Associations of dietary energy density with body composition and cardiometabolic risk in children with overweight and obesity: role of energy density calculations, under-reporting energy intake and physical activity

Alejandro Gomez-Bruton1,2*, Lide Arenaza3, Maria Medrano3, Jose Mora-Gonzalez4, Cristina Cadenas-Sanchez2, Jairo H. Miguels4, Victoria Muñoz-Hernández4, Elisa Merchan-Ramirez4, Wendy Daniela Martinez-Avila4, Jose Maldonado5,6, Maddi Oses3, Ignacio Tobalina7,8, Luis Gracia-Marco1,4, German Vicente-Rodriguez1,2, Francisco B. Ortega1† and Idoia Labayen3†

1GENUD (Growth, Exercise, Nutrition and Development) Research Group, Universidad de Zaragoza, 50009 Zaragoza, Spain
2Department of Physiatry and Nursing, Faculty of Health and Sport Sciences (FCSD), University of Zaragoza, 50009 Zaragoza, Spain
3Nutrition, Exercise and Health Research Group, Elikadura, Ariketa Fisikoa eta Osasuna, ELIKOS Group, Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, Campus de Arrosadia, 31008 Pamplona, Spain
4PROFITH “PRomoting FITness and Health through physical activity” Research Group, Department of Physical Education and Sports Education, Faculty of Sports Science, University of Granada, 18071 Granada, Spain
5Department of Pediatrics, School of Medicine, University of Granada, 18071 Granada, Spain
6Institute of Biomedicine Research (Instituto de Investigacióon Biosanitaria (IBS), 18071 Granada, Spain
7Department of Nuclear Medicine, University Hospital of Araba (HUA), 01009 Vitoria-Gasteiz, Spain
8Department of Surgery Radiology and Physical Medicine, Faculty of Medicine, University of the Basque Country, UPV/EHU, 01009 Vitoria-Gasteiz, Spain

(Submitted 30 October 2018 – Final revision received 15 January 2019 – Accepted 27 January 2019 – First published online 03 April 2019)

Abstract

This study examined (1) the association of dietary energy density from solid (EDS) and solid plus liquids (EDSL) with adiposity and cardiometabolic risk factors (CRF) in children with overweight and obesity, (2) the effect of under-reporting on the mentioned associations and (3) whether the association between ED and body composition and CRF is influenced by levels of physical activity. In a cross-sectional design, 208 overweight and obese children (8–12-year-old; 111 boys) completed two non-consecutive 24 h recalls. ED was calculated using two different approaches: EDS and EDSL. Under-reporters were determined with the Goldberg method. Body composition, anthropometry and fasting blood sample measurements were performed. Moderate to vigorous physical activity (MVPA) was registered with accelerometers (7-d-register). Linear regressions were performed to evaluate the association of ED with the previously mentioned variables. Neither EDS nor EDSL were associated with body composition or CRF. However, when under-reporters were excluded, EDS was positively associated with BMI ($P=0.019$), body fat percentage ($P=0.005$), abdominal fat ($P=0.008$) and fat mass index ($P=0.018$), while EDSL was positively associated with body fat percentage ($P=0.008$) and fat mass index ($P=0.026$). When stratifying the group according to physical activity recommendations, the aforementioned associations were only maintained for non-compliers. Cluster analysis showed that the low-ED and high-MVPA group presented the healthiest profile for all adiposity and CRF. These findings could partly explain inconsistencies in literature, as we found that different ED calculations entail distinct results. Physical activity levels and excluding under-reporters greatly influence the associations between ED and adiposity in children with overweight and obesity.

Key words: Nutrition; Diet; Dual-energy X-ray absorptiometry; Adiposity; Childhood; Moderate to vigorous physical activity

Childhood overweight and obesity pose a major public health concern worldwide, as they have shown to be responsible for increases in CVD risk factors(1), psychological problems(2) and orthopaedic problems(3), among many other complications. Moreover, an extensive body of research indicates that children with obesity are at a higher risk of becoming adults with obesity compared to their counterparts without obesity(4).

Abbreviations: BF%, body fat percentage; DXA, dual-energy X-ray absorptiometry; ED, energy density; EDS, energy density from solid; EDSL, energy density from solid plus liquids; EI, energy intake; FMI, fat mass index; MVPA, moderate to vigorous physical activity.

* Corresponding author: A. Gomez-Bruton, email bruton@unizar.es
† Equal contribution.
Although the aetiology of obesity is multifactorial and complex, it is clear that physical activity and dietary habits play important roles in the development of this disease as they can induce an energy imbalance and promote excessive fat deposition. Focusing on nutrition, a range of specific nutrients and foods have been suggested as important dietary determinants of obesity in childhood and adolescence, including fruit and vegetables, fibre, and sugar-sweetened beverages. Although the individual effect of the previously mentioned dietary components is important, it might not reflect the overall effect of diet. For this purpose, dietary energy density (ED) has been suggested as an appropriate measure of overall diet, specifically when evaluating the association between diet and obesity/adiposity.

A recent systematic review aiming to evaluate the association between ED and obesity including fourteen studies with children and adolescents found inconsistent results in this population, with some studies showing an association between ED and body composition and others reporting no significant associations between both variables. Surprisingly, few studies including children assessed the association between ED and cardiometabolic risk factors (i.e. blood pressure and TAG levels), which have shown to be increased in children with obesity. Although most studies presented body composition as an outcome variable, some studies used BMI, while others used body fat or anthropometric variables (skinfold thickness or waist circumference) as main outcomes, which could partly explain the mentioned inconsistent results among studies.

