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Abstract

This paper contains two results: (a) if X 6= {0} is a Banach space and (L , τ ) is a nonempty locally compact
Hausdorff space without isolated points, then each linear operator T : C0(L , X) → C0(L , X) whose
range does not contain an isomorphic copy of c00 satisfies the Daugavet equality ‖I + T ‖ = 1 + ‖T ‖;
(b) if 0 is a nonempty set and X and Y are Banach spaces such that X is reflexive and Y does not contain
c0 isomorphically, then any continuous linear operator T : c0(0, X) → Y is weakly compact.
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1. Introduction

In what follows X, Y and Z are real Banach spaces different from {0}, L is a nonempty
locally compact Hausdorff space and C0(L , X) denotes the ‖ · ‖∞-normed Banach
space of X-valued continuous functions on L vanishing at infinity. This work is related
to the result due to Cembranos [2] that if K is an infinite compact and X is an infinite-
dimensional Banach space, then the Banach space C(K , X) of X-valued continuous
functions on K contains a complemented copy of c0. See also the related paper [1]
where the Dieudonné property of C(K , X) was studied.

Going in another direction, we study continuous linear operators of the type
(∗) T : C0(L , X) → Y, where Y does not contain c0 isomorphically. There is a
structural disparity between spaces C0(L , X) and Y, since typically the former space
contains copies of c0 in abundance. This difference has a strong impact on the
properties of T . Namely, it turns out that the range of T in Y is small in some sense.

If L does not contain isolated points, then an operator T : C0(L , X) → C0(L , X) of
type (∗) satisfies the Daugavet type equality ‖I + T ‖ = 1 + ‖T ‖ (see Theorem 2.1).
See [5] for a recent discussion on matters related to the Daugavet property.

If L is discrete, X is reflexive and c0 is not contained in Y isomorphically, then an
operator T : C0(L , X) → Y is weakly compact (see Theorem 2.3).
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Preliminaries. Here X and Y denote real Banach spaces. The closed unit ball and
the unit sphere of X are denoted by BX and SX, respectively. An identity mapping
is denoted by I. An operator T : X → Y is weakly compact if T (BX) is weakly
compact. If X 6= {0}, then we say that X is nontrivial. For given sets A ⊂ B the
mapping χA : B → {0, 1} is determined by χA(t) = 1 if and only if t ∈ A. We refer
to [3, 4, 6] for suitable background information including definitions and basic results.

2. Results

THEOREM 2.1. Let X be a nontrivial Banach space and (L , τ ) a nonempty locally
compact Hausdorff space without isolated points. Then each linear operator
T : C0(L , X) → C0(L , X) whose range does not contain an isomorphic copy of c00
satisfies the Daugavet equality

‖I + T ‖ = 1 + ‖T ‖.

Let us first make some preparations before giving the proof. It is easy to see that
the range of T contains c00 isomorphically if and only if the closure of the range
contains c0.

The assumption that L does not contain isolated points cannot be removed. Indeed,
if L is not a singleton, t0 ∈ L is an isolated point and X contains no isomorphic copy
of c0, then the linear operator

T : C0(L , X) → X; F 7→ −χ{t0}(·)F(·)

is of type (∗) and satisfies ‖T ‖ = ‖I + T ‖ = 1.
Theorem 2.1 holds analogously for T : C B(L , X) → C B(L , X), essentially with

the same proof. Here C B(L , X) is the ‖ · ‖∞-normed Banach space of X-valued
bounded continuous functions on L .

For a linear operator T : C0(L , X) → Y we denote

oscT (A) = sup{‖T F‖ : F ∈ BC0(L ,X), L \ A ⊂ F−1(0)} for A ⊂ L .

LEMMA 2.2. Let T : C0(L , X) → Y be a linear operator, where Y does not contain
c0 isomorphically. Suppose that (Vn)n∈N is a sequence of pair-wise disjoint nonempty
open subsets of L. Then oscT (Vn) → 0 as n → 0.

