EXTREMAL POSITIVE SOLUTIONS OF SEMILINEAR SCHRÖDINGER EQUATIONS

BY
C. A. SWANSON*

Abstract

Necessary and sufficient conditions are proved for the existence of maximal and minimal positive solutions of the semilinear differential equation $\Delta u=-f(x, u)$ in exterior domains of Euclidean n-space. The hypotheses are that $f(x, u)$ is nonnegative and Hölder continuous in both variables, and bounded above and below by $u g_{i}(|x|, u), i=1,2$, respectively, where each $g_{i}(r, u)$ is monotone in u for each $r>0$.

1. Introduction. The semilinear Schrödinger equation

$$
\begin{equation*}
L u \equiv \Delta u+f(x, u)=0, \quad x \in \Omega_{a} \tag{1}
\end{equation*}
$$

will be considered in exterior domains of $R^{n}, n \geq 2$, of the type

$$
\begin{equation*}
\Omega_{a}=\left\{x \in R^{n}:|x| \geq a\right\}, \quad a>0, \tag{2}
\end{equation*}
$$

under the following hypotheses:
H1. For some $\delta>0, f(x, u) \geq 0$ whenever $x \in \Omega_{\delta}, u \geq 0$;
H2. f belongs to the Hölder space $C^{\alpha}(\bar{M} \times \bar{J})$ for some α in $0<\alpha<1$, fixed in the sequel, for every bounded domain $M \subset \Omega_{\delta}$, and for every bounded positive interval J;
H3. $f(x, u) \leq u g(|x|, u)$ for all $x \in \Omega_{\delta}, u \geq 0$, where $g \in C^{\alpha}(\bar{I} \times \bar{J})$ for all bounded positive intervals I and J, and $g(r, u)$ is monotone in u for each $r>0$ (either nondecreasing or nonincreasing).
H4. $f(x, u) \geq u g_{0}(|x|, u)$ for all $x \in \Omega_{\delta}, u \geq 0$, where $g_{0}(r, u)$ is continuous and nonnegative for $0<r<\infty, 0<u<\infty$, and monotone in u for each r.
A solution of $L u=0(L u \leq 0, L u \geq 0$, respectively $)$ is understood throughout to be a function $u \in C^{2+\alpha}(\bar{M})$ for every bounded subdomain $M \subset \Omega_{a}$, with α as in H2, such that $(L u)(x)=0((L u)(x) \leq 0,(L u)(x) \geq 0$, respectively) for every $x \in \Omega_{a}$.

In this note our purpose is to prove necessary and sufficient conditions for the existence of maximal solutions $u^{*}(x)$ and minimal solutions $u_{*}(x)$ of (1),

[^0]defined below. Let ϕ_{n} and ψ_{n} be the functions in $(0, \infty)$ defined by
\[

$$
\begin{cases}\phi_{2}(r)=1 ; \phi_{n}(r)=r^{2-n}, & n \geq 3 \tag{3}\\ \psi_{2}(r)=\log r ; \psi_{n}(r)=1, & n \geq 3\end{cases}
$$
\]

A minimal solution satisfies $(A-\varepsilon) \phi_{n}(|x|) \leq u_{*}(x) \leq A \phi_{n}(|x|)$, uniformly in some exterior domain Ω_{a}, for some constants A and $\varepsilon, 0<\varepsilon<A$. If a minimal solution of (1) exists, the proof given in $\S 3$ shows that such a solution $u_{*}(x ; \varepsilon)$ exists in some $\Omega_{a(\varepsilon)}$ for arbitrary ε in ($0, A$). The definition of a maximal solution is the same with ψ_{n} replacing ϕ_{n}. The solution $u_{0}^{*}(x)$ are maximal in the sense that no positive solution $u(x)$ of (1) has a spherical mean

$$
\begin{equation*}
U(r)=\frac{1}{\omega\left(S_{1}\right)} \int_{S_{1}} u(x) d \omega \tag{4}
\end{equation*}
$$

growing more rapidly than a constant multiple of $\psi_{n}(r)$ as $r \rightarrow \infty$. Here ω denotes the measure on the unit sphere S_{1} in R^{n}. In fact, $U(r)$ satisfies the ordinary differential inequality [6, p. 70] below because of H 4 :

$$
\begin{equation*}
-\frac{d}{d r}\left[r^{n-1} \frac{d U}{d r}\right] \geq \frac{r^{n-1}}{\omega\left(S_{1}\right)} \int_{S_{1}} u(x) g_{0}(r, u(x)) d \omega \tag{5}
\end{equation*}
$$

