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Abstract It is shown that, for every sequence (fn) of stochastically independent functions defined on
[0, 1]—of mean zero and variance one, uniformly bounded by M—if the series

∑∞
n=1 anfn converges to

some constant on a set of positive measure, then there are only finitely many non-null coefficients an,
extending similar results by Stechkin and Ul’yanov on the Rademacher system. The best constant CM

is computed such that for every such sequence (fn) any set of measure strictly less than CM is a set of
uniqueness for (fn).
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1. Introduction

First of all, let us recall the concept of a set of uniqueness of a system of complex functions.
Let (fn) be an orthonormal sequence of functions defined on the unit interval [0, 1]. It is
said that E ⊂ [0, 1] is a set of uniqueness for (fn) if the unique series

∑∞
n=1 anfn, which

converges to zero on the complement of E, is the null series.
Sets of uniqueness for trigonometrical series have been studied deeply since Cantor,

who proved that finite sets are sets of uniqueness. Sets of Lebesgue positive measure
m(E) > 0 are never sets of uniqueness for the trigonometric system, but there exist
sets of measure zero which are not of uniqueness, a result of Menshov. The behaviour of
sets of uniqueness for lacunary trigonometrical series is quite different: it was shown by
Zygmund that if m(E) < 1, then E is of uniqueness [3].

For the Rademacher system and any of its permutations, Stechkin and Ul’yanov [2]
proved that if m(E) < 1

2 , then E is of uniqueness, as well as proving that a weaker unique-
ness theorem is true for sets with m(E) < 1: namely, that any series which converges to
zero on the complement of E is actually a finite sum.

We consider a fixed constant M � 1. We shall denote by FM the class of all measurable
functions defined on [0, 1] with mean zero, variance one and bounded by M , that is to
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say, such that

∫ 1

0
f(x) dx = 0,

∫ 1

0
|f(x)|2 dx = 1, |f(x)| � M almost everywhere.

We shall extend the Stechkin and Ul’yanov theorems for systems of functions (fn) in
the class FM which are stochastically independent, that is, those systems for which

m(f−1
1 (B1) ∩ · · · ∩ f−1

n (Bn)) = m(f−1
1 (B1)) · · ·m(f−1

n (Bn))

for every finite family of Borel sets B1, . . . , Bn. We prove in Theorem 2.2, for these
systems, that a non-null series can only be constant on a set of measure at most kM =
M2/(M2 + 1)—in particular, if m(E) < 1 − kM , then E is of uniqueness—and we
construct a system for which this bound is attained. In Theorem 2.3 it is shown that, if
a series converges to a constant on a set of positive measure, then only finitely many of
the coefficients are non-zero.

We next recall the result of Kashin and Saakyan [1, p. 30, Theorem 7]: there exists a
constant CM such that m({x ∈ [0, 1] : |P (x)| � 1

2‖P‖2}) � CM for every system (fn) of
independent functions in FM and every polynomial P =

∑p
n=1 anfn in (fn).

Let us remark that the constant CM satisfies the property that if m(E) < CM , then E

is of uniqueness for every system of independent functions in FM . This fact follows from
our Theorem 2.2 by taking CM = 1 − kM . We point out that the proof of this theorem
is more elementary than that of the inequality of Kashin and Saakyan.

The last section of the paper is devoted to computing the best constant CM satisfying
this property, which is obtained in Theorem 3.6 (see also the remark following it). In
order to compute it we introduce and study the coefficients α(M, p) which bound the
measures of the sets of constancy of polynomials P =

∑p+1
n=1 anfn with every an �= 0 and

f1, . . . , fp+1 ∈ FM stochastically independent.
It is worth remarking that, although we assume the functions fn to be complex valued,

the proofs apply to functions with values in any finite-dimensional normed space, without
any change in the constants appearing in the statements of the theorems.

2. Sets of constancy

We begin with the study of the measure of the sets F ⊂ [0, 1] on which a series
∑∞

n=1 anfn

is constant, for some sequence (fn) of stochastically independent functions in FM , with-
out all the coefficients an being zero.

Let us fix such a sequence (fn), a complex sequence (an), and a complex number µ.
Write F = {x ∈ [0, 1] :

∑∞
n=1anfn(x) = µ}. We shall look for the smallest constant C

such that if m(F ) > C, then a1 = 0.
A natural way to prove that a1 = 0 is, roughly speaking, to find two points x, y ∈ F

such that
∑∞

n=2 anfn(x) and
∑∞

n=2 anfn(y) are close together, but keeping f1(x) away
from f1(y).
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Assume that m(F ) > C. Let ε > 0. In order to apply the independence hypothesis, we
shall work with finitely many functions. Let

Fq =
∞⋂

p=q

{
x ∈ [0, 1] :

∣∣∣∣
p∑

n=1

anfn(x) − µ

∣∣∣∣ < ε

}
.