Another factor that could explain these inconsistencies is the definition of ED, as some researchers use solids to compute it (EDS), while others use a combination of solids and liquids (EDSL). McCaffrey et al. used five different classifications of ED and found that the definitions that did not include beverages showed the best association with changes in fat mass. Besides the definition of ED, it is obvious that other external factors could regulate the association between ED and body composition, such as physical activity, which was not registered in several previous studies, or was registered through questionnaires, which have shown to have a limited validity and reliability in previous studies.

Two studies evaluated the association between ED and body composition in children with obesity. The first developed by Butte et al. found that ED did not predict weight gain during 1 year follow-up, while a recent study developed by Aburto et al. found a positive association between ED and overweight and obesity. Interestingly, the association was stronger when only plausible reporters (i.e. excluding from the analyses both under- and over-reporters) were considered. Taking into account that previous studies have found energy intake (EI) under-reporting to be more prevalent and severe among children and adolescents with a higher BMI, identifying under-reporters when measuring the association between ED and body composition in children with overweight and obesity is of great importance.

It therefore seems timely to evaluate the association between ED and different body composition variables (i.e. BMI, adiposity) and cardiometabolic markers, taking into account levels of objectively measured physical activity, to ascertain whether ED is critical to body composition and whether physical activity modulates this association in children with overweight and obesity, a population in which EI under-reporting has been shown to be more prevalent and severe. Consequently, the aims of the present study were (1) to evaluate the association of EDS and EDSL with adiposity and cardiometabolic risk in children with overweight and obesity, (2) to estimate the effect of under-reporting on the mentioned associations and (3) to assess whether the association between ED and body composition/cardiometabolic risk is influenced by levels of physical activity.

Methods

Participants

Participants were recruited from two different cities of Spain (Granada and Vitoria-Gasteiz), as part of two projects that are briefly explained below:

(a) The ActiveBrains project (NCT02295072) that is described in detail elsewhere was developed in the city of Granada (south Spain) and aimed to examine the effects of a physical exercise program on brain, cognition, academic achievement as well as physical and mental health in 110 overweight or obesity participants aged 8–11. Although the ActiveBrains is a randomised controlled trial, data from the first cross-sectional evaluation were used for the present study (data collected from November 2014 to February 2016 in three different waves). The study protocol was approved by the Review Committee for Research Involving Human Subjects at the University of Granada (Ref. 848).

(b) The EFIGRO project (NCT02258126), developed in Vitoria-Gasteiz (north Spain), aimed to measure 160 children with overweight or obesity aged 8–12 and determine the effects of a multidisciplinary intervention on hepatic fat fraction and cardiometabolic risk factors. Data for the first cross-sectional evaluation were used for the present study (data collected from October 2014 to January 2017 in five different waves). The study protocol was approved by the Review Committee for Clinical Investigation of Euskadi (PI2014045). More details of the EFIGRO project can be found in the methodological manuscript.

Following the inclusion criteria of the previously mentioned projects, the main inclusion criteria for the present study were as follows: (1) children between 8 and 12 years old, (2) children classified as overweight or obese based on the sex- and age-specific international BMI standards and (3) children who were not taking medications that influenced the central nervous system function.

From all the measured participants of the ActiveBrains and the EFIGRO projects, 208 (101 from ActiveBrains and 107 from the EFIGRO project) presented complete data for body composition and accelerometry and were, therefore, included in the study. From the 208 included participants, six did not report their pubertal status, seven did not have blood samples and eighteen did not have data for dual-energy X-ray absorptiometry (DXA) abdominal regions (not collected due to technical reasons). These participants were included in the analyses and...
consequently the number of participants for each analysis varied slightly and is specified in the ‘Results’ section.

Body composition

Body composition assessments were performed in the morning in a non-fasted state.

Anthropometric variables. Using a wall stadiometer and electronic scale, respectively (SECA model), the height and weight were measured in children wearing minimal clothing and no shoes. BMI was calculated as weight in kilograms divided by the height in meters squared, and participants were classified into BMI categories according to the World Obesity Federation cut-offs(28). Waist circumference was measured at the narrowest point by standard procedures with an anthropometric non-elastic tape (SECA 200).

Body fat. DXA (Hologic QDR 4500 W) was used to evaluate body composition. A whole-body scan was performed from which, whole-body fat percentage (BF%) and fat mass index (FMI), expressed as body fat divided by height expressed in meters squared were obtained. In addition, a regional analysis was performed to assess abdominal adiposity following the protocol of previous studies(29). One region was calculated as a rectangle drawn on the digital scan image with the lower border of the rectangle at the lower horizontal border on the top of iliac crest and the upper border established parallel with the end of the lowest rib (this region was defined as R1 in previous studies(29)). The lateral side of the defined region was adjusted to include all the body tissues. As this region might be larger (and therefore include more fat) in taller participants, it was adjusted by height and was called abdominal FMI.