PROOF. By passing to a subsequence it suffices, without loss of generality, to show
that infn∈N oscT (Vn) = 0. Indeed, assume to the contrary that there is some d > 0 such
that oscT (Vn) ≥ d for all n ∈ N. This means that one can find a sequence

(Fn)n∈N ⊂

(
1
d

+ 1
)

BC0(L ,X)

such that Fn is supported in Vn and ‖T (Fn)‖ = 1 for n ∈ N. Note that for each finite
subset I ⊂ N it holds that ∑

i∈I

Fi ∈

(
1
d

+ 1
)

BC0(L ,X)
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as Vn are pair-wise disjoint. Since T is linear and continuous, we obtain that

sup
ε,I

∥∥∥∥∑
i∈I

T (εi Fi )

∥∥∥∥ ≤

(
1
d

+ 1
)

‖T ‖,

where the supremum is taken over all signs ε : N → {−1, 1} and finite subsets I ⊂ N.
Recall the well-known result due to Bessaga and Pelczynski (see for example

[4, page 202]) that in a Banach space Y a sequence (yn) ⊂ SY is equivalent to the
standard unit vector basis of c0 if and only if

sup
ε,I

∥∥∥∥∑
i∈I

εi yi

∥∥∥∥ < ∞

(supremum taken as above). By placing yi = T (Fi ) we obtain that the range
of T contains c00 isomorphically, which contradicts the assumptions. Hence,
infn∈N oscT (Vn) = 0. 2

PROOF OF THEOREM 2.1. Recall that as (L , τ ) is a locally compact Hausdorff space
it is completely regular, that is, for each closed set C ⊂ L and t ∈ L \ C there is a
continuous map s : L → R such that s(C) = {0} and s(t) = 1.

Suppose that there are no isolated points in (L , τ ). Let T : C0(L , X) → C0(L , X)

be a linear operator. If the operator norm of T is 0 or ∞, then the Daugavet equation
holds trivially, so that we may concentrate on the case ‖T ‖ = C ∈ (0, ∞). Let k ∈ N.
Fix F ∈ SC0(L ,X) such that G = T F satisfies ‖G‖ > C − (1/k). Consider the open
subspace U = {t ∈ L : ‖G(t)‖ > C − (1/k)} of L .

We can pick a sequence (Vn)n∈N ⊂ U of pair-wise disjoint open subsets as follows.
Clearly U is also a locally compact (even compact) Hausdorff space which does
not contain isolated points. Hence, U itself is not a singleton, and we may take
two points t0, t1 ∈ U , t0 6= t1. Since U is a Hausdorff space, there are disjoint
open neighbourhoods U0, U1 ⊂ U of t0 and t1, respectively. By repeating the
same reasoning, pick t10, t11 ∈ U1, t10 6= t11 and disjoint open neighbourhoods U10,
U11 ⊂ U1 of t10 and t11, respectively. Similarly, pick t110, t111 ∈ U11, t110 6= t111 and
the corresponding disjoint open neighbourhoods U110, U111 ⊂ U11. Proceeding in
this manner yields a sequence of pair-wise disjoint open subsets by letting Vn = Us ,
s ∈ {1}

n
× {0} for n ∈ N.

Since c0 6⊂ T (C0(L , X)) we obtain, by using Lemma 2.2, that oscT (Vn) → 0 as
n → ∞. Fix n ∈ N such that oscT (Vn) < (1/k). Let u0 ∈ Vn . By using the complete
regularity of L one can find a continuous map s : L → [0, 1] such that s(L \ Vn) = {0}

and s(u0) = 1. Observe that the mappings s(·)F(·) and (s(·)/max(1, ‖G(·)‖X))G(·)

are elements of BC0(L ,X). Hence,

‖T (s(·)F(·))‖C0(L ,X) ≤
1
k

and

∥∥∥∥T

(
s(·)

max(1, ‖G(·)‖X)
G(·)

)∥∥∥∥
C0(L ,X)

≤
1
k

(2.1)
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by the definition of oscT (Vn). Note that∥∥∥∥(1 − s(t))F(t) +
s(t)

max(1, ‖G(t)‖X)
G(t)

∥∥∥∥
X

≤ (1 − s(t))‖F(t)‖X + s(t) ≤ 1

for all t ∈ L . Hence,

E(·)
.
= (1 − s(·))F(·) +

s(·)

max(1, ‖G(·)‖X)
G(·)

defines an element of BC0(L ,X). Note that E is a kind of interpolation of F and G.
Observe that

‖G − T (E)‖ ≤
2
k

according to (2.1), and that

‖E + G‖C0(L ,X) ≥ ‖(E + G)u0‖X =

∥∥∥∥ s(u0)

‖G(u0)‖X
G(u0) + G(u0)

∥∥∥∥
X

= 1 + ‖G(u0)‖X > 1 + C −
1
k
.