so in particular, if $n=2, r U^{\prime}(r)$ is nonincreasing. Since $U(r)>0$ for $r \geq a$, say, it follows easily that $U(r) \leq A \log r$ for some constant $A, r \geq a$. Similarly if $n \geq 3$, $U(r) \leq A$ for some constant A.
A positive solution $u(x)$ of (1) in Ω_{a} satisfies $\Delta u \leq 0$ by H1, and consequently the a priori lower bound [7, p. 917]

$$
\begin{equation*}
u(x) \geq\left[\frac{a}{|x|}\right]^{n-2} \inf _{|x|=a} u(x), \quad|x| \geq a \tag{6}
\end{equation*}
$$

shows that $u(x) \geq A \phi_{n}(|x|)$ for some constant $A,|x| \geq a$.

2. Statement of theorems

Theorem 1. Equation (1) has a maximal solution in some exterior domain $\Omega_{a} \subset R^{n}, n \geq 2$, if $\mathrm{H} 1, \mathrm{H} 2$ and H 3 hold and

$$
\begin{gather*}
\int^{\infty} r \log r g(r, c \log r) d r<\infty, \quad n=2 \tag{7}\\
\int^{\infty} r g(r, c) d r<\infty, \quad n \geq 3 \tag{8}
\end{gather*}
$$

for some positive constant c.
Theorem 2. Equation (1) has a minimal positive solution in some exterior
domain $\Omega_{a} \subset R^{n}, n \geq 2$, if $\mathrm{H} 1, \mathrm{H} 2$, and H 3 hold and

$$
\begin{array}{ll}
\int^{\infty} r \log r g(r, c) d r<\infty, & n=2 \\
\int^{\infty} r g\left(r, c r^{2-n}\right) d r<\infty, & n \geq 3 \tag{10}
\end{array}
$$

for some positive constant c.
Theorem 3. Under hypotheses H1, H2, and H4, a necessary condition for equation (1) to have a maximal solution in some exterior domain in R^{n} is

$$
\begin{gather*}
\int^{\infty} r \log r g_{0}(r, c \log r) d r<\infty, \quad n=2 \tag{11}\\
\int^{\infty} r g_{0}(r, c) d r<\infty, \quad n \geq 3 \tag{12}
\end{gather*}
$$

for some positive constant c.
Theorem 4. Under hypotheses H1, H2, and H4, a necessary condition for (1) to have a minimal positive solution in some exterior domain in R^{n} is

$$
\begin{align*}
& \int^{\infty} r \log r g_{0}(r, c) d r<\infty, \quad n=2 \tag{13}\\
& \int^{\infty} r g_{0}\left(r, c r^{2-n}\right) d r<\infty, \quad n \geq 3 \tag{14}
\end{align*}
$$

for some positive constant c.
It is clear from Theorems 1-4 that conditions (7)-(10) are both necessary and sufficient for the existence of extremal positive solutions of (1) provided g and g_{0} satisfy the growth conditions below:

H5.

$$
\limsup _{r \rightarrow \infty} \frac{g(r, c \log r)}{g_{0}(r, c \log r)}<\infty
$$

H6.
H7. $\quad \limsup _{r \rightarrow \infty} \frac{g\left(r, c r^{2-n}\right)}{g_{0}\left(r, c r^{2-n}\right)}<\infty, \quad n \geq 3$
for every positive constant c.
Corollary 1. If $\mathrm{H} 1-\mathrm{H} 4$ and H 5 [respectively, H6] hold, then (7) [respectively, (8)] is a necessary and sufficient condition for (1) to have a maximal positive solution in some exterior domain R^{2} [respectively, $\left.R^{n}, n \geq 3\right]$.

Corollary 2. If $\mathrm{H} 1-\mathrm{H} 4$ and H 6 [respectively, H 7] are satisfied, then (9) [respectively, (10)] is necessary and sufficient for (1) to have a minimal positive solution in some exterior domain in R^{2} [respectively $R^{n}, n \geq 3$].

