# SETS OF UNIQUENESS OF SERIES OF STOCHASTICALLY INDEPENDENT FUNCTIONS 

FRANCISCO J. FRENICHE AND RICARDO RÍOS-COLLANTES-DE-TERÁN<br>Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, Sevilla 41080, Spain<br>(freniche@us.es; rori@us.es)

(Received 4 April 2000)


#### Abstract

It is shown that, for every sequence $\left(f_{n}\right)$ of stochastically independent functions defined on $[0,1]$-of mean zero and variance one, uniformly bounded by $M$-if the series $\sum_{n=1}^{\infty} a_{n} f_{n}$ converges to some constant on a set of positive measure, then there are only finitely many non-null coefficients $a_{n}$, extending similar results by Stechkin and Ul'yanov on the Rademacher system. The best constant $C_{M}$ is computed such that for every such sequence $\left(f_{n}\right)$ any set of measure strictly less than $C_{M}$ is a set of uniqueness for $\left(f_{n}\right)$.


Keywords: set of uniqueness; stochastically independent system; set of constancy
AMS 2000 Mathematics subject classification: Primary 42C25 Secondary 60G50

## 1. Introduction

First of all, let us recall the concept of a set of uniqueness of a system of complex functions. Let $\left(f_{n}\right)$ be an orthonormal sequence of functions defined on the unit interval $[0,1]$. It is said that $E \subset[0,1]$ is a set of uniqueness for $\left(f_{n}\right)$ if the unique series $\sum_{n=1}^{\infty} a_{n} f_{n}$, which converges to zero on the complement of $E$, is the null series.
Sets of uniqueness for trigonometrical series have been studied deeply since Cantor, who proved that finite sets are sets of uniqueness. Sets of Lebesgue positive measure $m(E)>0$ are never sets of uniqueness for the trigonometric system, but there exist sets of measure zero which are not of uniqueness, a result of Menshov. The behaviour of sets of uniqueness for lacunary trigonometrical series is quite different: it was shown by Zygmund that if $m(E)<1$, then $E$ is of uniqueness [3].
For the Rademacher system and any of its permutations, Stechkin and Ul'yanov [2] proved that if $m(E)<\frac{1}{2}$, then $E$ is of uniqueness, as well as proving that a weaker uniqueness theorem is true for sets with $m(E)<1$ : namely, that any series which converges to zero on the complement of $E$ is actually a finite sum.
We consider a fixed constant $M \geqslant 1$. We shall denote by $\mathcal{F}_{M}$ the class of all measurable functions defined on $[0,1]$ with mean zero, variance one and bounded by $M$, that is to
say, such that

$$
\int_{0}^{1} f(x) \mathrm{d} x=0, \quad \int_{0}^{1}|f(x)|^{2} \mathrm{~d} x=1, \quad|f(x)| \leqslant M \text { almost everywhere. }
$$

We shall extend the Stechkin and Ul'yanov theorems for systems of functions $\left(f_{n}\right)$ in the class $\mathcal{F}_{M}$ which are stochastically independent, that is, those systems for which

$$
m\left(f_{1}^{-1}\left(B_{1}\right) \cap \cdots \cap f_{n}^{-1}\left(B_{n}\right)\right)=m\left(f_{1}^{-1}\left(B_{1}\right)\right) \cdots m\left(f_{n}^{-1}\left(B_{n}\right)\right)
$$

for every finite family of Borel sets $B_{1}, \ldots, B_{n}$. We prove in Theorem 2.2, for these systems, that a non-null series can only be constant on a set of measure at most $k_{M}=$ $M^{2} /\left(M^{2}+1\right)$-in particular, if $m(E)<1-k_{M}$, then $E$ is of uniqueness-and we construct a system for which this bound is attained. In Theorem 2.3 it is shown that, if a series converges to a constant on a set of positive measure, then only finitely many of the coefficients are non-zero.