Dietary intake assessment

Total energy intake. Following the European Food Safety Authority guidelines(30), total EI was obtained from two non-consecutive 24 h recalls referring to weekdays which were collected by trained nutritionists, conducted in the presence of the child’s parents or legal guardians. A photographic manual of food portion size was used to improve the estimated amount of dietary intake. All data were registered by the Easydiet software (Biocentury®; S.L.U. 2016), which is the software supported by the Spanish Association of Dietetics and Nutritionists. Dietary ED was calculated by following two different approaches.

(a) Only ED_{SC} total EI from solid foods relative to total grams of solid foods consumed, which is expressed as kJ/g. This calculation was done based on solid foods only, excluding all energy-containing and non-energy-containing beverages (tea, coffee, water, soft drinks, fruit juice and milk).

(b) ED_{SC}: the ED of food and energy-containing beverages.

Miss-reporters. The Goldberg(31) and Black’s(32) equations (Table 1) were used to estimate the possible under- and over-reporters (children who reported non-plausible EI). This method is used to predict total energy expenditure using physical activity levels and BMR which was estimated with three different equations(33,34), the Schofield equation(34) and two different equations proposed by Lazzere(35) both taking Tanner stage into account with one using body weight (Lazzere_{weight}) and the other using fat mass and fat-free mass from DXA (Lazzere_{DXA}). The three equations are defined in Table 1. Previous validation studies demonstrated that the Goldberg equation presents a high predictive value for detecting under-reporters when compared to doubly labelled water(35). Specific details of the formula and used CV are presented in Table 1.

Cardiometabolic variables

Blood samples were collected after an overnight fast. Glucose was analysed using the glucose oxidase method with automatic analysers (Roche-Hitachi Modular P and D Autoanalyser; Roche Laboratory Systems), and plasma insulin was analysed by RIA using automatic microparticle analysers (Axsym; Abbott Laboratories). TAG, total cholesterol LDL and HDL were measured using an automatic analyser (Roche-Hitachi Modular P and D Autoanalyser). Blood pressure was assessed with the automatic OMRON® M6 device. Mean arterial blood pressure and two different cardiometabolic (CM) risk scores (following the indications of Nyström et al.(36)) were calculated as described in Table 1.

Physical activity

For seven consecutive days (24 h), physical activity was assessed with tri-axial accelerometers (GT3x+ and wGT3X-BT; ActiGraph) attached to the non-dominant wrist. ActiGraph.csv files were analysed with R-package GGIR version 1.2 (http://cran.r-project.org) (37). Data of participants were included in the analyses if they recorded at least one weekend day and three valid weekdays (≥16 wearing hours), as previously recommended(38). Identification of waking and sleep hours was done using an automatised algorithm guided by the times reported by the participants as explained by Van Hees et al.(39). The Hildebrand et al.(40) cut-off points were used to classify moderate to vigorous physical activity (MVPA).

Socio-demographic status

Parental educational level was registered for its known influence of nutritional status(41). Mothers’ educational highest degree was registered, and mothers were classified as low education (compulsory secondary school), medium education (high school) and higher education (university). Pubertal development was registered through direct examination by trained paediatricians following the Tanner scale(42).

Statistical analysis

Normality of the variables was checked with histograms. For non-normal variables, data were transformed to obtain normalised variables with mean 0 and standard deviation 1. Mean
and standard deviations are presented for the whole sample and stratified by sex.

Power calculation and sample size estimations were computed based on the primary outcome in each of the studies which are reported in the corresponding methodological articles published elsewhere\(^\text{20,27}\). The present study is based on a secondary analysis using baseline data from both studies, and therefore a specific power calculation was not developed for the present study.

Linear regression analyses were performed to explore the influence of ED on body composition and CM risk after adjustment for total EI, age, study centre, sex and mothers’ educational level. Further models were explored taking MVPA into account. MVPA by ED interactions were tested to determine whether MVPA influenced the association between ED and the outcome variables. All the previously mentioned regressions were also performed, stratifying participants according to compliance or no compliance with physical activity recommendations (sixty daily minutes or more of MVPA\(^\text{43}\)).

A sensitivity analysis was conducted excluding under-reporters who were detected by the Goldberg method\(^\text{53}\) using three different equations\(^\text{33,34}\) as shown in Table 1. Dietary differences between under- and plausible-reporters were evaluated with independent t tests (using under-reporters estimated with the Schofield equation\(^\text{54}\) as it was the most used equation in the literature).

Cluster analysis was performed with ED\(_s\) and minutes of MVPA. To be consistent with clustering methods reported in previous studies\(^\text{44,45}\), two types of cluster analyses were used: hierarchical clustering (Ward’s method) and k-means clustering. To reduce the sensitivity of the Ward’s method to outliers, individual outliers and multivariate outliers (those with high Mahalanobis distance values) for any variable were investigated. Hierarchical cluster analysis was initially used, as the numbers of clusters in the data were unknown beforehand. Number of clusters was determined by examining dendrograms, suggesting a solution for three cluster groups. k-Means cluster analysis was therefore performed with three possible solutions. This approach minimises the within-cluster variance and maximises the between-cluster distance, so that the resulting clusters are as homogeneous as possible. k-Means cluster analysis is considered superior to hierarchical methods because it is less sensitive to outliers and has been found to result in greater within-cluster homogeneity and between-cluster heterogeneity\(^\text{46}\).

