Proceedings of the Edinburgh Mathematical Society (1992) 35, 101-107 ©

ON ACCESSIBLE SUBRINGS OF ASSOCIATIVE RINGS

by R. R. ANDRUSZKIEWICZ

(Received 1st March 1990)

We describe for every natural *n* the class of rings *R* such that if *R* is an accessible (left accessible) subring of a ring then *R* is an *n*-accessible (*n*-left-accessible) subring of the ring. This is connected with the problem of the termination of Kurosh's construction of the lower (lower strong) radical. The result for n=2 was obtained by Sands in a connection with some other questions.

1980 Mathematics subject classification (1985 Revision): 16A21.

It was unknown for a long time whether for every natural number $n \ge 2$ there exists a homomorphically closed class \mathcal{M} of rings such that $\mathcal{M}_{n-2} \ne \mathcal{M}_{n-1} = \mathcal{M}_n$, where \mathcal{M}_i denotes the *i*th class in the Kurosh's chain of rings determined by \mathcal{M} (cf. [8]). The problem was solved positively in [1] and then many authors contributed to the topic obtaining several related results (cf. [3,4,5,9]). It is not difficult to observe (Proposition 3) that the original problem is equivalent to the question whether for every natural number $n \ge 2$ there exists a homomorphically closed class \mathcal{M} of rings such that

 $(\rho)_n$: if a ring R contains a non-zero *n*-accessible subring in \mathcal{M} then R contains a non-zero n-1-accessible subring in \mathcal{M} .

In this paper we study a related question. Namely we describe for every $n \ge 2$ the class $\mathbb{I} = \{A \mid \text{if } S \cong A \text{ is an } n\text{-accessible subring of } R$ then S is an $n-1\text{-accessible subring of } R\}$, which is naturally connected with a description of rings A such that the class $\{A\}$ satisfies $(\rho)_n$. We also describe the class $\mathbb{L}_n = \{A \mid \text{if } S \cong A \text{ is an } n\text{-left-accessible subring of } R$ then S is an $n-1\text{-left-accessible subring of } R\}$, which is related to the Kurosh's construction of the lower left strong radicals (cf. [5]). Our results generalize Sands' Theorem 1 of [6] which says (in our terminology) that $\mathbb{I}_2 = \mathbb{L}_2 = \text{the class of idempotent rings. It is worthy to mention that Sands obtained his result studying some other questions of associative rings.$

All rings considered in the paper are associative. Given a ring R we denote:

 R^+ —the additive group of R.

- R^0 the trivial ring defined on the group R^+ .
- R^* —the ring R if R has an identity element and the usual extension of R to a ring with identity by the ring of integers \mathbb{Z} in another case.

We use $I \lhd R(I < R)$ to denote that I is an ideal (left ideal) of R.

A subring A of a ring R is called an n-accessible (n-left-accessible) subring of R if

101

there exist subrings R_0 , R_1 ,..., R_n of R such that $R_n = A$, $R_0 = R$ and $R_i \triangleleft R_{i-1}$ $(R_i \lt R_{i-1})$ for i = 1, 2, ..., n. One can easily check that these subrings are characterised as follows:

Proposition 1. Let A be a subring of a ring R. Then

- (i) A is an n-left-accessible subring of R if and only if $RA^n \subseteq A$;
- (ii) A is an n-accessible subring of R if and only if $R_n = A$, where $R_0 = R$ and $R_{i+1} = R_i^* A R_i^*$ for i = 0, 1, 2, ...

Let \mathcal{M} be a homomorphically closed class of rings. Then the class $\mathcal{M}_1 = \{R \mid \text{every} nonzero homomorphic image of <math>R$ contains a nonzero ideal I which is in $\mathcal{M}\}$ is homomorphically closed as well. By induction for every natural number $n \ge 2$, the class \mathcal{M}_n is defined as $\mathcal{M}_n = (\mathcal{M}_{n-1})_1$. In addition we put $\mathcal{M}_0 = \mathcal{M}$. The class \mathcal{M}_n is called the *n*th Kurosh's class determined by \mathcal{M} .

The following properties of classes \mathcal{M}_n were established in [2].

Proposition 2. (i) A ring R is in \mathcal{M}_n if and only if every nonzero homomorphic image of R contains a nonzero n-accessible subring which is in \mathcal{M} .