We next recall the result of Kashin and Saakyan $[\mathbf{1}$, p. 30, Theorem 7]: there exists a constant $C_{M}$ such that $m\left(\left\{x \in[0,1]:|P(x)| \geqslant \frac{1}{2}\|P\|_{2}\right\}\right) \geqslant C_{M}$ for every system $\left(f_{n}\right)$ of independent functions in $\mathcal{F}_{M}$ and every polynomial $P=\sum_{n=1}^{p} a_{n} f_{n}$ in $\left(f_{n}\right)$.

Let us remark that the constant $C_{M}$ satisfies the property that if $m(E)<C_{M}$, then $E$ is of uniqueness for every system of independent functions in $\mathcal{F}_{M}$. This fact follows from our Theorem 2.2 by taking $C_{M}=1-k_{M}$. We point out that the proof of this theorem is more elementary than that of the inequality of Kashin and Saakyan.

The last section of the paper is devoted to computing the best constant $C_{M}$ satisfying this property, which is obtained in Theorem 3.6 (see also the remark following it). In order to compute it we introduce and study the coefficients $\alpha(M, p)$ which bound the measures of the sets of constancy of polynomials $P=\sum_{n=1}^{p+1} a_{n} f_{n}$ with every $a_{n} \neq 0$ and $f_{1}, \ldots, f_{p+1} \in \mathcal{F}_{M}$ stochastically independent.

It is worth remarking that, although we assume the functions $f_{n}$ to be complex valued, the proofs apply to functions with values in any finite-dimensional normed space, without any change in the constants appearing in the statements of the theorems.

## 2. Sets of constancy

We begin with the study of the measure of the sets $F \subset[0,1]$ on which a series $\sum_{n=1}^{\infty} a_{n} f_{n}$ is constant, for some sequence $\left(f_{n}\right)$ of stochastically independent functions in $\mathcal{F}_{M}$, without all the coefficients $a_{n}$ being zero.

Let us fix such a sequence $\left(f_{n}\right)$, a complex sequence $\left(a_{n}\right)$, and a complex number $\mu$. Write $F=\left\{x \in[0,1]: \sum_{n=1}^{\infty} a_{n} f_{n}(x)=\mu\right\}$. We shall look for the smallest constant $C$ such that if $m(F)>C$, then $a_{1}=0$.

A natural way to prove that $a_{1}=0$ is, roughly speaking, to find two points $x, y \in F$ such that $\sum_{n=2}^{\infty} a_{n} f_{n}(x)$ and $\sum_{n=2}^{\infty} a_{n} f_{n}(y)$ are close together, but keeping $f_{1}(x)$ away from $f_{1}(y)$.

Assume that $m(F)>C$. Let $\epsilon>0$. In order to apply the independence hypothesis, we shall work with finitely many functions. Let

$$
F_{q}=\bigcap_{p=q}^{\infty}\left\{x \in[0,1]:\left|\sum_{n=1}^{p} a_{n} f_{n}(x)-\mu\right|<\varepsilon\right\} .
$$

As the sequence $F_{q}$ is increasing and $F \subset F_{1} \cup F_{2} \cup \cdots$, we have that $m\left(F_{q}\right)>C$ for some $q>1$. It is enough to find $x, y \in F_{q}$ such that $\left|f_{1}(x)-f_{1}(y)\right| \geqslant d$ with $d>0$ independent of $\varepsilon$, and $\left|a_{n}\right|\left|f_{n}(x)-f_{n}(y)\right| \leqslant \varepsilon / 2^{n}$ for $n=2, \ldots, q$. Indeed, we then have

$$
\begin{aligned}
d\left|a_{1}\right| & \leqslant\left|a_{1} f_{1}(x)-a_{1} f_{1}(y)\right| \\
& \leqslant \sum_{n=2}^{q}\left|a_{n}\right|\left|f_{n}(x)-f_{n}(y)\right|+\left|\sum_{n=1}^{q} a_{n} f_{n}(x)-\sum_{n=1}^{q} a_{n} f_{n}(y)\right| \\
& \leqslant \sum_{n=2}^{q} \frac{\varepsilon}{2^{n}}+2 \varepsilon \\
& \leqslant 3 \varepsilon
\end{aligned}
$$