For example, if (1) is the Emden-Fowler equation

$$
\Delta u+p(x)|u|^{\gamma} \operatorname{sgn} u=0, \quad x \in \Omega_{a}
$$

where γ is a positive constant, then appropriate functions g and g_{0} in H 3 and H 4 are given by

$$
\begin{aligned}
& g(r, u)=\left[\max _{|x|=r} p(x)\right] u^{\gamma-1}=P(r) u^{\gamma-1} \\
& g_{0}(r, u)=\left[\min _{|x|=r} p(x)\right] u^{\gamma-1}=P_{0}(r) u^{\gamma-1}
\end{aligned}
$$

and each of $\mathrm{H} 5, \mathrm{H} 6$, and H 7 reduces to

$$
\limsup _{r \rightarrow \infty} P(r) / P_{0}(r)<\infty
$$

In this case, the necessary and sufficient conditions (7)-(10) reduce to, respectively,

$$
\begin{array}{ll}
\int^{\infty} r(\log r)^{\gamma} P(r) d r<\infty, & n=2, \gamma>0 \\
\int^{\infty} r P(r) d r<\infty, & n \geq 3, \gamma>0 \\
\int^{\infty} r \log r P(r) d r<\infty, & n=2, \gamma>0 \\
\int^{\infty} r^{\sigma} P(r) d r<\infty, & n \geq 3, \gamma>0
\end{array}
$$

$$
\sigma=n-1-\gamma(n-2)
$$

One-dimensional versions of Theorems 1-4 are contained in works by Belohorec [1, Theorem 3], Coffman and Wong [2, Theorems 1 and 2], Izyumova [3, Theorem 1.1], Nehari [5, Theorems I and II] and others, concerning the ordinary differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+y g(t, y)=0, \quad 0<t<\infty \tag{15}
\end{equation*}
$$

Theorem $5[1,2,3,5]$. Let $f(t, y)=y g(t, y)$ be continuous and nonnegative for
$0<t<\infty, 0<y<\infty$, and suppose that $g(t, y)$ is either nondecreasing or nonincreasing in y for each t. Then equation (15) has a bounded positive solution in some interval $\left(t_{0}, \infty\right), t_{0}>0$, if and only if

$$
\begin{equation*}
\int^{\infty} \operatorname{tg}(t, c) d t<\infty \tag{16}
\end{equation*}
$$

for some positive constant c; and moreover, if (16) holds, this solution is asymptotic to a positive constant as $t \rightarrow \infty$. Furthermore, (15) has a solution y such that $y(t) \sim$ At as $t \rightarrow \infty$, for some $A>0$, if and only if

$$
\begin{equation*}
\int^{\infty} \operatorname{tg}(t, c t) d t<\infty \tag{17}
\end{equation*}
$$

for some positive constant c.
The following theorem [8, p. 125] will be needed in the proofs of Theorems 1 and 2.

Theorem 6. If H 1 and H 2 hold, and if there exist positive solutions v, w of $L v \leq 0, L w \geq 0$, respectively, in $\Omega_{a}, a \geq \delta$, such that $w(x) \leq v(x)$ for all $|x| \geq a$, then equation (1) has at least one solution $u(x)$ satisfying $w(x) \leq u(x) \leq v(x)$ for all $|x| \geq a$.

Subsolutions $w(x)$ for Theorem 6 are readily available in the form

$$
\begin{cases}w(x)=A \log r+B, & n=2 \tag{18}\\ w(x)=A r^{2-n}+B, & n \geq 3\end{cases}
$$

where A, B are constants and $r=|x|$, since

$$
L w \geq \Delta w=r^{1-n} \frac{d}{d r}\left[r^{n-1} \frac{d w}{d r}\right]=0 .
$$

Supersolutions $v(x)$ of (1) will be constructed in $\S 3$ in the form $v(x)=\zeta(r)$, $r=|x| \geq a$, where ζ is a positive solution, in the space $C^{2+\alpha}[a, b]$ for all $b>a$, of the ordinary differential equation

$$
\begin{equation*}
\frac{d}{d r}\left(r^{n-1} \frac{d \zeta}{d r}\right)+r^{n-1} \zeta(r) g(r, \zeta(r))=0 \tag{19}
\end{equation*}
$$

3. Proofs

Proof of Theorem 1. If $n=2$, the change of variables $r=e^{s}, y(s)=\zeta(r)$ transforms (19) into

$$
\begin{equation*}
y^{\prime \prime}(s)+e^{2 s} y(s) g\left(e^{s}, y(s)\right)=0 . \tag{20}
\end{equation*}
$$