As the sequence Fq is increasing and F ⊂ F1 ∪ F2 ∪ · · · , we have that m(Fq) > C

for some q > 1. It is enough to find x, y ∈ Fq such that |f1(x) − f1(y)| � d with d > 0
independent of ε, and |an| |fn(x) − fn(y)| � ε/2n for n = 2, . . . , q. Indeed, we then have

d|a1| � |a1f1(x) − a1f1(y)|

�
q∑

n=2

|an| |fn(x) − fn(y)| +
∣∣∣∣

q∑
n=1

anfn(x) −
q∑

n=1

anfn(y)
∣∣∣∣

�
q∑

n=2

ε

2n
+ 2ε

� 3ε.

We consider sets H which can be written as f−1
2 (B2) ∩ · · · ∩ f−1

q (Bq), where Bn is a
Borel set of diameter bounded by ε/(2n|an|). Let us observe that |an| |fn(x) − fn(y)| �
ε/2n for n = 2, . . . , q, for every x, y ∈ H. As the functions are essentially bounded by M ,
we can cover [0, 1], up to a set of measure zero, with finitely many such sets H; hence
there exists such a set H satisfying m(Fq ∩ H) > Cm(H).

Let us fix x ∈ Fq ∩ H. If we can choose C and d such that m(Fq ∩ H) > m(f−1
1 (B) ∩

H), where B is the disc with centre f1(x) and radius d, then we will have found
y ∈ Fq ∩ H and y /∈ f−1

1 (B), therefore satisfying |f1(x) − f1(y)| � d. On the basis of the
independence of the sequence (fn), it is enough to be able to choose C and d such that
m(Fq) > m(f−1

1 (B)). We estimate the measure of f−1
1 (B) in the following lemma.

Lemma 2.1. Let 0 < d � 1/2 and let B be a Borel set contained in a ball of radius
d. If f ∈ FM , then m(f−1(B)) � (M2/(M2 + (1 − 2d)2)).

Proof. We can assume that B is a ball of radius d and that the measure of E = f−1(B)
is strictly positive. We define the average λ = (1/m(E))

∫
E

f(x) dx and the function
g(x) = λ for x ∈ E and g(x) = f(x) for x /∈ E. Since λ ∈ B, we have

‖f‖2 − ‖g‖2 � ‖f − g‖2 =
(∫

E

|f(x) − λ|2 dx

)1/2

� 2d.

As f ∈ FM it follows that

(1 − 2d)2 � ‖g‖2
2 � |λ|2m(E) + M2(1 − m(E)).

On the other hand,

|λ| =
1

m(E)

∣∣∣∣−
∫

[0,1]\E

f(x) dx

∣∣∣∣ � M(1 − m(E))
m(E)

.

The statement follows from these two inequalities. �
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In this way we obtain the next theorem.

Theorem 2.2. Let (fn) be a sequence of stochastically independent functions in FM .
Let (an) be a sequence of complex numbers. If the series

∑∞
n=1 anfn converges to a

constant on a set of measure strictly greater than kM = M2/(M2 + 1), then an = 0 for
every n.

Proof. Let F = {x ∈ [0, 1] :
∑∞

n=1anfn(x) = µ}. We take 0 < d < 1/2 and C such
that

m(F ) > C >
M2

M2 + (1 − 2d)2
> kM .

As we explained before, we obtain that a1 = 0. Then, by induction, we get an = 0 for
every n. �

The estimate obtained in Lemma 2.1 gives us the best bound for the measure of sets
of constancy of functions f in FM , namely m(f = µ) � kM . Indeed, the function f1

defined as f1(x) = 1/M on [0, kM ] and f1(x) = −M on (kM , 1] is clearly in FM and
m(f1 = 1/M) = kM .

This fact points out to us that the constant kM in Theorem 2.2 is the best pos-
sible. To see this, we construct the following sequence of independent functions (fn)
which are piecewise constant (according to [1, p. 18]): we start with f1 as defined above,
and, assuming that fn has been defined, we then define fn+1 on each interval [a, b),
where fn is constant as fn+1(x) = 1/M for x ∈ [a, a + (b − a)kM ) and fn+1(x) = −M

for x ∈ [a + (b − a)kM , b). It is clear that fn ∈ FM and, taking a1 = 1 and an = 0 for
n � 2, we obtain that the series