(ii) If $A \in \mathcal{M}$ is a nonzero n-accessible subring of a ring R then $R^*AR^* \in M_{n-1}$.

Corollary. Let \mathcal{M} be a homomorphically closed class of rings. Then for every natural number n > 1

- (i) if \mathcal{M} satisfies $(\rho)_n$ then $\mathcal{M}_{n-1} = \mathcal{M}_n$;
- (ii) if $\mathcal{M}_{n-2} = \mathcal{M}_{n-1}$ then \mathcal{M} satisfies $(\rho)_n$;
- (iii) \mathcal{M} satisfies $(\rho)_{n+1}$ if and only if \mathcal{M}_1 satisfies $(\rho)_n$.

Proof. (i) is an immediate consequence of Proposition 2(i).

(ii) Suppose that $A \in \mathcal{M}$ is a nonzero *n*-accessible subring of *R*. By Proposition 2(ii), $R^*AR^* \in \mathcal{M}_n$. Since $\mathcal{M}_{n-2} = \mathcal{M}_{n-1}$, we have also $\mathcal{M}_{n-2} = \mathcal{M}_n$ so $R^*AR^* \in \mathcal{M}_{n-2}$. By Proposition 2(i) R^*AR^* contains a nonzero n-2-accessible subring $B \in \mathcal{M}$. However R^*AR^* is an ideal of *R*, so *B* is an n-1-accessible subring of *R*.

(iii) Let $A \in \mathcal{M}_1$ be a nonzero *n*-accessible subring of a ring *R*. Since $A \in \mathcal{M}_1$, *A* contains a nonzero ideal $I \in \mathcal{M}$. Obviously *I* is an *n*+1-accessible subring of *R*. Hence, since \mathcal{M} satisfies $(\rho)_{n+1}$, *R* contains a nonzero *n*-accessible subring $B \in \mathcal{M}$. Thus there exist subrings $B = B_n \lhd B_{n-1} \lhd B_{n-2} \lhd \cdots \lhd B_0 = R$. By Proposition 2(ii), $C = B_{n-2}^* B B_{n-2}^* \in \mathcal{M}_1$. Obviously *C* is a nonzero *n*-1-accessible subring of *R*.

Suppose now that \mathcal{M}_1 satisfies $(\rho)_n$. Let $A = A_{n+1} \lhd \cdots \lhd A_0 = R$ where $0 \neq A \in \mathcal{M}$. Then by Proposition 2(ii) $B = A_{n-1}^* A A_{n-1}^* \in \mathcal{M}_1$ is an *n*-accessible subring of *R*. Hence, since \mathcal{M}_1 satisfies $(\rho)_n$, *R* contains a nonzero n-1-accessible subring $C \in \mathcal{M}_1$. Since $C \in \mathcal{M}_1$, *C* contains a nonzero ideal $I \in \mathcal{M}$. Obviously *I* is a nonzero *n*-accessible subring of *R*. The following example shows that the converse to Corollary (i) does not hold for n=2. We have not been able to construct similar examples for n>2.

Example. Let $\mathcal{M} = \{R\} \cup \{0\}$, where R is the ring with trivial multiplication on the quasicyclic group $C(p^{\infty})$. It is easy to check that \mathcal{M}_1 is equal to the class of all rings whose additive groups are divisible p-groups. Thus $\mathcal{M}_1 = \mathcal{M}_2$. Observe however that \mathcal{M} does not satisfy $(\rho)_2$. Namely

$$\begin{pmatrix} R & 0 \\ 0 & 0 \end{pmatrix} \lhd \begin{pmatrix} R & R \\ R & R \end{pmatrix} \lhd \begin{pmatrix} R^* & R^* \\ R^* & R^* \end{pmatrix} = A.$$

Every ideal of A is of the form $\begin{pmatrix} I & I \\ I & I \end{pmatrix}$, where I is an ideal of R^* . This easily shows that no ideal of A is isomorphic to R.

Proposition 3. The following are equivalent:

- (i) for every natural number n there exists a homomorphically closed class \mathcal{M} such that $\mathcal{M}_{n-1} \neq \mathcal{M}_n = \mathcal{M}_{n+1}$;
- (ii) for every natural number n there exists a homomorphically closed class \mathcal{M} satisfying $(\rho)_{n+2}$ but not $(\rho)_{n+1}$.