One-way ANOVA with ED and MVPA variables were performed to classify and name the three cluster groups that emerged, that were described as healthy (low ED and high MVPA), inactive-low-ED (low ED and low MVPA) and average-MVPA-high-ED (high ED and medium MVPA). Finally, age, sex, study centre, total EI and mothers’ education-adjusted ANCOVA were performed to evaluate adiposity and cardiometabolic risk differences among cluster groups.

Results

Descriptive characteristics

Participant characteristics, dietary variables, body composition values, cardiometabolic risk markers and physical activity levels are detailed in Table 2. Briefly, the sample was 10.4 years old, with a mean BMI of 26.1 kg/m\(^2\), waist circumference of 84 cm and 41 IF%. Regarding dietary habits, participants reported an EI of 7284 daily kJ (1741 kcal) with an average ED\(_s\) of 7.6 kJ/g (1.81 kcal/g) and ED\(_s\) of 9.5 kJ/g (2.28 kcal/g). BMR varied slightly depending on the used formula ranging from 5996 kJ (1453 kcal) with the Lazzer\(_{SXA}\) to 6204 kJ (1483 kcal) with the Schofield equation.

Data for the comparison between under-reporters and plausible-reporters are presented in online Supplementary
Table 2. Characteristics of the whole sample and stratified according to sex and study (Mean values and standard deviations)

![Table image]

Table S1. Under-reporters presented lower values of total EI (5640 v. 7849 kJ (1348 v. 1876 kcal); P < 0.001), EDs (6-69 v. 7-82 kJ/g (1-6 v. 1-87 kcal/g); P < 0.001) and EDsl (4-31 v. 4-90 kJ/g (1-03 v. 1-17 kcal/g); P < 0.001) when compared to plausible reporters. For all the body composition variables, under-reporters presented higher values than plausible reporters (online Supplementary Table S1).

Associations between dietary energetic density, body composition and cardiovascular risk

Neither EDs nor EDsl demonstrated significant associations with any of the body composition or cardiovascular risk variables when the whole sample was analysed (Tables 3 and 4).

When under-reporters were excluded (Table 3), EDs was significantly associated with BF% (Lazzer\textsubscript{DXA} P = 0.013, Lazzer\textsubscript{weight} P = 0.008, Schofield P = 0.005), FMI (Lazzer\textsubscript{DXA} P = 0.025, Lazzer\textsubscript{weight} P = 0.014, Schofield P = 0.008) and abdominal FMI (Lazzer\textsubscript{DXA} P = 0.040, Lazzer\textsubscript{weight} P = 0.053, Schofield P = 0.018). These results remained significant after adjusting for MVPA (Table 3, model 2). EDs was also significantly associated with BMI when the Schofield (P = 0.019) and Lazzer\textsubscript{weight} (P = 0.036) equations were used to detect under-reporters and remained significant after adjusting for MVPA (Table 3, model 2). A tendency was also found for the Lazzer\textsubscript{DXA} equation when predicting BMI (P = 0.053 and P = 0.067 without and with adjustment of MVPA, respectively). Regarding the association between EDsl and body composition when under-reporters were excluded (Table 4), EDsl was significantly associated with BF% (Lazzer\textsubscript{DXA} P = 0.011, Lazzer\textsubscript{weight} P = 0.017, Schofield P = 0.008) even after adjusting for MVPA (Table 4, model 2). EDsl was also associated with BMI when under-reporters were detected with the Schofield (P = 0.026) and the Lazzer\textsubscript{weight} (P = 0.040).
Table 3. Linear regressions testing the influence of energetic density (only solids) on body composition variables and cardiometabolic (CM) risk scores

<table>
<thead>
<tr>
<th>Sample</th>
<th>BMR equation</th>
<th>Independent var.</th>
<th>n</th>
<th>BMI</th>
<th>Waist circumference</th>
<th>BF%</th>
<th>FMI</th>
<th>ABD_FMI</th>
<th>CM risk 1</th>
<th>CM risk 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole sample</td>
<td>Not used</td>
<td>Energetic density</td>
<td>n</td>
<td>208</td>
<td>208</td>
<td>208</td>
<td>190</td>
<td>196</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1 B standard</td>
<td>P</td>
<td>0.064</td>
<td>0.057</td>
<td>0.107</td>
<td>0.081</td>
<td>0.095</td>
<td>−0.041</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M2 B standard</td>
<td>P</td>
<td>0.389</td>
<td>0.364</td>
<td>0.163</td>
<td>0.298</td>
<td>0.251</td>
<td>0.604</td>
<td>0.861</td>
</tr>
<tr>
<td>Under-reporters</td>
<td>LazzerDXA</td>
<td>Energetic density</td>
<td>n</td>
<td>162</td>
<td>162</td>
<td>162</td>
<td>149</td>
<td>154</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>excluded</td>
<td></td>
<td>M1 B standard</td>
<td>P</td>
<td>0.162</td>
<td>0.092</td>
<td>0.208</td>
<td>0.193</td>
<td>0.188</td>
<td>−0.038</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M2 B standard</td>
<td>P</td>
<td>0.053</td>
<td>0.196</td>
<td>0.013</td>
<td>0.025</td>
<td>0.040</td>
<td>0.672</td>
<td>0.666</td>
</tr>
<tr>
<td></td>
<td>Lazzerweight</td>
<td>Energetic density</td>
<td>M1</td>
<td>n</td>
<td>157</td>
<td>157</td>
<td>146</td>
<td>149</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B standard</td>
<td>P</td>
<td>0.175</td>
<td>0.094</td>
<td>0.223</td>
<td>0.211</td>
<td>0.195</td>
<td>−0.042</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M2 B standard</td>
<td>P</td>
<td>0.050</td>
<td>0.233</td>
<td>0.012</td>
<td>0.020</td>
<td>0.036</td>
<td>0.528</td>
<td>0.822</td>
</tr>
<tr>
<td></td>
<td>Schofield</td>
<td>Energetic density</td>
<td>M1</td>
<td>n</td>
<td>157</td>
<td>157</td>
<td>145</td>
<td>149</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B standard</td>
<td>P</td>
<td>0.198</td>
<td>0.121</td>
<td>0.237</td>
<td>0.228</td>
<td>0.216</td>
<td>−0.014</td>
<td>0.062</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M2 B standard</td>
<td>P</td>
<td>0.181</td>
<td>0.111</td>
<td>0.218</td>
<td>0.209</td>
<td>0.206</td>
<td>−0.029</td>
<td>0.051</td>
</tr>
</tbody>
</table>

