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SUMMARY

Understanding patterns of influenza spread and persistence is crucial for pandemic preparedness.
The HIN1pdm09 virus caused the first influenza pandemic of the 21st century which resulted in
at least 18500 deaths. Based on laboratory-confirmed primary-care case reports we investigated
the role of weather conditions and socio-demographic variables in its initial spread and
subsequent presence in France. Our findings suggest that low relative humidity and high
population density were determinants in shaping the early spread of the virus at the national
level. Those conditions also favoured the persistence of viral presence throughout the first 33
weeks of the pandemic. Additionally this persistence was significantly favoured by low insolation.
These results confirm the increasingly recognized role of humidity in influenza dynamics and
underlie the concomitant effect of insolation. Therefore climatic factors should be taken into
account when designing influenza control and prevention measures.
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INTRODUCTION annually [2]. In temperate regions, annual influenza
dynamics follow a clear seasonal pattern marked by
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amount of solar energy that reaches the earth’s sur-
face) have been associated with the onset and spread
of influenza infection at different levels (see [6] for
a review). As these factors can influence contact
rates, immunity and virus survival in the environment,
the mechanisms underlying these relationships need to
be determined. To our knowledge, the only studies
focusing on the role of climatic parameters on pandem-
ic emergence and dynamics during the 20th century
investigated the influence of El Nino events (ENSO).
Strong or prolonged ENSO cold phase appeared to
favour influenza pandemics [7]. ENSO cold phases
have also been linked to increased seasonal influenza
mortality and morbidity in France and the USA [8].

The last pandemic was due to a novel avian/swine/
human reassortant that was first detected in Mexico in
March 2009. This new variant rapidly spread world-
wide, notably thanks to the intense air traffic existing
between Mexico and a number of big cities in other
continents [9]. A year later, 214 countries and overseas
territories had reported cases of pandemic influenza
HINT 2009 including 18 500 laboratory-confirmed
associated deaths [10]. According to extrapolations
based on a modelling approach, more than 280 000
deaths may have been associated with the HIN1 pan-
demic worldwide from April 2009 to August 2010
[11]. Yet, in most countries (including France), the
burden of the pandemic was mild compared to what
is generally observed during seasonal epidemics in
terms of both mortality and morbidity [12].
Interestingly, the peak of pandemic activity occurred
during similar climatic seasons in each country, what-
ever the first detection date of the new variant. For in-
stance, this peak took place during the autumn/winter
period in most temperate countries while no clear sea-
sonal pattern emerged in tropical and subtropical
countries [13]. In the same way at a smaller scale,
within Brazil, which encompasses several climatic
zones, there was a marked spatial structure of the per-
iod of peak activity. In the southern temperate region,
the peak activity occurred during winter while in the
northern equatorial area it took place during the
rainy season [14]. Thus the timing and the burden of
the pandemic appeared to be at least partly driven
by climatic factors.

A few studies addressed the relationship between
different weather conditions and the course of the
pandemic at different levels (Table 1; [5, 15-22]).
Here we aimed at discovering, at the national
level, the impact of climatic factors when socio-
demographic drivers are accounted for, on the initial
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propagation of pandemic HIN1 as well as on the pres-
ence of this pandemic virus in different localities
throughout the first months of the pandemic. We
chose to investigate France, where 13-24% of the
population was infected, as two complementary sur-
veillance networks collected detailed data on influenza
infections [23] in order to compare our results within
this European temperate country with those obtained
in other continents.

