0}(\Gamma, \mathrm{X})\right)$ for $k \in \mathbb{N}$. Note that g_{k} restricted to Z_{k} satisfies $\left.g_{k}\right|_{\mathrm{Z}_{k}} \in \mathrm{Z}_{k}^{*}$, where $\mathrm{Z}_{k}^{*}=\ell^{1}\left(\left\{\gamma_{n}\right\}_{n \leq k}, \mathrm{X}^{*}\right)$ isometrically for $k \in \mathbb{N}$. Clearly $\left.g_{k+l}\right|_{\mathrm{Z}_{k}}=\left.g_{k}\right|_{\mathrm{Z}_{k}}$ for $k, l \in \mathbb{N}$. Hence, there is a sequence $\left(x_{n}^{*}\right)_{n \in \mathbb{N}} \subset \mathrm{X}^{*}$ such that

$$
\begin{equation*}
g_{k}\left(\sum_{n=1}^{k} \chi_{\left\{\gamma_{n}\right\}}(\cdot) y_{n}\right)=\sum_{n=1}^{k} x_{n}^{*}\left(y_{n}\right) \tag{2.2}
\end{equation*}
$$

for $\sum_{n=1}^{k} \chi_{\left\{\gamma_{n}\right\}} y_{n} \in \mathrm{Z}_{k}, k \in \mathbb{N}$.
Observe that since X is reflexive, according to the James characterization of reflexivity there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \mathbf{S}_{\mathrm{X}}$ such that $x_{n}^{*}\left(x_{n}\right)=\left\|x_{n}^{*}\right\|$ for $n \in \mathbb{N}$. It follows that

$$
\begin{equation*}
\sum_{n=1}^{k} x_{n}^{*}\left(x_{n}\right)=\left\|g_{k}\right\| \quad \text { for } k \in \mathbb{N} \tag{2.3}
\end{equation*}
$$

Now, since $\operatorname{osc}_{T}\left(\Gamma \backslash\left\{\gamma_{n}\right\}_{n \leq k}\right) \rightarrow 0$ as $k \rightarrow \infty$, we obtain that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|T-T \circ P_{k}\right\|=0 \quad \text { and } \quad \lim _{k \rightarrow \infty}\left\|g_{k}-f \circ T\right\|=0 \tag{2.4}
\end{equation*}
$$

By putting these observations together and using the continuity of T we obtain that the sequence

$$
\left(T\left(\sum_{n=1}^{k} \chi_{\left\{\gamma_{n}\right\}}(\cdot) x_{n}\right)\right)_{k \in \mathbb{N}} \subset \mathrm{Y}
$$

is Cauchy. On the other hand,

$$
\|f \circ T\| \geq f \circ T\left(\sum_{n=1}^{k} \chi_{\left\{\gamma_{n}\right\}}(\cdot) x_{n}\right) \geq\left\|g_{k}\right\|-\left\|g_{k}-f \circ T\right\| \rightarrow\|f \circ T\| \quad \text { as } k \rightarrow \infty
$$

by using (2.2), (2.3) and (2.4). We conclude that

$$
y \doteq \lim _{k \rightarrow \infty} T\left(\sum_{n=1}^{k} \chi_{\left\{\gamma_{n}\right\}}(\cdot) x_{n}\right) \in \overline{T\left(\mathbf{B}_{c_{0}(\Gamma, \mathrm{X})}\right)}
$$

satisfies

$$
f(y)=\|f \circ T\|=\sup _{z \in T\left(B_{c_{0}(\mathrm{~F}, \mathrm{X})}\right)} f(z)
$$

which completes the proof.

References

[1] F. Bombal and P. Cembranos, 'The Dieudonné property of $C(K, E)$ ', Trans. Amer. Math. Soc. 285 (1984), 649-656.
[2] P. Cembranos, ' $C(K, E)$ contains a complemented copy of $c_{0}{ }^{\prime}$, Proc. Amer. Math. Soc. 91 (1984), 556-558.
[3] J. Diestel and J. Uhl Jr, Vector Measures, Mathematical Surveys, 15 (American Mathematical Society, Providence, RI, 1977).
[4] P. Habala, P. Hajek and V. Zizler, Introduction to Banach Spaces I-II (MatfyzPress, Prague, 1996).
[5] D. Werner, 'Recent progress on the Daugavet property', Irish Math. Soc. Bull. 46 (2001), 77-97.
[6] S. Willard, General Topology (Dover, New York, 2004).

JARNO TALPONEN, Department of Mathematics and Statistics, University of Helsinki, Box 68, Gustaf Hällströminkatu 2b, FI-00014 Helsinki, Finland
e-mail: talponen@cc.helsinki.fi

[^0]: (C) 2008 Australian Mathematical Society 0004-9727/08 \$A2.00 +0.00