By Theorem 5, equation (20) has a solution $y(s) \sim A s$ as $s \rightarrow \infty$, for some
positive constant A, if and only if

$$
\int^{\infty} s e^{2 s} g\left(e^{s}, c s\right) d s<\infty
$$

for some positive constant c, which is equivalent to (7). Furthermore, $y \in$ $C^{2+\alpha}\left[s_{0}, s\right]$ for some s_{0} and for all $s>s_{0}$ by standard regularity theory, see e.g. [4], since $g \in C^{\alpha}$ by H3. Then, if (7) holds, equation (19) has a solution $\zeta \in C^{2+\alpha}[a, b]$ for all $b>a=\exp s_{0}$ such that $\zeta(r)=y(s) \sim A \log r$ as $r \rightarrow \infty$. This implies that there exist positive numbers A_{1}, ε, and a_{1} such that $0<\varepsilon<$ $A_{1}<A$ and $\left(A_{1}-\varepsilon\right) \log r \leq \zeta(r) \leq A_{1} \log r$ for all $r \geq a_{1}$, and clearly $a=a_{1}$ without loss of generality. In view of (1) and H3, the function v defined by $v(x)=\zeta(r), r=|x|$, in $\Omega_{a} \subset R^{2}$ satisfies the inequality

$$
r L v=\frac{d}{d r}\left(r \frac{d \zeta}{d r}\right)+r f(x, v) \leq \frac{d}{d r}\left(r \frac{d \zeta}{d r}\right)+r \zeta(r) g(r, \zeta(r))
$$

and hence $L v \leq 0$ for all $x \in \Omega_{a}$ by (19). As noted in (18), $w(x)=\left(A_{1}-\varepsilon\right) \log r$ satisfies $L w \geq 0$ for an arbitrary positive constant ε. Since $w(x) \leq v(x)$ for $|x| \geq a$, Theorem 6 establishes the existence of a solution $u(x)$ of (1) satisfying

$$
w(x)=\left(A_{1}-\varepsilon\right) \log r \leq u(x) \leq v(x)=\zeta(r) \leq A_{1} \log r
$$

for $r=|x| \geq a$. This proves that equation (1) has a maximal positive solution $u(x)$ in Ω_{a}.

If $n \geq 3$, the change of variables

$$
r=\beta(s)=(\nu s)^{\nu}, \quad y(s)=s \zeta(\beta(s)), \quad \nu=\frac{1}{n-2}
$$

transforms (19) into

$$
\begin{equation*}
y^{\prime \prime}(s)+s^{-4}[\beta(s)]^{2 n-2} y(s) g\left(\beta(s), \frac{y(s)}{s}\right)=0 \tag{21}
\end{equation*}
$$

By Theorem 5, (21) has a solution $y(s) \sim A s$ as $s \rightarrow \infty$, for some positive constant A, if and only if

$$
\int^{\infty} s^{-3}[\beta(s)]^{2 n-2} g(\beta(s), c) d s<\infty
$$

for some positive constant c, which is equivalent to (8). The remainder of the proof is virtually the same as the proof for $n=2$ and is deleted.

Proof of Theorem 2. We shall outline the proof for $n \geq 3$ only since the
proof for $n=2$ is similar (using (20) instead of (21)). By Theorem 5, (21) has a solution $y(s)$ with $A-\varepsilon \leq y(s) \leq A$ in some interval $\left[s_{0}, \infty\right)$, where A and ε are constants, $0<\varepsilon<A$, if and only if

$$
\int^{\infty} s^{-3}[\beta(s)]^{2 n-2} g\left(\beta(s), \frac{c}{s}\right) d s<\infty
$$

for some $c>0$, which is equivalent to condition (10). Then, if (10) holds, (19) has a solution $\zeta \in C^{2+\alpha}[a, b]$ for all $b>a=\exp s_{0}$ such that

$$
(A-\varepsilon) \nu r^{2-n}=\frac{A-\varepsilon}{s} \leq \zeta(r)=\frac{y(s)}{s} \leq \frac{A}{s}=A \nu r^{2-n}
$$

for $r \geq a$. Exactly as in Theorem 1, the function v defined in Ω_{a} by $v(x)=\zeta(r)$, $r=|x|$ satisfies $L v \leq 0$ in Ω_{a}, and by (18), w(x)=(A-E) r^{2-n} satisfies $L w \geq 0$ for arbitrary $\varepsilon>0$. Theorem 6 then shows that (1) has a solution $u(x)$ satisfying

$$
(A-\varepsilon) \nu r^{2-n} \leq u(x) \leq v(x)=\zeta(r) \leq A \nu r^{2-n}
$$

for all $|x| \geq a$, from which $u(x)$ is the required minimal solution of (1).
Proof of Theorem 3. If (1) has a positive solution $u(x) \sim A \log |x|$ as $|x| \rightarrow \infty$ uniformly in $\Omega_{a} \subset R^{2}$, where A is a positive constant, there exist positive constants k_{1} and k_{2} such that

$$
\begin{equation*}
k_{1} \log r \leq u(x) \leq k_{2} \log r \quad \text { for } \quad r=|x| \geq a \tag{22}
\end{equation*}
$$