METHODS
Epidemiological data

We used presence/absence of influenza laboratory-
confirmed cases reported by the GROG network dur-
ing the 33 weeks (31 August 2009 to 18 April 2010) of
active surveillance in 235 French cities, by 286
primary-care practitioners distributed throughout
metropolitan France (Fig. 1). Each practitioner col-
lected nasopharyngeal swabs from patients consulting
for acute respiratory infections. The samples were sent
to one of the two national reference centres for
influenza viruses or another laboratory working with
the GROG network to test if the observed infections
were actually due to an influenza virus. If the presence
of an influenza virus was confirmed, the strain
involved was also determined (see [24] and http://
www.grog.org/ for more details on diagnostic meth-
ods). The HIN1pdm09 virus was considered to be pre-
sent in a city if at least one infection case was
laboratory confirmed during the focus week in that
place. The virus was considered to be absent if at
least one sample had been collected in the city during
the focus week and no positive sample had been
observed. The city was not considered if no sample
had been collected since absence of data could be
due to other factors than absence of the virus.

Climatic and socio-demographic variables

We chose to study temperature, humidity and UV
radiations because these parameters have been exten-
sively linked with influenza transmission (see [6] for
a review). We also included school schedules because
it has been shown that school closures have a negative
effect on influenza transmission in several countries in-
cluding France [25]. We added demographic factors as
a proxy of contact rate patterns as big cities are more
likely to possess a concentration of places (hospitals,
schools, etc.) and transport hubs (airports, train
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Table 1. Summary of the results of other studies addressing the influence of climatic factors on HIN1pdm09

transmission
Relative Absolute Solar
Ref. Study area  Data Temperature  humidity humidity radiation Precipitation Other
[15] Chile ILI Negatively Negatively Negatively n.a Negatively
associated associated associated associated
[16] China CC Negatively Negatively n.a. n.a No correlation
associated associated
[17]1 12 CC No correlation No correlation Negatively  n.a n.a Wind speed
European associated and pressure,
countries no
correlation
[18] Canada CC Negatively n.a. Negatively  n.a. n.a.
associated associated
[22] Brisbane CC Negatively n.a. n.a. n.a. Negatively
(Australia) associated associated
[19] Okinawa CC Negatively Negatively n.a. Negatively  Negatively
(Japan) associated associated associated associated
[20] Niamey CC Negatively No correlation n.a. n.a. n.a. Wind speed,
(Niger) associated no
correlation,
visibility
positively
associated
[5] USA ILI n.a. n.a Negatively  n.a. n.a
& associated
CC
[21] Changsha CC Negatively Negatively Negatively n.a n.a Wind speed
(China) associated associated associated negatively
associated,
pressure
positively
associated

ILI, Influenza-like illness cases; CC, confirmed cases; n.a., data not available.

stations, etc.) that favour both influenza amplification
and its geographical spread.

When investigating the initial spread of the virus,
we additionally considered the distance of each
locality to the nearest of the four French cities where
HINI1pdm09 was first reported by the GROG network
members and to Paris, considered as the main national
transport hub, to determine if the proximity to one of
the original pandemic foci or to the capital city was
correlated with early reports of HINT1 cases.

We used Meteo-France weekly climatic data includ-
ing temperature (mean, maximum, minimum), rela-
tive humidity (mean, maximum, minimum) and
mean insolation (see Table 2). Additionally, air pres-
sure was used along with relative humidity and alti-
tude to calculate mean absolute humidity following
the formulae used in the conversion software available
at http://www.cactus2000.de, and based on [26].
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Each virological sampling site was associated with
the nearest meteorological station that recorded tem-
perature, humidity and air pressure. The mean dis-
tance between a sampling site and the associated
meteorological station was 20-7 km (s.D. = 16-5 km)
with a maximum of 74-0km and a minimum of
1-3 km. Insolation data was added only when these
stations also recorded this parameter (in 151 cities).
Indeed, systematically searching for station recording
insolation data would have greatly increased the
mean distance between meteorological and epidemio-
logical sampling sites, thus reducing the accuracy of
climatic data. Thus two datasets were used in the
statistical analyses: (i) the first (D1) contained all
the cities for which virological data were available
(n=235), (i1) the second (D2) only included the 151
cities for which both virological and insolation data
were available.
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Fig. 1. Location of the 235 French cities studied. Cities for which insolation data were available are represented by red

dots, others are shown as blue dots.