BF%, body fat percentage; FMI, fat mass index; ABD_FMI, abdominal fat mass index; CM risk 1, CM risk score described by Alberti et al. (59); CM risk 2, CM risk score created by Martinez Vizcaino et al. (58); M1, model 1, adjusted by sex, age, mother’s education and total energy intake; M2, model 1 + moderate and vigorous physical activity adjustment; DXA, dual-energy X-ray absorptiometry.

* P ≤ 0.050.
† P < 0.07.
between ED, BF% (LazzerDXA \(P = 0.016 \), Lazzerweight \(P = 0.011 \) and Schofield \(P = 0.004 \)) and FMI (LazzerDXA \(P = 0.080 \), Lazzerweight \(P = 0.060 \) and Schofield \(P = 0.024 \)). Additional adjustment by MVPA did not modify results of the stratified aforementioned regressions.

Combined effect of energy density and moderate to vigorous physical activity: cluster analysis

Finally, when analysing the cluster analysis results (Fig. 1), we observed that the healthy group (low ED and high MVPA levels) presented lower values of BMI (both \(P < 0.001 \)), waist circumference (both \(P < 0.001 \)), FMI (\(P < 0.001 \) v. inactive-low-ED and \(P = 0.006 \) v. average-MVPA-high-ED) and abdominal FMI (\(P = 0.003 \) v. inactive-low-ED and \(P = 0.015 \) v. average-MVPA-high-ED) when compared to the other two groups. The healthy group also presented lower values than the inactive-low-ED group for both estimated cardiovascular risk indexes (cardiorisk-1 \(P = 0.005 \) v. noncomplier; cardiorisk-2 \(P = 0.002 \) v. BP% (\(P = 0.003 \)). No differences were found between inactive-low-ED and average-MVPA-high-ED for any of the measured variables (all \(P > 0.05 \); Fig. 1).

Discussion

The main findings of the present study are (1) dietary ED is associated with higher total and abdominal adiposity in plausible reporters of dietary EI, with ED\(_S\) showing stronger associations than ED\(_L\), (2) the aforementioned association persists even after adjusting for MVPA. Nonetheless, when stratifying plausible reporters according to complying or not complying with physical activity recommendations, the inverse association between ED and adiposity disappears for the complying group and is maintained for the non-complying group. Those children with overweight/obesity with a combination of high MVPA levels and low dietary ED present a healthier body composition and cardiometabolic profile and (3) the effect of excluding under-reporters from the analysis is critical in the study of children with overweight and obesity. Although previous literature is inconsistent, the influence of dietary ED on body composition when under-reporters were excluded in our sample was clear, and we believe that inconsistencies found among previous studies\(^{[50]}\) could partly be explained by some of the findings discussed below.

On the one hand, it becomes clear that ED\(_L\) and ED\(_S\) do not show the same association with adiposity in overweight and obese children, as only ED\(_L\) significantly predicted BMI and abdominal FMI. This is in line with previous studies performed with participants without obesity, which also found that ED calculated with only solids demonstrated better association with body composition in children\(^{[47,48]}\) and adults\(^{[48]}\) compared to ED calculated with solids and liquids. We thought it was important to evaluate whether the differences in ED calculation also emerged when evaluating children with overweight and obesity, as their intake of sugar-sweetened drinks might be higher, which, in turn, could modify the association between ED\(_S\) and body composition. Differences between the
Table 4. Linear regressions testing the influence of energetic density (solids and liquids) on body composition variables and cardiometabolic (CM) risk scores‡