∑∞
n=1 anfn is constant on the interval [0, kM ] whose

length is kM .
We remark that, if M = 1, then the sequence we have constructed is the Rademacher

system. Moreover, as k1 = 1/2, we obtain the result by Stechkin and Ul’yanov.
In the previous example, only finitely many coefficients are non-null: this is not acci-

dental, because, as we shall see in Theorem 3.6 below, this must happen for every series
which is constant on a set of positive measure. Why is this so? Assume that (fn) is the
Rademacher sequence and that F is a set of constancy of

∑∞
n=1 anfn. Then there exists a

dyadic interval H, let us say of length 2−p, such that m(F ∩ H) > k1m(H). As f1, . . . , fp

are constants on H we can apply Theorem 2.2 to the tail subsequence fp+1, fp+2, . . .

on H, obtaining that an = 0 for every n > p. In the general case we can find a set H

acting as the dyadic interval, but
∑p

n=1 anfn is not necessarily constant on F ∩H, hence
Theorem 2.2 cannot be applied directly and we need to modify its proof.

Theorem 2.3. Let (fn) be a sequence of stochastically independent functions in
the class FM . Let (an) be a sequence of complex numbers. Assume that the series∑∞

n=1 anfn(x) converges to a constant on a set of positive measure. Then there are
only finitely many an with an �= 0.

Proof. Let F be the set where the series
∑∞

n=1 anfn converges to a constant, let us
say µ. As F is measurable with respect to the σ-algebra generated by the sequence (fn),
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there exists a set H = f−1
1 (B1) ∩ · · · ∩ f−1

p (Bp), where B1, . . . , Bp are Borel sets, such
that m(F ∩ H) > kMm(H).

We take 0 < d < 1/2 and C such that

m(F ∩ H)
m(H)

> C >
M2

M2 + (1 − 2d)2
> kM .

To show that ap+1 = 0 we fix ε > 0 and we consider the sets Fq defined as above. Let
q > p+1 such that m(Fq ∩H) > Cm(H). There exist Borel sets A1, . . . , Ap, Ap+2, . . . , Aq

satisfying that the diameter of every An is bounded by ε/(2n|an|) and m(Fq ∩ G) >

Cm(G), where G = f−1
1 (A1) ∩ · · · f−1

p (Ap) ∩ f−1
p+2(Ap+2) ∩ · · · ∩ f−1

q (Aq), and such that
An ⊂ Bn for n = 1, . . . , p.

As in the proof of Theorem 2.2 we can find x, y ∈ Fq∩G such that |fp+1(x)−fp+1(y)| �
d. It follows that ap+1 = 0 and, therefore, an = 0 for every n > p. �

3. Sets of uniqueness

In this section we shall determine the best constant for sets of uniqueness of series of
uniformly bounded independent functions. We introduce the following definition: given
a non-negative integer p � 0, let us define α(M, p) as the smallest upper bound of the
measures of the sets A such that there exist f1, . . . , fp+1, stochastically independent, in
the class FM , satisfying that

∑p+1
n=1 anfn is constant on A, for some a1 �= 0, . . . , ap+1 �= 0.

Remark 3.1. Let us notice that α(M, 0) was computed in the paragraphs following
Theorem 2.2, where we showed that α(M, 0) = M2/(M2 + 1).

Our first task is to show that α(M, p) is a decreasing function of p. We need the
following lemma.

Lemma 3.2. Let f be integrable on [0, 1] and let αf = sup{m(f = µ) : µ ∈ C}. For
every ε > 0 there exists δ > 0 such that m(|f − µ| < δ) � αf + ε for every complex
number µ.

Proof. Assume by contradiction that there exist ε > 0, δn ∈ (0, 1), δn → 0 and a
sequence (µn) such that m(|f − µn| < δn) > αf + ε. As f is integrable, there is N such
that m(f � N) < ε. Hence (µn) is bounded by N + 1, so we can assume as well that µn

converges to some µ.
Given δ > 0 we choose n satisfying both |µn − µ| < δ/2 and δn < δ/2. We have that

m(|f − µ| < δ) � m(|f − µn| < δn) > αf + ε.

If δ → 0 we obtain that m(f = µ) � αf + ε > αf , contradicting the definition of
αf . �

Proposition 3.3. α(M, p + 1) � α(M, p) for every p � 0.
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Proof. Let ε > 0. Let a1 �= 0, . . . , ap+2 �= 0, f1, . . . , fp+2 ∈ FM stochastically inde-
pendent. We apply Lemma 3.2 to the function f = a1f1 + · · ·+ap+1fp+1, obtaining δ > 0
such that m(|f − λ| < δ) � αf + ε � α(M, p) + ε for every λ ∈ C.