Population sizes and densities were included at the
city level and the department level using the last
data recorded by INSEE ([27]; Table 2). Finally,
school schedules were obtained from the French
Ministry of Education website (http://www.education.
gouv.fr/cid197/les-archives-calendrier-scolaire-partir-
1960.html; Table 2).

Statistical analysis

To test the spatial autocorrelation between epidemio-
logical data we used two Mantel tests. The first one
tested the correlation between the distance separating
cities and the similarity of epidemiological data. The
second tested the correlation between the distance sep-
arating cities and the date of the first case reported by
the GROG network in each town.

To assess the impact of climatic and socio-
demographic variables on the initial spread of the
virus we used Generalized Linear Models (GLM).
We tested the correlation between the early report of
cases and these variables. The locality was considered
to have experienced an early arrival of the virus if at
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least one confirmed case was reported during the
first weeks of the French epidemics. Those tests were
run using seven different intervals to define the period
of early arrival from the first 2 weeks (31 August to 13
September 2009) to the first 8 weeks (31 August to 25
October 2009) after the first report of HIN1pdm09 in-
fection in the country. For each period of time we first
tested the correlation between the presence of the virus
during this period and each variable in a univariate
GLM model. We then selected the variables that
had a significant effect in those models for each time
period and included them in a multivariate GLM
model. If the correlation between two significant vari-
ables was higher than 0-4 we chose only one of them.
We used a backward selection process based on
Akaike’s Information Criterion (AIC) to select the
best model for each time interval.

To investigate the role of climatic and socio-
demographic variables on HINIpdm09 presence
throughout the first 33 weeks of the virus circulation
in France we used Generalized Estimating Equations
(GeeGLM function in R statistical software; http://
www.r-project.org) models because they allowed us
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Table 2. General statistics for all the variables we studied. General statistics are given for both datasets (DI, 235

cities; D2, 151 cities), except for insolation, which was available in 151 cities only

Mean Median Range
Variable DI D2 Dl D2 Dl D2
Weekly minimum temperature (°C) 47 4-3 51 47 —841t0 191 —84 10 191
Weekly maximum temperature (°C) 124 119 12-4 119 —2:5t0 304 —2-3t0 30-4
Weekly average temperature (°C) 83 79 87 82 —5-2to 24-1 —52to0 22-8
Weekly minimum relative humidity (%) 61-1 619 63-8 64-1 209 to 96-7 23 to 967
Weekly maximum relative humidity (%) 937 93-9 94-7 95-0 61-7 to 100-0 63-2 to 100-0
Weekly average relative humidity (%) 80-7 80-9 82-7 831 44-4 to 99-1 49-7 to 99-1
Weekly average absolute humidity (g/kg) 7-1 69 7-0 6-8 2:6 to 141 2:6to 13-6
Weekly mean insolation (J/em?) n.a. 6752 n.a. 4896 n.a. 91-3 to 2282-3
City population size 2008 56698 72131 10883 9935 318 to 2211297 462 to 2211297
Department population 2008 846313 833717 710034 647420 123907t02564969 123907 to 2564 969
City population density 2008 (pop./km?) 17637 20092 6522 5957 15-8 to 25192-7 15-8 to 25192-7
Department population density 2008 509-5 6819 122:2 99-9 22-3 to 20 980-0 22-3 to 209800

(pop./km?)

School holidays D1: 5 weeks of
holidays in 27
cities, 6 in 110
cities, and 7 in
98 cities

D2: 5 weeks of

Considered as a binomial variable for each
week in each city: 1 during school
holidays; 0 during school time

holidays in 19
cities, 6 in 65
cities and 7 in
67 cities

to model binomial data according to both quantitative
and qualitative variables while taking into account
their temporal autocorrelation through an autoregres-
sive model of order 1 (AR-1). We first assessed the
correlation between our variables using a pairwise
correlation test. We then selected in each group of
highly correlated variables the one that was the most
significant while not being highly correlated with
other groups of variables. Finally we used a backward
step selection to select the best model.