Proof. (i) \Rightarrow (ii). Let *n* be a natural number and \mathcal{M} a homomorphically closed class of rings such that $\mathcal{M}_n \neq \mathcal{M}_{n+1} = \mathcal{M}_{n+2}$. By the Corollary, \mathcal{M} satisfies $(\rho)_{n+3}$ but not $(\rho)_{n+1}$. If \mathcal{M} satisfies $(\rho)_{n+2}$ then (ii) is satisfied. If \mathcal{M} does not satisfy $(\rho)_{n+2}$ then by Corollary (iii), \mathcal{M}_1 satisfies $(\rho)_{n+2}$ but not $(\rho)_{n+1}$, so again (ii) is satisfied.

 $(ii) \Rightarrow (i)$. Let *n* be a natural number and \mathcal{M} a homomorphically closed class of rings which satisfies $(\rho)_{n+2}$ but not $(\rho)_{n+1}$. By the Corollary, $\mathcal{M}_{n-1} \neq \mathcal{M}_{n+1} = \mathcal{M}_{n+2}$. If $\mathcal{M}_n = \mathcal{M}_{n+1}$ then (i) is satisfied. If $\mathcal{M}_n \neq \mathcal{M}_{n+1}$ then $(\mathcal{M}_1)_{n-1} \subseteq (\mathcal{M}_1)_n = (\mathcal{M}_1)_{n+1}$, so again (i) is satisfied.

Now we pass on to study classes \mathbb{L}_n and \mathbb{I}_n .

Theorem 1. For every integer $n \ge 2$, $A \in \mathbb{L}_n$ if and only if $A^n = A^{n-1}$.

Proof. Assuming that $A^n = A^{n-1}$ and applying Proposition 1(i) one gets immediately that $A \in \mathbb{L}_n$.

Suppose now that $A \in \mathbb{L}_n$. The result is clear if A has an identity. Thus suppose that A is a ring without identity. Observe that for a right A-module M, the set $\begin{pmatrix} A & 0 \\ M & 0 \end{pmatrix}$ of matrices is a ring under the usual matrix operations and

R. R. ANDRUSZKIEWICZ

$$\begin{pmatrix} A & 0 \\ M & 0 \end{pmatrix} \cdot \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}^{k} = \begin{pmatrix} A & 0 \\ M & 0 \end{pmatrix} \cdot \begin{pmatrix} A^{k} & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} A^{k+1} & 0 \\ MA^{k} & 0 \end{pmatrix}.$$

Thus by Proposition 1(i), $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ is a k-left-accessible subring of the ring $\begin{pmatrix} A & 0 \\ M & 0 \end{pmatrix}$ if and only if $MA^k = 0$. Put $M = A^*/A^n$. Clearly $MA^n = 0$, so $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ is an *n*-left-accessible subring of the ring $\begin{pmatrix} A & 0 \\ M & 0 \end{pmatrix}$. Since $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} \cong A \in \mathbb{L}_n$ we have that $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ is an n-1-left-accessible subring of $\begin{pmatrix} A & 0 \\ M & 0 \end{pmatrix}$. Consequently $(A^*/A^n)A^{n-1} = MA^{n-1} = 0$, which implies that $A^{n-1} = A^n$. The result follows.

It is clear that every ring R such that $R^n = 0$ but $R^{n-1} \neq 0$ belongs to $\mathbb{L}_{n+1} - \mathbb{L}_n$, so all the classes \mathbb{L}_n are distinct.

Remark. Observed that for $M = A^*/A^2$,

$$\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} \lhd \begin{pmatrix} A & 0 \\ A/A^2 & 0 \end{pmatrix} \lhd \begin{pmatrix} A & 0 \\ M & 0 \end{pmatrix}.$$

Now applying the arguments used above one can easily get Theorem 1 of [6]. However it is not difficult to check that the subrings appearing here are isomorphic (if $1 \notin A$) to the ones used in [6], so this is only a more visible form of the same proof.

Now we will describe the classes \mathbb{I}_n . To get this we need several auxiliary lemmas.