<table>
<thead>
<tr>
<th>Sample</th>
<th>BMR equation</th>
<th>Independent var.</th>
<th>BMI</th>
<th>Waist circumference</th>
<th>BF%</th>
<th>FMI</th>
<th>ABD_FMI</th>
<th>CM risk 1</th>
<th>CM risk 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole sample</td>
<td>Not used</td>
<td>Energetic density</td>
<td>M1</td>
<td>n</td>
<td>208</td>
<td>208</td>
<td>208</td>
<td>208</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>standard</td>
<td>0·004</td>
<td>0·002</td>
<td>0·067</td>
<td>0·026</td>
<td>0·013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>0·957</td>
<td>0·979</td>
<td>0·387</td>
<td>0·736</td>
<td>0·871</td>
<td>0·213</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M2</td>
<td>B standard</td>
<td>−0·017</td>
<td>−0·013</td>
<td>0·045</td>
<td>0·004</td>
<td>−0·003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>0·808</td>
<td>0·827</td>
<td>0·541</td>
<td>0·952</td>
<td>0·974</td>
<td>0·107</td>
</tr>
<tr>
<td>Under-reporters excluded</td>
<td>Lazzer DXA</td>
<td>Energetic density</td>
<td>M1</td>
<td>n</td>
<td>162</td>
<td>162</td>
<td>162*</td>
<td>162</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>standard</td>
<td>0·120</td>
<td>0·040</td>
<td>0·182*</td>
<td>0·152</td>
<td>0·122</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>0·149</td>
<td>0·569</td>
<td>0·031*</td>
<td>0·077</td>
<td>0·179</td>
<td>0·274</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M2</td>
<td>B standard</td>
<td>0·105</td>
<td>0·031</td>
<td>0·165*</td>
<td>0·136</td>
<td>0·298</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>0·195</td>
<td>0·656</td>
<td>0·042*</td>
<td>0·103</td>
<td>0·199</td>
<td>0·214</td>
</tr>
<tr>
<td></td>
<td>Lazzer weight</td>
<td>Energetic density</td>
<td>M1</td>
<td>n</td>
<td>157</td>
<td>157</td>
<td>157*</td>
<td>157</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>standard</td>
<td>0·138</td>
<td>0·050</td>
<td>0·202*</td>
<td>0·178*</td>
<td>0·133</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>0·098</td>
<td>0·483</td>
<td>0·017*</td>
<td>0·040*</td>
<td>0·145</td>
<td>0·299</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M2</td>
<td>B standard</td>
<td>0·121</td>
<td>0·038</td>
<td>0·184*</td>
<td>0·159†</td>
<td>0·122</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>0·133</td>
<td>0·580</td>
<td>0·023*</td>
<td>0·055†</td>
<td>0·167</td>
<td>0·222</td>
</tr>
<tr>
<td></td>
<td>Schofield</td>
<td>Energetic density</td>
<td>M1</td>
<td>n</td>
<td>157</td>
<td>157</td>
<td>157*</td>
<td>157</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>standard</td>
<td>0·153</td>
<td>0·072</td>
<td>0·222*</td>
<td>0·191*</td>
<td>0·150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>0·071</td>
<td>0·329</td>
<td>0·008*</td>
<td>0·026*</td>
<td>0·099</td>
<td>0·434</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M2</td>
<td>B standard</td>
<td>0·133</td>
<td>0·060</td>
<td>0·201*</td>
<td>0·170*</td>
<td>0·136</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>0·108</td>
<td>0·409</td>
<td>0·013*</td>
<td>0·042*</td>
<td>0·126</td>
<td>0·316</td>
</tr>
</tbody>
</table>

BF%, body fat percentage; FMI, fat mass index; ABD_FMI, abdominal fat mass index; CM risk 1, CM risk score described by Alberti et al. (59); CM risk 2, CM risk score created by Martinez Vizcaino et al. (58); M1, model 1, adjusted by sex, age, mother’s education and total energy intake; M2, model 1 + moderate and vigorous physical activity adjustment; DXA, dual-energy X-ray absorptiometry.

* P ≤ 0·050.
† P < 0·07.
‡ All models adjusted by sex, age, mother’s education and total energy intake.
association of EDₚ and EDₚₛ with body composition found in
the present and in previous studies could be due to the different
effects that drinks and solid foods have on satiety(2,49) and to the
differences in ED between solids and liquids, as beverages tend
to have a high water content and low ED. Consequently, the
inclusion of beverages in ED calculations will lower the ED of the
entire meal and bias the association between ED and body
composition towards the null as seen in our and previous
studies(17,40).

On the other hand, we found that the association between ED in plausible reporters and adiposity was only significant for
some variables; likewise, EDₛ was associated with BF%, FMI
and abdominal FMI, all measured with DXA, but did not show
an association with less accurate proxies of body fat such as
waist circumference or BMI (when excluding under-reporters
with the LazzerDXA equation). Regarding the association of ED and these proxies, literature is inconsistent, as some studies
show positive associations(21,50), while others do not(14,51).
Nonetheless, these are just proxies, with the measurement of
body fat being more important. To the best of our knowledge,
the only previous study that evaluated ED and body composition
of children with obesity with DXA was the Viva la familia
study(12). This study used total body mass gain (during 1 year
follow-up) as an outcome variable, finding that ED did not
significantly predict weight gain. DXA variables (fat mass and
fat-free mass) were not used as outcome variables in the
aforementioned study and, therefore, comparisons with our
findings in children with overweight/obesity are not possible.
Regarding children without obesity, three previous studies
evaluated the influence of ED on body fat measured with DXA,
with two of them reporting positive association between both
variables(11,52), and one developed by Kral et al.(18) not finding
significant associations. Kral et al. suggested that sample size
(n 49) might have been too small to detect significant associa-
tion between the two variables. Moreover, although 3-d
weighed food records were used in the previous study, there
was no control for under-reporters that have shown to affect the
results in our and previous studies(15,25,53).