RESULTS
Spatial autocorrelation

The correlation between the matrix of distances separ-
ating sampling sites and the week of detection of the
first case was not significant (Mantel, 1000 iterations;
P =0-395). In the same way, the correlation between
the distance matrix and the matrix including all the
virological presence/absence data was not significant
(Mantel, 1000 iterations; P =0-938). Besides, the
date of detection of the first influenza case was
negatively correlated to both density and population
size of city with density having the strongest effect,
meaning that cases were detected earlier in the most
densely populated cities (GLM: family Poisson,
p=—470%x107° s.E.=9:65%107% P < 107°).
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Initial spread of the virus

The effect of insolation, which was tested using the
dataset containing the 151 cities for which insolation
data were available, was not significant for any of
the time periods considered in univariate GLM
models. Thus we did not include this variable in
multivariate models. The effect of all the other vari-
ables in univariate models was tested using the full
dataset (containing 235 cities). Neither the distance
to the nearest detected outbreak focus, nor the dis-
tance to Paris were significantly correlated with
early viral presence in any time interval (i.e. first
2-8 weeks of the pandemic). Within the climatic
variables mean relative humidity was negatively
associated with early presence of HIN1pdm09 dur-
ing each period considered except the longest one,
the importance of this effect varied across the
other time intervals (see Table 3). Conversely, no
effect of the temperature was observed. Moreover,
population density was consistently found to be
positively associated with early viral presence in all
intervals. In other words HIN1pdm09 viruses were
more likely to be reported during the early detection
period in the most densely populated cities than in
the less densely populated cities whatever the time
interval considered to define the period (2-8 weeks
after the first case was reported by the GROG
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Table 3. Effect of mean relative humidity and city population density on HINI1pdm09 case presence in 235 cities
during each period considered in a bivariate model (with no interaction)

Mean relative humidity during the period

City density 2008

Time period B (s.E) P value B (s.E) P value

31 Aug. to 13 Sept. 2009 —4-50x 1072 (3:98 x 1072) 4-60 x 1072 1:09 x 10™* (546 X 107°) 2:60 x 107!
31 Aug. to 20 Sept. 2009 —8-54 %1072 (437 %x 1072 510 %1072 1-68 x 10™* (586 X 107°) 420 x 1073
31 Aug. to 27 Sept. 2009 —817%1072 (436 x 1072 610 x 1072 2:09 x 10™* (653 x 107°) 1-40 x 1073
31 Aug. to 4 Oct. 2009 —1:20x 107" (4-00 x 1072 2:60 x 1073 1:59 x 107* (598 x 107°) 7-80x 1073
31 Aug. to 11 Oct. 2009 —9-47 x 1072 (3-89 x 1072) 1-50 x 1072 1-51 X 107% (562 % 107°) 720% 1073
31 Aug. to 18 Oct. 2009 —739x 1072 (3:20 x 1072) 2:10x 1072 175 % 107* (6:02 % 107°) 370x 1073
31 Aug. to 25 Oct. 2009 —3-13%x 1072 (2:97 x 1072 2:90x 107! 1:99 x 10™* (655 x 107°) 240 x 1073

Coefficient estimates (f) are given with their standard error (S.E.).