We consider sets $H$ which can be written as $f_{2}^{-1}\left(B_{2}\right) \cap \cdots \cap f_{q}^{-1}\left(B_{q}\right)$, where $B_{n}$ is a Borel set of diameter bounded by $\varepsilon /\left(2^{n}\left|a_{n}\right|\right)$. Let us observe that $\left|a_{n}\right|\left|f_{n}(x)-f_{n}(y)\right| \leqslant$ $\varepsilon / 2^{n}$ for $n=2, \ldots, q$, for every $x, y \in H$. As the functions are essentially bounded by $M$, we can cover $[0,1]$, up to a set of measure zero, with finitely many such sets $H$; hence there exists such a set $H$ satisfying $m\left(F_{q} \cap H\right)>C m(H)$.

Let us fix $x \in F_{q} \cap H$. If we can choose $C$ and $d$ such that $m\left(F_{q} \cap H\right)>m\left(f_{1}^{-1}(B) \cap\right.$ $H$ ), where $B$ is the disc with centre $f_{1}(x)$ and radius $d$, then we will have found $y \in F_{q} \cap H$ and $y \notin f_{1}^{-1}(B)$, therefore satisfying $\left|f_{1}(x)-f_{1}(y)\right| \geqslant d$. On the basis of the independence of the sequence $\left(f_{n}\right)$, it is enough to be able to choose $C$ and $d$ such that $m\left(F_{q}\right)>m\left(f_{1}^{-1}(B)\right)$. We estimate the measure of $f_{1}^{-1}(B)$ in the following lemma.

Lemma 2.1. Let $0<d \leqslant 1 / 2$ and let $B$ be a Borel set contained in a ball of radius d. If $f \in \mathcal{F}_{M}$, then $m\left(f^{-1}(B)\right) \leqslant\left(M^{2} /\left(M^{2}+(1-2 d)^{2}\right)\right)$.

Proof. We can assume that $B$ is a ball of radius $d$ and that the measure of $E=f^{-1}(B)$ is strictly positive. We define the average $\lambda=(1 / m(E)) \int_{E} f(x) \mathrm{d} x$ and the function $g(x)=\lambda$ for $x \in E$ and $g(x)=f(x)$ for $x \notin E$. Since $\lambda \in B$, we have

$$
\|f\|_{2}-\|g\|_{2} \leqslant\|f-g\|_{2}=\left(\int_{E}|f(x)-\lambda|^{2} \mathrm{~d} x\right)^{1 / 2} \leqslant 2 d
$$

As $f \in \mathcal{F}_{M}$ it follows that

$$
(1-2 d)^{2} \leqslant\|g\|_{2}^{2} \leqslant|\lambda|^{2} m(E)+M^{2}(1-m(E))
$$

On the other hand,

$$
|\lambda|=\frac{1}{m(E)}\left|-\int_{[0,1] \backslash E} f(x) \mathrm{d} x\right| \leqslant \frac{M(1-m(E))}{m(E)} .
$$

The statement follows from these two inequalities.

In this way we obtain the next theorem.
Theorem 2.2. Let $\left(f_{n}\right)$ be a sequence of stochastically independent functions in $\mathcal{F}_{M}$. Let $\left(a_{n}\right)$ be a sequence of complex numbers. If the series $\sum_{n=1}^{\infty} a_{n} f_{n}$ converges to a constant on a set of measure strictly greater than $k_{M}=M^{2} /\left(M^{2}+1\right)$, then $a_{n}=0$ for every $n$.

Proof. Let $F=\left\{x \in[0,1]: \sum_{n=1}^{\infty} a_{n} f_{n}(x)=\mu\right\}$. We take $0<d<1 / 2$ and $C$ such that

$$
m(F)>C>\frac{M^{2}}{M^{2}+(1-2 d)^{2}}>k_{M}
$$

As we explained before, we obtain that $a_{1}=0$. Then, by induction, we get $a_{n}=0$ for every $n$.