Let P be a countable partition of the complex plane, such that every B ∈ P is contained
in some ball of radius δ, thus satisfying m(f ∈ B) � α(M, p) + ε. For every µ ∈ C, since
f and fp+2 are independent, we have

m(a1f1 + · · · + ap+2fp+2 = µ) �
∑
B∈P

m((f ∈ B) ∩ (ap+2fp+2 ∈ µ − B))

=
∑
B∈P

m(f ∈ B)m(ap+2fp+2 ∈ µ − B)

�
∑
B∈P

(α(M, p) + ε)m(ap+2fp+2 ∈ µ − B)

= α(M, p) + ε.

It follows by definition that α(M, p + 1) � α(M, p) + ε. �

We remark that, if (fn) is an independent sequence in FM and, for some µ,
m(

∑∞
n=1anfn = µ) > α(M, p), then an = 0 for all n except for at most p coefficients.

Indeed, Theorem 2.3 implies that there are only finitely many an �= 0; let us assume that
just q of them are non-null. By definition we have α(M, q) � m(

∑∞
n=1anfn = µ) and

Proposition 3.3 above gives q < p.
In order to compute α(M, 1) we need the following lemma.

Lemma 3.4. Let 0 < R < 1. Let bj � 0, cj � 0 such that bj � R, cj � R for
j = 1, . . . , p. If

∑p
j=1 bj � 1 and

∑p
j=1 cj � 1, then

∑p
j=1 bjcj � R2 + (1 − R)2.

Proof. Replacing R by 1 − R if necessary we can assume that R � 1/2. It is easy
to check that the extreme points of the convex subset of R

p defined by the inequalities
0 � bj � R, j = 1, . . . , p, and

∑p
j=1 bj � 1 are of the following types: (a) the origin,

(b) points with some bj = R and bk = 0 for k �= j, and (c) points with some bj = R,
some bk = 1 − R and bi = 0 for i �= j, i �= k.

For fixed cj , j = 1, . . . , p, the linearity of
∑p

j=1 bjcj implies that the maximum must
be attained at some extreme point of type (c), since cj � 0. It follows that there must
exist k and j such that

∑p
j=1 bjcj � Rcj + (1 − R)ck.

A similar argument applies to the linear function Rcj + (1 − R)ck, showing that∑p
j=1 bjcj � R2 + (1 − R)2, since R � 1/2. �

Proposition 3.5. α(M, 1) = (M4 + 1)/(M2 + 1)2.

Proof. Let a1 �= 0, a2 �= 0, f1, f2 ∈ FM independent, 0 < d < 1. For every µ ∈ C, we
consider a countable partition P of the complex plane such that both B and (µ−a1B)/a2

have diameter bounded by d for all B ∈ P. We have

m(a1f1 + a2f2 = µ) �
∑
B∈P

m(f1 ∈ B)m(f2 ∈ (µ − a1B)/a2).
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By Lemma 2.1, we can apply Lemma 3.4 with R = M2/(M2 + (1 − d))2, obtaining

m(a1f1 + a2f2 = µ) � M4 + (1 − d)4

(M2 + (1 − d)2)2
.

Letting d → 0 it follows that α(M, 1) � (M4 + 1)/(M2 + 1)2.
This bound is attained with the first and the second terms of the sequence (fn) con-

structed below Theorem 2.2, taking a1 = 1, a2 = −1 and µ = 0. �

Finally, we determine the best constant that we are looking for as follows.

Theorem 3.6. If m(E) < (2M2/(M2 + 1)2), then E is a set of uniqueness for every
sequence of stochastically independent functions in FM which are not null on any set of
positive measure.

Proof. Let (an) be such that
∑∞

n=1 anfn(x) = 0 for every x ∈ F = [0, 1] \ E. As
m(F ) > α(M, 1), then all the coefficients are null except, perhaps, one of them, say an,
which also satisfies an = 0 because m(fn = 0) = 0. �

We point out that the example in the proof of Proposition 3.5 gives a set of measure
2M2/(M2 + 1)2 which is not a set of uniqueness. Therefore, the constant obtained in
Theorem 3.6 is the best possible.

Remark 3.7. Let us observe that in the proof of Theorem 3.6, if we assume that some
fn can be null on some set of positive measure, in order to obtain that an = 0 as well,
it is enough to have m(F ) > m(fn = 0). Thus, since for every f ∈ FM , m(f = 0) �
(M2 − 1)/M2, it follows that if m(E) < CM = inf{(1/M2), (2M2/(M2 + 1)2)}, then E

is a set of uniqueness for every sequence of stochastically independent functions in FM .
Let us observe that if M2 < 1 +

√
2, then the infimum is 2M2/(M2 + 1)2, whereas if

M2 � 1 +
√

2, then it is 1/M2. Nevertheless, sets E with

(1/M2) � m(E) < (2M2/(M2 + 1)2),

which are not of uniqueness, are in some sense trivial, because their complements must
be contained in the set where some function of the system is null.
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