Table 4. Effect of each variable on HIN1pdm09 case presence in a univariate model. The parameters and P values of
univariate models are given for both datasets (D1, 235 cities; D2, 151 cities), except for insolation, which was

available in 151 cities only

Effect in a univariate model (GEEGLM AR-1 correlation structure)

p (s.E.) P value
Variable D1 D2 D1 D2
Weekly minimum temperature —1-22%x1072(7:17%x 1073  —742x 1073 (9-40x 107%) 880x 1072 430 107!
Weekly maximum temperature —2:60%1072(5-87%x107%) —199x 1072 (746 x 1073 93x107° 770 x 1073
Weekly average temperature —2:19x1072(672%107%) —1-58x 1072 (8:62%x 107%) 1-10x 107> 670 x 102
Weekly minimum relative humidity 2:60% 1072 (2:80x107%)  305%x1072(337x107%) <2x107!¢ <2x1071¢
Weekly maximum relative humidity 229%1072(7-16 x107%)  341x1072(924%x107%) 140%x107> 22x107*
Weekly average relative humidity 337x 1072 (410% 1073  416%x1072(505%x107%) 22x107'¢ 22x107!°
Weekly average absolute humidity —2:83%1072(1:52%x 1072  —849x 1073 (1-99x1072) 620x 1072 670 % 107!
Weekly mean insolation n.a. —2:39x 1073 (1:92%x 107 n.a. <2x 10716
City population size 2008 3711077 (6:12% 107  3:58x 1077 (5-03x107%) 1-40x107° 1072
Department population 2008 1-64 x 1077 (7-84:107%) 1431077 (1-115x 1077y 3-60x 107> 2:10x 107"
City population density 2008 328 x 107> (1:68-107%) 379x 107 (1-77x 107%)  510x 1072 32x 1072
Department population density 2008 2:85x 107> (1-40-107°) 339x 1073 (1-25%107%)  410x1072 7x 1073
School holidays 3:02 % 1072 (0-104) 1-64x 1071 (127 x 107 770 x 107! 2:00 x 107!

Coefficient estimates (f) are given with their standard error (S.E.).

network). The size of the city was also involved in
similar positive associations in univariate models
but we did not include it in multivariate models
since population size and density were highly corre-
lated. School schedules were not included in this
analysis since they did not differ between cities dur-
ing the first 8 weeks of the pandemic. The best multi-
variate models selected for each time period were
similar and contained mean relative humidity and
population density, the effects of both variables are
presented in Table 3. Thus, our analyses showed
that low relative humidity and high population

https://doi.org/10.1017/50950268815000941 Published online by Cambridge University Press

density were favourable to the early presence of
HIN1pdm09 in French cities.

Presence of HIN1pdm09 throughout the first 33 weeks
of the pandemic

Correlations between the different variables ranged
from 0-05 to 1. We selected one variable in each
group of highly correlated variables, based on the
significance of its effect on viral presence within an
univariate GEE model with AR-1 correlation struc-
ture (see Table 4). Correlations between the variables
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we selected were <0-4. The values that are presented
in Table 2 were obtained using the dataset containing
insolation values (D2, 151 cities). For comparison pur-
poses univariate GEE models with AR-1 correlation
structure were also used to select variables using the
complete dataset (D1, 235 cities) and excluding the
insolation variable. The same variables were selected
using D1 and D2 (except insolation that could not be
included using D1). Therefore all further steps of our
analysis were done on the dataset containing insolation
values (D2) since insolation had a highly significant
effect on HIN1pdm09 presence.

We used a backward selection process to select the
model that best fitted our data. The selected model as
well as corresponding parameters are presented in
Table 5. According to that model, both insolation and
relative humidity had a negative effect on pandemic
influenza cases. Temperature also had a significant
negative effect on case occurrence in a univariate
model but could not be included since temperature and
humidity are highly correlated. The population size of
the cities had a positive effect on pandemic influenza
cases. HIN1pdm09 infections were more likely to be
observed during school time and the impact of meteoro-
logical conditions was less pronounced during school
holidays. Finally, the highly significant temporal auto-
correlation observed (o =0-327, s.e. =0-178) showed
that infections were more likely to occur in a city if
cases had been observed there during the previous weeks.