Lemma 1 ([7]). For every radical S and each ring R if $R/R^2 \in S$ then $R^n/R^{n+1} \in S$ for every n = 1, 2, ...

Lemma 2. Suppose that $I \triangleleft R$ and $R^2 \subseteq I$. If $R \in \mathbb{I}_n$ then $R/I \in \mathbb{I}_n$.

Proof. If R/I is an *n*-accessible subring of a ring A then $R \oplus R/I$ is an *n*-accessible subring of the ring $R \oplus A$. Let us observe that, since $R^2 \subseteq I$, $S = \{(r, r+I) | r \in R\}$ is an ideal of $R \oplus R/I$. Clearly $S \cong R \in \mathbb{I}_n \subseteq \mathbb{I}_{n+1}$. This and the fact that S is an n+1-accessible subring of the ring $R \oplus A$, imply that S is an n-1-accessible subring of $R \oplus A$. Applying the natural projection of $R \oplus A$ onto A one gets that R/I is an n-1-accessible subring of A.

The following lemma can be proved by an easy induction.

104

Lemma 3. Let A be a subring of a ring R such that $A^2 = 0$ and $R_0 = R$, $R_{i+1} = R_i^* A R_i^*$, $i = 0, 1, \dots$. Then for every $k = 0, 1, \dots, A R_k A = (A R)^{2^k} A$.

Lemma 4. No class \mathbb{I}_n contains K^0 , where K is a field.

Proof. By the Remark the result is clear for n=2. Suppose now that $n \ge 3$ and put $P = K[x]/(x^{m+1})$, where $m = 2^{n-2}$. Let R be the ring of all 2×2 -matrices over P and

$$A = \left\{ \begin{pmatrix} ku & ku \\ -ku & -ku \end{pmatrix} \middle| k \in K \right\},$$

where $u = x + (x^{m+1})$. Clearly $A \cong K^0$. We claim that A is an n-accessible but not n-1-accessible subring of R. For, let $R_0 = R$ and $R_{i+1} = R_i^* A R_i^*$, $i = 0, 1, \dots$ Since

$$AR \subseteq \left\{ \begin{pmatrix} ur_1 ur_2 \\ ur_3 ur_4 \end{pmatrix} \middle| r_i \in P \right\}$$

and $u^{m+1} = 0$, $(AR)^m A = 0$. Thus by Lemma 3, $AR_{n-2}A = 0$. This implies that $AR_{n-1} = R_{n-1}A = 0$, so $R_n = A$. Consequently Proposition 1(ii) implies that A is an *n*-accessible subring of R. Suppose now that A is an *n*-1-accessible subring of R. Then by Proposition 1(ii), $R_{n-1} = A$ and consequently $AR_{n-2} \subseteq A$. Since $R_i \subseteq R_1$ for every $i \ge 1$ and $n-2 \ge 1$ (as $n \ge 3$), $AR_{n-2} \subseteq AR_1 \cap A$.

Now

$$AR_{1} \subseteq \left\{ \begin{pmatrix} u^{2}r_{1}, u^{2}r_{2} \\ u^{2}r_{3}, u^{2}r_{4} \end{pmatrix} \middle| r_{i} \in P \right\},$$

so by the definition of A one gets $AR_1 \cap A = 0$. Consequently $AR_{n-2} = 0$ and $AR_{n-3}A = 0$. Hence by Lemma 3, $(AR)^{2^{n-3}}A = 0$. Observe that

$$\alpha = \begin{pmatrix} u & 0 \\ -u & 0 \end{pmatrix} = \begin{pmatrix} u & u \\ -u & -u \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in AR \text{ and } \alpha^{s} = \begin{pmatrix} u^{s} & 0 \\ -u^{s} & 0 \end{pmatrix}$$

for every s. Thus for $s = 2^{n-3} + 1$, $\alpha^s \neq 0$. On the other hand $\alpha^s \in (AR)^s = (AR)^{2^{n-3}}AR = 0$, a contradiction.

Now we prove the main result of the paper.

Theorem 2. For every natural number $n \ge 3$ the following are equivalent:

- (i) $R \in \mathbb{I}_n$,
- (ii) the group $(R/R^2)^+$ is divisible and torsion.