The effect of excluding the under-reporters from the analysis
was large in the present sample. They presented higher adip-
osity values, 27% lower EI, 18% lower levels of MVPA and
more importantly a significantly lower ED when compared to
plausible reporters, as published previously(53). This lower ED
found in under-reporters could bias the association between ED
and body composition variables towards the null if not accounted
for in the analysis, explaining why no association
was found between ED and body composition variables when
the whole sample was analysed. The findings of MVPA not
modifying the association between ED and body composition
(onlly FMI for one equation passed from P 0.040 to P 0.055) are
of great importance, as it demonstrates that ED is crucial for
children with overweight and obesity even when taking into
account their levels of physical activity. Nonetheless, this does
not mean that MVPA is not determinant of adiposity in this
population, as when the sample was stratified according to
compliance with physical activity recommendations, no sig-
nificant association was found between ED and body compo-
sition or cardiovascular risk variables in the complier group.
Moreover, from the cluster analysis, it became clear that those
who performed the highest levels of MVPA and showed low
levels of ED presented the healthier profile for all the measured
variables.

In agreement with a previous study(15), ED was not directly
associated with cardiometabolic risk in children. This lack of
association could be partly explained by the characteristics of
the measured sample, a homogeneous group of overweight
and obese children who showed high cardiometabolic marker
values when compared to previous studies(56) using the same
methodology in normal-weight children (systolic blood pres-
sure 106 v. 99, diastolic blood pressure 66 v. 61, TAG 89 v. 61,
HDL 50 v. 62, LDL 103 v. 95 in our study v. Nyström et al.(56)
study, respectively). It is possible that if a more heterogeneous
sample of both children with normal weight and overweight
had been included, significant associations between ED and
cardiometabolic risk would have been found, as seen in pre-
vious studies that included both normal weight and overweight
children(54). Although the associations between ED and cardi-
ometabolic risk were non-significant, in the cluster analysis, the
healthy group presented significantly lower cardiometabolic
risk than the inactive-low-ED, and no differences with the
average-MVPA-high-ED. These findings suggest that MVPA
levels in children with obesity might be determinant of cardi-
ometabolic risk, which is in line with previous studies that
underlined the importance of physical activity on cardiomet-
ab着力打造 risk factors in children(55).

Although the current study presents several strengths such as
the measurement of objective physical activity, body fat with
DXA and collection of cardiometabolic risk markers, it also
presents several limitations. First, 24 h recalls were only col-
lected for weekdays, and the photographic manual used to help
participants select portion sizes is still in the process of being
validated. It is therefore important to notice that results could be
biased by the previously mentioned tool and by the use of only
weekdays, as previous research has demonstrated important
differences between week and weekend days(56). Second, the
cross-sectional nature of the study does not allow for a cause–
effect conclusion, and although we found associations, these do
not imply that a higher ED intake will necessarily mean an
increase in the measured body composition variables. More-
over, body composition assessments were performed during
the morning in a non-fasted state, which could affect the
quantification of lean and fat mass(57). Third, non-energy-
containing beverages, such as water, tea or diet soda, were not
included in the ED calculations and therefore the findings of the
present study could have been different if the whole diet of
each participant had been taken into account. Finally, although
the present study included a homogeneous sample of 8- to 12-
year-old overweight and obese children, the sample size was
smaller compared to the previous similar studies(14,21) that
included heterogeneous samples. This sample size could entail
a low power and a type II error, and therefore it is possible that
if a larger sample size had been analysed further associations
would have been found between ED and cardiometabolic
markers.

Summarising, findings from the present study suggest that
dietary ED is associated with total and abdominal adiposity in
children with overweight and obesity when under-reporters are excluded from the analysis. The large inconsistencies among previous studies could be due to the use of different ED calculations, the use of different methodologies to estimate body fat mass and under-reporting concerns (as for the present study, most results were modified when excluding under-reporters). Those overweight and obese participants who performed high levels of MVPA and presented a low ED intake demonstrated the healthier profile for both body composition and cardiometabolic risk variables. In conclusion, findings from the present study suggest that children with overweight or obesity with a low ED intake and high levels of MVPA present healthier body composition and cardiometabolic profiles when compared to children with overweight or obesity who perform lower amounts of MVPA and have a higher ED intake. Consequently, nutritional programs aiming to prevent or treat childhood obesity should try to avoid high EDs, foods and promote physical activity. These findings might have important public health implications, yet they need to be confirmed by randomised controlled trials that target both diet density and MVPA.

Acknowledgements

We thank the participation of the children and parents in this study.

The research leading to these results has received funding from ‘la Caixa’ Foundation and Triptolemos Foundation, the Ministry of Health (FIS PI081297), the Research Network on Preventative Activities and Health Promotion (RD06/0018/0038), the Henning and Johan Throne-Holst Foundation (F. B. O.), the Spanish Ministry of Education, Culture and Sport (FPU14/03329 to M. M.), the Spanish Ministry of Economy and Competitiveness (DEP2013-47540 and DEP2016-78577-R; BES-2014-068829 to C. C.-S.), Fondo de Investigación Sanitaria del Instituto de Salud Carlos III (PI13/01355), Fondos Estructurales de la Unión Europea (FEDER), Una manera de hacer Europa, the Spanish Ministry of Science and Innovation (RYC-2011-09011 to F. B. O.), the University of Granada, Plan Propio de Investigación 2016, Excellence Actions: Units of Excellence, Unit of Excellence on Exercise and Health (UCEES), Programa de Captación de Talento – UGR Fellows (L. G.-M.), the SAMID III network, RETICS (PN 1+D+I 2017-2021).