DISCUSSION
Initial spread

At the European level the pandemic virus spread from
West to East. This pattern was associated with the
frequency of air travel from USA and Mexico and
the different school calendars. Indeed the probability
of observing an early first epidemic wave was higher
in countries where schools were open when the first
American cases were reported and where the connect-
edness with the first affected countries through air
traffic was important [28]. At the national level our
results did not highlight any correlation between the
distance to the first detected foci of infection or to
Paris and the early circulation of HINIpdm09 in
French cities. However, the largest cities with the high-
est population densities were more likely to report early
cases. This finding is in accordance with observations
made in the USA, where seasonal influenza infections
seem to be synchronized in highly populated states
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and then spread to neighbouring states that have a
smaller population [29]. In France a recently published
spatial analysis of pandemic HINI1 spread showed,
based on influenza-like illness cases, that three successive
phases were observed. First, cases were simultaneously
detected in Paris and several regions highly connected
with the capital, the virus then quickly spread to all
large cities and finally to rural areas around these cities
[30]. Our results, based on laboratory-confirmed cases,
appear consistent with this pattern as we highlighted
that cases were more likely to occur in the most
densely populated areas (i.e. the major conurbations).
Moreover, our findings are in line with the conclusion
of a previous study on the spread of seasonal influenza
in France, which showed that distance between regions
had no effect on viral spread contrary to different
types of transport flows (road, train, air traffic; [31]).

According to these results, we suggest that French
regions are highly interconnected, which abolishes
any distance effect in viral spread between cities at
the national level. This connectedness is higher in
large cities, which could explain why pandemic
influenza was more likely to be present in such cities
and reach them earlier, in the same way that seasonal
influenza first reaches states with a large population in
USA [29]. Yet, alternatively, the simultaneous arrival
of virus observed in several large French cities may
have been associated with independent introductions
from abroad and subsequent independent viral persist-
ence in large cities. Phylogenetic studies of the strains
isolated during the first weeks of the pandemic would
be necessary to disentangle the role of local dynamics
and connectedness between cities in shaping the initial
spread of HIN1pdm09 in France.

Interestingly, our findings also highlight the role
played by relative humidity during this first phase of
the pandemic. Indeed they suggest that low relative
humidity was favourable to the early spread of
H1N1pdm09 in French cities. This represent the first
evidence of a clear role of weather conditions on the
spread of pandemic influenza at the European temper-
ate country level.

Presence of HIN1pdm09 throughout the first months of
the pandemic

We underlined a negative correlation between relative
humidity and presence of HIN1pdm09 throughout
the 33 weeks studied. In addition, during this period
insolation was also negatively associated with the
presence of pandemic virus. The effects of humidity
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Table 5. Results of the generalized estimating equations model of variables associated with pandemic influenza
presence in 151 French cities. In both interactions the periods when children are at school are considered to be the

reference state

Variable P (s.E.) Wald P value

Weekly maximum relative humidity —2:26% 1072 (1-28 x 1072) 3-09 7-89 x 1072
Weekly mean insolation —2:69x 1073 (2:32x 107 134-48 <2x 10716
City population size 2008 471% 1077 (1:32%x1077) 12-73 360 x 1074
School holidays —14:6 (4:04) 13-08 3:00x 107*
Weekly maximum relative humidity/school holidays 146 x 107! (415%1072) 12-35 440 x 10~*
Weekly mean insolation/school holidays 146 X 1072 (413 x 1074 1255 4-00 x 10™*

Coefficient estimates (f) are given with their standard error (s.E.).

and insolation we highlighted are in accordance with
the results of experimental transmission studies as
well as viral persistence studies. Indeed, human
influenza A virus survival in the environment is favoured
by low humidity, low temperature and low insolation
[32]. Additionally, experimental transmission studies
on mammals [guinea pigs (Cavia porcellus) and ferrets
(Mustela putorius)] have shown that these conditions
also favoured aerial transmission [33, 34]. A recent
study confirmed that experimental transmission of
HIN1pdm09 between guinea pigs was also favoured
by low humidity and low temperature [35].