The estimate obtained in Lemma 2.1 gives us the best bound for the measure of sets of constancy of functions $f$ in $\mathcal{F}_{M}$, namely $m(f=\mu) \leqslant k_{M}$. Indeed, the function $f_{1}$ defined as $f_{1}(x)=1 / M$ on $\left[0, k_{M}\right]$ and $f_{1}(x)=-M$ on $\left(k_{M}, 1\right]$ is clearly in $\mathcal{F}_{M}$ and $m\left(f_{1}=1 / M\right)=k_{M}$.

This fact points out to us that the constant $k_{M}$ in Theorem 2.2 is the best possible. To see this, we construct the following sequence of independent functions $\left(f_{n}\right)$ which are piecewise constant (according to [1, p. 18]): we start with $f_{1}$ as defined above, and, assuming that $f_{n}$ has been defined, we then define $f_{n+1}$ on each interval $[a, b)$, where $f_{n}$ is constant as $f_{n+1}(x)=1 / M$ for $x \in\left[a, a+(b-a) k_{M}\right)$ and $f_{n+1}(x)=-M$ for $x \in\left[a+(b-a) k_{M}, b\right)$. It is clear that $f_{n} \in \mathcal{F}_{M}$ and, taking $a_{1}=1$ and $a_{n}=0$ for $n \geqslant 2$, we obtain that the series $\sum_{n=1}^{\infty} a_{n} f_{n}$ is constant on the interval $\left[0, k_{M}\right]$ whose length is $k_{M}$.

We remark that, if $M=1$, then the sequence we have constructed is the Rademacher system. Moreover, as $k_{1}=1 / 2$, we obtain the result by Stechkin and Ul'yanov.

In the previous example, only finitely many coefficients are non-null: this is not accidental, because, as we shall see in Theorem 3.6 below, this must happen for every series which is constant on a set of positive measure. Why is this so? Assume that $\left(f_{n}\right)$ is the Rademacher sequence and that $F$ is a set of constancy of $\sum_{n=1}^{\infty} a_{n} f_{n}$. Then there exists a dyadic interval $H$, let us say of length $2^{-p}$, such that $m(F \cap H)>k_{1} m(H)$. As $f_{1}, \ldots, f_{p}$ are constants on $H$ we can apply Theorem 2.2 to the tail subsequence $f_{p+1}, f_{p+2}, \ldots$ on $H$, obtaining that $a_{n}=0$ for every $n>p$. In the general case we can find a set $H$ acting as the dyadic interval, but $\sum_{n=1}^{p} a_{n} f_{n}$ is not necessarily constant on $F \cap H$, hence Theorem 2.2 cannot be applied directly and we need to modify its proof.

Theorem 2.3. Let $\left(f_{n}\right)$ be a sequence of stochastically independent functions in the class $\mathcal{F}_{M}$. Let $\left(a_{n}\right)$ be a sequence of complex numbers. Assume that the series $\sum_{n=1}^{\infty} a_{n} f_{n}(x)$ converges to a constant on a set of positive measure. Then there are only finitely many $a_{n}$ with $a_{n} \neq 0$.

Proof. Let $F$ be the set where the series $\sum_{n=1}^{\infty} a_{n} f_{n}$ converges to a constant, let us say $\mu$. As $F$ is measurable with respect to the $\sigma$-algebra generated by the sequence $\left(f_{n}\right)$,
there exists a set $H=f_{1}^{-1}\left(B_{1}\right) \cap \cdots \cap f_{p}^{-1}\left(B_{p}\right)$, where $B_{1}, \ldots, B_{p}$ are Borel sets, such that $m(F \cap H)>k_{M} m(H)$.