This study has been partially funded by the University of Granada, Plan Propio de Investigación 2016, Excellence actions: Units of Excellence; Unit of Excellence on Exercise and Health (UCEES), and by the Junta de Andalucía, Consejería de Congado, Investigación y Universidades and European Regional Development Fund (ERDF), reference SOMM17/6107/UGR.

ISCIII-Sub-Directorate General for Research Assessment and Promotion, the European Regional Development Fund (RD16/0022), the EXERNET Research Network on Exercise and Health in Special Populations (DEP2005-00046/ACTI), and the University of the Basque Country (GIU14/21). J. M.-G. is supported by the Spanish Ministry of Education, Culture and Sport (FP14/06837). J. H. M. is supported by the Spanish Ministry of Education, Culture and Sport (FPU15/02645).

I. A. received a grant from the Education Department of the Government of the Basque Country (PRE_2016_1_0057, PRE_2017_2_0224, PRE_2018_2_0057).

On behalf of all authors, A. G.-B. states that there is no conflict of interest. All authors have nothing to disclose.

References

et al

22. Shephard RJ. (2003) Limits to the measurement of habitual

between energy intake, daily food intake and energy density

of foods and BMI z-score in 2–9-year-old European children.

energy intake is associated with type 2 diabetes risk markers

of the diet and change in body fatness from childhood to

adolescence; is there a relation? Am J Clin Nutr 87, 1260–1267.

energy density increases during early childhood irrespective

of familial predisposition to obesity: results from a prospective

energy density is associated with body weight status and

product consumption, dietary nutrient and energy density and

associations with obesity in Australian adolescents. J Hum

Nutr Diet 28, 452–464.

dense diet is cross-sectionally associated with an increased

risk of overweight in male children, but not in female children,

male adolescents, or female adolescents in Japan: the Ryukyus

22. Shephard RJ. (2003) Limits to the measurement of habitual

physical activity by questionnaires – Commentary. Br J Sports

Med 37, 197–206.

Usual dietary energy density distribution is positively asso-

ciated with excess body weight in Mexican children. J Nutr

145, 1524–1530.

method for identification of misreporting of energy intake

from infancy to school age: results from a longitudinal study.

Clin Nutr 37, 1053–1060.

of under- and over-reporters of energy intake among Japanese

children and adolescents: the Ryukyus Child Health Study.

Nutrition 28, 532–538.

(2016) An exercise-based randomized controlled trial on

brain, cognition, physical health and mental health in over-

weight/obese children (ActiveBrains project): rationale, design

effect of a multidisciplinary intervention program on hepatic

adiposity in overweight-obese children: protocol of the

body mass index cut-offs for thinness, overweight and obesity.

Associations of muscular and cardiorespiratory fitness with

total and central body fat in adolescents: the HELENA study.

30. EFSA (2014) Guidance on the EU menu methodology. EFS A

J 12, 3944.

uation of energy intake data using fundamental principles of

energy physiology: 1. Derivation of cut-off limits to identify

Goldberg cut-off for energy intake: basal metabolic rate. A

practical guide to its calculation, use and limitations. Int J Obes

Relat Metab Disord 24, 1119–1130.

metabolic rate in obese children and adolescents considering

pubertal stages and anthropometric characteristics or body

34. Schofield WN (1985) Predicting basal metabolic rate, new

standards and review of previous work. Hum Nutr Clin Nutr

39, Suppl. 1, 5–41.

accuracy of the Goldberg method for classifying misreporters

of energy intake on a food frequency questionnaire and 24-h

calls: comparison with doubly labeled water. Eur J Clin Nutr

66, 569–576.

Does cardiorespiratory fitness attenuate the adverse effects

of severe/morbid obesity on cardiometabolic risk and insulin

of accelerometer data for free-living physical activity assess-

ment using local gravity and temperature: an evaluation on

Accelerometer data collection and processing criteria to assess

physical activity and other outcomes: a systematic review and

open access method to assess sleep duration using a wrist-

worn accelerometer. PLOS ONE 10, e0142533.

group comparability of raw accelerometer output from wrist-

Maternal educational level and children’s healthy eating beha-

viour: role of the home food environment (cross-sectional results from the

42. Tanner JM & Whitehouse RH (1976) Clinical longitudinal

standards for height, weight, height velocity, weight velocity, and

child temperament types using cluster analysis in three samples.

between early childhood temperament clusters and later

psychosocial adjustment. Merrill Palmer Quart 55, 26–54.

from a systematic review of dietary energy density and

weight gain: is the inclusion of drinks valid? Obes Rev 10, 681–692.

positively associated with body composition of adults in

49. DiMeglio DP & Mattes RD (2000) Liquid versus solid carbo-

hydrate: effects on food intake and body weight. Int J Obes

Relat Metab Disord 24, 794–800.

density, diet quality, and central body fat in a nationwide

of dietary energy density in childhood with age and body fatness

https://doi.org/10.1017/S0007114519000278 Published online by Cambridge University Press