A similar impact of temperature and humidity on
HIN1pdm09 spread has been highlighted in several
countries and at various levels (see Table 1). De-
pending on the study, either absolute or relative hu-
midity was shown to be significantly associated with
occurrence of influenza cases. Here we confirm that
temperature and humidity were also determinants in
the persistence of HINIpdm09 at the European
country level. Moreover, we point out the potentially
crucial role of insolation that has rarely been investi-
gated thus far but has been shown to be negatively
related with HIN1 occurrence in Niamey [20] and
suggested to have a major role in shaping influenza
epidemic seasonality worldwide [36].

However, further experimental transmission studies
are needed to determine which mechanisms underlie
the effects we evidenced. Indeed, weather conditions
may affect influenza infections through multiple
ways (see [37] for a review). First, they can favour
viral survival in the environment as discussed above.
Second, they can influence host susceptibility to the in-
fection. For example, a prolonged under-exposure to
UV radiations decreases the levels of vitamin D in
the organism, which impairs immunity [38]. Third,
weather conditions can influence contact rates be-
tween hosts and time spent indoors [39].
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Limitations and soundness of our study

Our study was limited by the sampling protocol we
used. Indeed, the sampling was performed in the cities
where the GROG network members work with
patients who had decided to consult their physician
and that presented characteristic symptoms, which
did not allow detection of asymptomatic cases.
However, this limit is common to most studies based
on epidemiological data. Furthermore, we decided
not to include case number estimations in our ana-
lysis, since those that are collected in France by the
Sentinel network are based on ‘influenza-like case’
numbers rather than on laboratory-confirmed cases
which do not allow distinguishing influenza infections
from other respiratory infections. This point appears
especially important with the knowledge that some
pathogens that can cause influenza-like symptoms,
such as rhinovirus, were circulating in France before
the beginning of the HIN1pdm09 pandemic and are
thought to have influenced its timing [40]. Thus our
analyses are based on less complete but more robust
data compared to those that use influenza-like cases.
Finally, our results are based on the correlation be-
tween climatic factors and the detection of influenza
virus infections. Considering that correlation is not al-
ways due to a direct causal link, further experimental
studies are needed to improve our understanding of
the mechanisms underlying the association between
particular meteorological conditions and the observa-
tion of influenza virus infections.

Perspectives

Improving the sampling protocol described above
appears difficult since virological analyses are limited
by their cost as well as by the supplementary workload
associated with sample collection and shipment that is
acceptable for the GROG network practitioners,
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while their workload is generally already high.
Influenza surveillance needs to be urgently improved
at the global level, since influenza virus spreads ex-
tremely rapidly from one country to another. In the
European Union a network supervised by the
ECDC is responsible for gathering national data
(EISN). Yet the virological data collected by EISN
are aggregated at the national level, thus they allow
a comparison of viral dynamics across European
countries but not within them. Moreover, the local
data gathered by EISN are based on influenza-like ill-
ness (ILI) case detection. ILI cases are detected
through the observation of symptoms that can be
caused by different respiratory pathogens. Thus, to
improve the efficiency of the European surveillance
of influenza epidemics and pandemics such data
should be supplemented in each country by virological
data collected at the local level.

This need of surveillance appears especially acute if
we consider that global changes will potentially ex-
acerbate the explosive nature of influenza pandemics.
Indeed, the intensification of livestock production
coupled with an exponential increase of goods and
people flows create new opportunities for new viral
variants to emerge and spread. Further, as highlighted
by our results, weather conditions seem to influence
pandemic influenza dynamics along with population
density and school schedules, which means that cli-
matic changes may have important impacts on future
pandemics. To understand these future impacts and
meet the challenge of pandemic influenza prevention
in a changing world, the mechanisms underlying the
role of weather conditions and, more generally, of en-
vironmental conditions, on influenza dynamics should
be investigated. Experimental infection studies explor-
ing the mechanisms involved in influenza virus trans-
mission are notably needed to build up relevant
models that could help setting up timely prevention
and control measures.
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