We take $0<d<1 / 2$ and $C$ such that

$$
\frac{m(F \cap H)}{m(H)}>C>\frac{M^{2}}{M^{2}+(1-2 d)^{2}}>k_{M}
$$

To show that $a_{p+1}=0$ we fix $\varepsilon>0$ and we consider the sets $F_{q}$ defined as above. Let $q>p+1$ such that $m\left(F_{q} \cap H\right)>C m(H)$. There exist Borel sets $A_{1}, \ldots, A_{p}, A_{p+2}, \ldots, A_{q}$ satisfying that the diameter of every $A_{n}$ is bounded by $\varepsilon /\left(2^{n}\left|a_{n}\right|\right)$ and $m\left(F_{q} \cap G\right)>$ $C m(G)$, where $G=f_{1}^{-1}\left(A_{1}\right) \cap \cdots f_{p}^{-1}\left(A_{p}\right) \cap f_{p+2}^{-1}\left(A_{p+2}\right) \cap \cdots \cap f_{q}^{-1}\left(A_{q}\right)$, and such that $A_{n} \subset B_{n}$ for $n=1, \ldots, p$.

As in the proof of Theorem 2.2 we can find $x, y \in F_{q} \cap G$ such that $\left|f_{p+1}(x)-f_{p+1}(y)\right| \geqslant$ $d$. It follows that $a_{p+1}=0$ and, therefore, $a_{n}=0$ for every $n>p$.

## 3. Sets of uniqueness

In this section we shall determine the best constant for sets of uniqueness of series of uniformly bounded independent functions. We introduce the following definition: given a non-negative integer $p \geqslant 0$, let us define $\alpha(M, p)$ as the smallest upper bound of the measures of the sets $A$ such that there exist $f_{1}, \ldots, f_{p+1}$, stochastically independent, in the class $\mathcal{F}_{M}$, satisfying that $\sum_{n=1}^{p+1} a_{n} f_{n}$ is constant on $A$, for some $a_{1} \neq 0, \ldots, a_{p+1} \neq 0$.

Remark 3.1. Let us notice that $\alpha(M, 0)$ was computed in the paragraphs following Theorem 2.2, where we showed that $\alpha(M, 0)=M^{2} /\left(M^{2}+1\right)$.

Our first task is to show that $\alpha(M, p)$ is a decreasing function of $p$. We need the following lemma.

Lemma 3.2. Let $f$ be integrable on $[0,1]$ and let $\alpha_{f}=\sup \{m(f=\mu): \mu \in \mathbb{C}\}$. For every $\varepsilon>0$ there exists $\delta>0$ such that $m(|f-\mu|<\delta) \leqslant \alpha_{f}+\varepsilon$ for every complex number $\mu$.

Proof. Assume by contradiction that there exist $\varepsilon>0, \delta_{n} \in(0,1), \delta_{n} \rightarrow 0$ and a sequence $\left(\mu_{n}\right)$ such that $m\left(\left|f-\mu_{n}\right|<\delta_{n}\right)>\alpha_{f}+\varepsilon$. As $f$ is integrable, there is $N$ such that $m(f \geqslant N)<\varepsilon$. Hence $\left(\mu_{n}\right)$ is bounded by $N+1$, so we can assume as well that $\mu_{n}$ converges to some $\mu$.

Given $\delta>0$ we choose $n$ satisfying both $\left|\mu_{n}-\mu\right|<\delta / 2$ and $\delta_{n}<\delta / 2$. We have that

$$
m(|f-\mu|<\delta) \geqslant m\left(\left|f-\mu_{n}\right|<\delta_{n}\right)>\alpha_{f}+\varepsilon
$$

If $\delta \rightarrow 0$ we obtain that $m(f=\mu) \geqslant \alpha_{f}+\varepsilon>\alpha_{f}$, contradicting the definition of $\alpha_{f}$.

Proposition 3.3. $\alpha(M, p+1) \leqslant \alpha(M, p)$ for every $p \geqslant 0$.

Proof. Let $\varepsilon>0$. Let $a_{1} \neq 0, \ldots, a_{p+2} \neq 0, f_{1}, \ldots, f_{p+2} \in \mathcal{F}_{M}$ stochastically independent. We apply Lemma 3.2 to the function $f=a_{1} f_{1}+\cdots+a_{p+1} f_{p+1}$, obtaining $\delta>0$ such that $m(|f-\lambda|<\delta) \leqslant \alpha_{f}+\varepsilon \leqslant \alpha(M, p)+\varepsilon$ for every $\lambda \in \mathbb{C}$.