Thus,

‖I + T ‖ ≥ ‖E + T (E)‖ ≥ ‖E + G‖ − ‖G − T (E)‖ > 1 + C −
3
k

and by letting k → ∞ we obtain that ‖I + T ‖ ≥ 1 + C = 1 + ‖T ‖. By the triangle
inequality ‖I + T ‖ ≤ 1 + ‖T ‖ and we have the claim. 2

Let us recall a few classical results due to James which are applied here frequently:
a closed convex subset C ⊂ X is weakly compact if and only if each f ∈ X∗ attains
its supremum over C , and X is reflexive if and only if BX is weakly compact (see, for
example, [4, Chapter 3]).

THEOREM 2.3. Let 0 be a nonempty set and X, Y be Banach spaces such that X
is reflexive and Y does not contain c0 isomorphically. Then any continuous linear
operator T : c0(0, X) → Y is weakly compact.

The above result holds similarly for `∞(0, X) in place of c0(0, X), essentially
with the same proof. Note that the operators I : c0(N, X) → c0(N, X) and
T : c0(N, Y) → Y; (yn) 7→ (y1, 0, 0, . . .) are not weakly compact for any nontrivial
X and nonreflexive Y according to the James characterization of reflexivity. Hence,
neither of the assumptions about the reflexivity or the noncontainment of c0 can be
removed.

PROOF OF THEOREM 2.3. Let T : c0(0, X) → Y be a continuous linear operator such
that Y does not contain c0. One may write c0(0, X) = C0(0, X) isometrically where
0 on the right-hand side is interpreted as a discrete topological space.
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We claim that the sum ∑
γ∈0

oscT ({γ })

is defined and finite. Indeed, otherwise one can extract pair-wise disjoint (open)
subsets 0n ⊂ 0, n ∈ N, such that∑

γ∈0n

oscT ({γ }) ≥ 1

for n ∈ N. However, since c0 6⊂ Y, Lemma 2.2 yields that this case does not
occur. Thus there exists a sequence (γn)n∈N ⊂ 0 such that oscT (0 \ {γn}n≤k) → 0
as k → ∞.

In order to verify the statement of the theorem we must show that T (Bc0(0,X))

is weakly compact. In doing this we apply the James characterization of weakly
compact sets. Fix f ∈ Y∗. It suffices to show that f attains its supremum over
T (Bc0(0,X)). Observe that f ◦ T defines an element of C0(0, X)∗. For each k ∈ N
define a contractive linear projection

Pk : c0(0, X) → c0(0, X) by Pk f (·) = χ{γn}n≤k (·) f (·).

Put gk = f ◦ T ◦ Pk and Zk = Pk(c0(0, X)) for k ∈ N. Note that gk restricted to
Zk satisfies gk |Zk

∈ Z∗

k , where Z∗

k = `1({γn}n≤k, X∗) isometrically for k ∈ N. Clearly
gk+l |Zk

= gk |Zk
for k, l ∈ N. Hence, there is a sequence (x∗

n )n∈N ⊂ X∗ such that

gk

( k∑
n=1

χ{γn}(·)yn

)
=

k∑
n=1

x∗
n (yn) (2.2)

for
∑k

n=1 χ{γn}yn ∈ Zk , k ∈ N.
Observe that since X is reflexive, according to the James characterization of

reflexivity there exists a sequence (xn)n∈N ⊂ SX such that x∗
n (xn) = ‖x∗

n‖ for n ∈ N. It
follows that

k∑
n=1

x∗
n (xn) = ‖gk‖ for k ∈ N. (2.3)

Now, since oscT (0 \ {γn}n≤k) → 0 as k → ∞, we obtain that

lim
k→∞

‖T − T ◦ Pk‖ = 0 and lim
k→∞

‖gk − f ◦ T ‖ = 0. (2.4)

By putting these observations together and using the continuity of T we obtain that the
sequence (

T

( k∑
n=1

χ{γn}(·)xn

))
k∈N

⊂ Y
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is Cauchy. On the other hand,

‖ f ◦ T ‖ ≥ f ◦ T

( k∑
n=1

χ{γn}(·)xn

)
≥ ‖gk‖ − ‖gk − f ◦ T ‖ → ‖ f ◦ T ‖ as k → ∞

by using (2.2), (2.3) and (2.4). We conclude that

y
.
= lim

k→∞
T

( k∑
n=1

χ{γn}(·)xn

)
∈ T (Bc0(0,X))

satisfies
f (y) = ‖ f ◦ T ‖ = sup

z∈T (Bc0(0,X))

f (z),

which completes the proof. 2

References
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