Then (4), (5), (22) and H4 yield the inequality

$$
\begin{equation*}
-\frac{d}{d r}\left[r \frac{d U}{d r}\right] \geq k_{1} r \log r g_{0}(r, c \log r), \quad r \geq a \tag{23}
\end{equation*}
$$

where $c=k_{1}$ in the case that $g_{0}(r, u)$ is nondecreasing in u, and $c=k_{2}$ if $g_{0}(r, u)$ is nonincreasing in u. Integration of (23) over (a, r) gives

$$
\begin{equation*}
-r U^{\prime}(r)+a U^{\prime}(a) \geq k_{1} \int_{a}^{r} t \log t g_{0}(t, c \log t) d t \tag{24}
\end{equation*}
$$

Since $r U^{\prime}(r)$ is nonincreasing by (23) and $U(r)$ is positive, it is easily seen that $U^{\prime}(r)>0$ for all $r>a$. Then (24) implies the conclusion (11) of Theorem 3.

If (1) has a solution $u(x) \sim A$ as $|x| \rightarrow \infty$ uniformly in $\Omega_{a} \subset R^{n}, n \geq 3$, where A is a positive constant, then (23) is replaced by

$$
-\frac{d}{d r}\left[r^{n-1} \frac{d U}{d r}\right] \geq k_{1} r^{n-1} g_{0}(r, c)
$$

for some positive constant c. The substitution

$$
r=\beta(s)=(\nu s)^{\nu}, \quad h(s)=s U(\beta(s)), \quad \nu=\frac{1}{n-2}
$$

transforms this into

$$
\begin{equation*}
-h^{\prime \prime}(s) \geq k_{1} s^{-3}[\beta(s)]^{2 n-2} g_{0}(\beta(s), c) \tag{25}
\end{equation*}
$$

and integration over (b, s) gives

$$
\begin{align*}
-h^{\prime}(s)+h^{\prime}(b) & \geq k_{1} \int_{b}^{s} s^{-3}[\beta(s)]^{2 n-2} g_{0}(\beta(s), c) d s \tag{26}\\
& =k_{1} \nu \int_{a}^{r} r g_{0}(r, c) d r
\end{align*}
$$

where $a=\beta(b)$ and $r=\beta(s) \geq a$. Since $h^{\prime}(s)$ is nonincreasing by (25) and $h(s)>0$ for $s>b$, it follows routinely that $h^{\prime}(s)>0$ for all $s>b$. The conclusion (12) of Theorem 3 is then a consequence of (26).

Proof of Theorem 4. If (1) has a minimal positive solution in $\Omega_{a} \subset R^{2}$, (23) is replaced by

$$
-\frac{d}{d r}\left[r \frac{d U}{d r}\right] \geq k_{1} r_{0}(r, c), \quad r \geq a
$$

for some $c>0$, and (13) follows by the same proof as in Theorem 3. Similarly for $n \geq 3$ (25) is replaced by

$$
-h^{\prime \prime}(s) \geq k_{1} s^{-3}[\beta(s)]^{n} g_{0}\left(\beta(s), c \beta(s)^{2-n}\right),
$$

which leads to (14) after multiplication by s.

References

1. S. Belohorec, Monotone and oscillatory solutions of a class of nonlinear differential equations. Mat.-Fyz. Casopis Sloven. Akad. Vied. 19 (1969), 169-187.
2. C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation theorems for second order ordinary differential equations, Funkcial. Ekvac. 15 (1972), 119-130.
3. D. V. Izyumova, On the conditions for oscillation and nonoscillation of solutions of nonlinear second order differential equations, Differential Equations 2 (1966), 814-821 (= Differencial'nye Uravnenija 2 (1966), 1572-1586).
4. O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
5. Z. Nehari, On a class of nonlinear second order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101-123.
6. E. S. Noussair and C. A. Swanson, Oscillation theory for semilinear Schrödinger equations and inequalities, Proc. Roy. Soc. Edinburgh A, 75 (1975/76), 67-81.
7. -, Oscillation of semilinear elliptic inequalities by Riccati transformations, Canad. J. Math. 32 (1980), 908-923.
8. -, Positive solutions of quasilinear elliptic equations in exterior domains, J. Math. Anal. Appl. 75 (1980), 121-133.

[^0]: Received by the editors September 4, 1981 and, in revised form, January 8, 1982.

 * Support from NSERC (Canada) under Grant A3105 is acknowledged with gratitude. 1980 Mathematics Subject Classifications: Primary: 35B05 Secondary: 35J60. (C) 1983 Canadian Mathematical Society.