Let $\mathcal{P}$ be a countable partition of the complex plane, such that every $B \in \mathcal{P}$ is contained in some ball of radius $\delta$, thus satisfying $m(f \in B) \leqslant \alpha(M, p)+\varepsilon$. For every $\mu \in \mathbb{C}$, since $f$ and $f_{p+2}$ are independent, we have

$$
\begin{aligned}
m\left(a_{1} f_{1}+\cdots+a_{p+2} f_{p+2}=\mu\right) & \leqslant \sum_{B \in \mathcal{P}} m\left((f \in B) \cap\left(a_{p+2} f_{p+2} \in \mu-B\right)\right) \\
& =\sum_{B \in \mathcal{P}} m(f \in B) m\left(a_{p+2} f_{p+2} \in \mu-B\right) \\
& \leqslant \sum_{B \in \mathcal{P}}(\alpha(M, p)+\varepsilon) m\left(a_{p+2} f_{p+2} \in \mu-B\right) \\
& =\alpha(M, p)+\varepsilon .
\end{aligned}
$$

It follows by definition that $\alpha(M, p+1) \leqslant \alpha(M, p)+\varepsilon$.
We remark that, if $\left(f_{n}\right)$ is an independent sequence in $\mathcal{F}_{M}$ and, for some $\mu$, $m\left(\sum_{n=1}^{\infty} a_{n} f_{n}=\mu\right)>\alpha(M, p)$, then $a_{n}=0$ for all $n$ except for at most $p$ coefficients. Indeed, Theorem 2.3 implies that there are only finitely many $a_{n} \neq 0$; let us assume that just $q$ of them are non-null. By definition we have $\alpha(M, q) \geqslant m\left(\sum_{n=1}^{\infty} a_{n} f_{n}=\mu\right)$ and Proposition 3.3 above gives $q<p$.

In order to compute $\alpha(M, 1)$ we need the following lemma.
Lemma 3.4. Let $0<R<1$. Let $b_{j} \geqslant 0, c_{j} \geqslant 0$ such that $b_{j} \leqslant R, c_{j} \leqslant R$ for $j=1, \ldots, p$. If $\sum_{j=1}^{p} b_{j} \leqslant 1$ and $\sum_{j=1}^{p} c_{j} \leqslant 1$, then $\sum_{j=1}^{p} b_{j} c_{j} \leqslant R^{2}+(1-R)^{2}$.

Proof. Replacing $R$ by $1-R$ if necessary we can assume that $R \geqslant 1 / 2$. It is easy to check that the extreme points of the convex subset of $\mathbb{R}^{p}$ defined by the inequalities $0 \leqslant b_{j} \leqslant R, j=1, \ldots, p$, and $\sum_{j=1}^{p} b_{j} \leqslant 1$ are of the following types: (a) the origin, (b) points with some $b_{j}=R$ and $b_{k}=0$ for $k \neq j$, and (c) points with some $b_{j}=R$, some $b_{k}=1-R$ and $b_{i}=0$ for $i \neq j, i \neq k$.

For fixed $c_{j}, j=1, \ldots, p$, the linearity of $\sum_{j=1}^{p} b_{j} c_{j}$ implies that the maximum must be attained at some extreme point of type (c), since $c_{j} \geqslant 0$. It follows that there must exist $k$ and $j$ such that $\sum_{j=1}^{p} b_{j} c_{j} \leqslant R c_{j}+(1-R) c_{k}$.

A similar argument applies to the linear function $R c_{j}+(1-R) c_{k}$, showing that $\sum_{j=1}^{p} b_{j} c_{j} \leqslant R^{2}+(1-R)^{2}$, since $R \geqslant 1 / 2$.

Proposition 3.5. $\alpha(M, 1)=\left(M^{4}+1\right) /\left(M^{2}+1\right)^{2}$.
Proof. Let $a_{1} \neq 0, a_{2} \neq 0, f_{1}, f_{2} \in \mathcal{F}_{M}$ independent, $0<d<1$. For every $\mu \in \mathbb{C}$, we consider a countable partition $\mathcal{P}$ of the complex plane such that both $B$ and $\left(\mu-a_{1} B\right) / a_{2}$ have diameter bounded by $d$ for all $B \in \mathcal{P}$. We have

$$
m\left(a_{1} f_{1}+a_{2} f_{2}=\mu\right) \leqslant \sum_{B \in \mathcal{P}} m\left(f_{1} \in B\right) m\left(f_{2} \in\left(\mu-a_{1} B\right) / a_{2}\right)
$$

By Lemma 2.1, we can apply Lemma 3.4 with $R=M^{2} /\left(M^{2}+(1-d)\right)^{2}$, obtaining

$$
m\left(a_{1} f_{1}+a_{2} f_{2}=\mu\right) \leqslant \frac{M^{4}+(1-d)^{4}}{\left(M^{2}+(1-d)^{2}\right)^{2}}
$$

Letting $d \rightarrow 0$ it follows that $\alpha(M, 1) \leqslant\left(M^{4}+1\right) /\left(M^{2}+1\right)^{2}$.
This bound is attained with the first and the second terms of the sequence $\left(f_{n}\right)$ constructed below Theorem 2.2, taking $a_{1}=1, a_{2}=-1$ and $\mu=0$.

Finally, we determine the best constant that we are looking for as follows.
Theorem 3.6. If $m(E)<\left(2 M^{2} /\left(M^{2}+1\right)^{2}\right)$, then $E$ is a set of uniqueness for every sequence of stochastically independent functions in $\mathcal{F}_{M}$ which are not null on any set of positive measure.

Proof. Let $\left(a_{n}\right)$ be such that $\sum_{n=1}^{\infty} a_{n} f_{n}(x)=0$ for every $x \in F=[0,1] \backslash E$. As $m(F)>\alpha(M, 1)$, then all the coefficients are null except, perhaps, one of them, say $a_{n}$, which also satisfies $a_{n}=0$ because $m\left(f_{n}=0\right)=0$.

We point out that the example in the proof of Proposition 3.5 gives a set of measure $2 M^{2} /\left(M^{2}+1\right)^{2}$ which is not a set of uniqueness. Therefore, the constant obtained in Theorem 3.6 is the best possible.

Remark 3.7. Let us observe that in the proof of Theorem 3.6, if we assume that some $f_{n}$ can be null on some set of positive measure, in order to obtain that $a_{n}=0$ as well, it is enough to have $m(F)>m\left(f_{n}=0\right)$. Thus, since for every $f \in \mathcal{F}_{M}, m(f=0) \leqslant$ $\left(M^{2}-1\right) / M^{2}$, it follows that if $m(E)<C_{M}=\inf \left\{\left(1 / M^{2}\right),\left(2 M^{2} /\left(M^{2}+1\right)^{2}\right)\right\}$, then $E$ is a set of uniqueness for every sequence of stochastically independent functions in $\mathcal{F}_{M}$.

Let us observe that if $M^{2}<1+\sqrt{2}$, then the infimum is $2 M^{2} /\left(M^{2}+1\right)^{2}$, whereas if $M^{2} \geqslant 1+\sqrt{2}$, then it is $1 / M^{2}$. Nevertheless, sets $E$ with

$$
\left(1 / M^{2}\right) \leqslant m(E)<\left(2 M^{2} /\left(M^{2}+1\right)^{2}\right),
$$

which are not of uniqueness, are in some sense trivial, because their complements must be contained in the set where some function of the system is null.

Acknowledgements. Research supported partly by DGES grant BFM2000-0514 and the Patronato Fundación Cámara Universidad de Sevilla.

## References

1. B. S. Kashin and A. A. SaAkyan, Orthogonal series, Translations of Mathematical Monographs, vol. 75 (American Mathematical Society, Providence, RI, 1989).
2. S. B. Stechkin and P. L. Ul'yanov, On sets of uniqueness, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 211-222.
3. A. Zygmund, Trigonometric series, 2nd edn (Cambridge University Press, 1968).