R. R. ANDRUSZKIEWICZ

Proof. Suppose that $R \in \mathbb{I}_n$. Applying Lemma 2 one can assume that $R^2 = 0$ and every homomorphic image of R belongs to I_n . Now if for a prime p, $R/pR \neq 0$ then R can be homomorphically mapped onto $(\mathbb{Z}/p\mathbb{Z})^0$. This contradicts Lemma 4. Hence for every prime p, pR = R, so the group R^+ is divisible. Now if the group R^+ were not torsion it could be homomorphically mapped onto \mathbb{Q}^+ , where \mathbb{Q} is the field of rational numbers. This would imply that $\mathbb{Q}^0 \in I_n$, which contradicts Lemma 4. Suppose now that the group $(R/R^2)^+$ is divisible and torsion. Applying Lemma 1 and

Suppose now that the group $(R/R^2)^+$ is divisible and torsion. Applying Lemma 1 and the fact the class of rings with divisible and torsion additive groups is radical one gets that the group $(R/R^3)^+$ is divisible and torsion. However, the multiplication in a ring with divisible and torsion additive group is trivial, so $(R/R^3)^2 = 0$. Thus $R^2 = R^3$ and the ring R^2 is idempotent. If R is an accessible subring of a ring P then R^2 is also such a subring of P. Applying Andrunakievich's Lemma and the fact that R^2 is an idempotent ring one gets that R^2 is an ideal of P. Since the group $(R/R^2)^+$ is divisible and torsion, the additive group of the ideal I of P/R^2 generated by R/R^2 is divisible and torsion as well, so in particular $I^2 = 0$. Consequently R/R^2 is a 2-accessible subring of P/R^2 . Thus R is an n-1-accessible subring of P. The result follows.

As an easy consequence of Theorem 2 one gets that $\mathbb{I}_3 = \mathbb{I}_4 = \mathbb{I}_5 = \cdots =$ the lower radical class determined by $\mathbb{I} \cup \mathbb{T}$, where \mathbb{I} is the class of idempotent rings and \mathbb{T} is the class of rings with divisible and torsion additive groups (both these classes are radical). Recall that by the Remark, $\mathbb{I} = \mathbb{I}_2 = \mathbb{L}_2$. Observe however that $\mathbb{I}_2 \neq \mathbb{I}_3$ and $\mathbb{I}_3 \neq \mathbb{L}_3$. It is an easy consequence of the fact that if R is an idempotent ring and A is the ring with trivial multiplication on an additive group A^+ then $R \oplus A \in \mathbb{L}_3$ and $R \oplus A \in \mathbb{I}_3$ if and only if the group A^+ is divisible and torsion. The following example shows that not every ring of \mathbb{I}_3 is a direct sum of an idempotent ring and a ring with trivial multiplication.

Example. Let M be a non-zero abelian torsion and divisible group. Observe that the set

$$R = \begin{pmatrix} 0 & M & M \\ 0 & 0 & \mathbb{Z} \\ 0 & 0 & \mathbb{Z} \end{pmatrix}$$

of matrices with the natural operations is a ring such that

$$R^{2} = \begin{pmatrix} 0 & 0 & M \\ 0 & 0 & \mathbb{Z} \\ 0 & 0 & \mathbb{Z} \end{pmatrix}$$

and $(R/R^2)^+ \cong M$. Thus $R \in \mathbb{I}_3$. Moreover, if I is an ideal of R and

$$\begin{pmatrix} 0 & m & m_1 \\ 0 & 0 & z_1 \\ 0 & 0 & z_2 \end{pmatrix} \in I$$

then

$$= \begin{pmatrix} 0 & 0 & m \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & m & m_1 \\ 0 & 0 & z_1 \\ 0 & 0 & z_2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in I_2$$

so if $m \neq 0$ then $I \cap R^2 \neq 0$. This shows that R contains no ideal I such that $R^2 \oplus I = R$. Hence in particular R is not a direct sum of an idempotent ring and a ring with trivial multiplication.

Acknowledgement. I am grateful to Professor E. R. Puczyłowski for his valuable suggestions during the preparation of the paper.

REFERENCES

1. K. I. BEIDAR, A chain of Kurosh may have an arbitrary finite length, Czechoslovak Math. J. 32, (1982), 418-422.

2. A. HEINICKE, A note on lower radical constructions for associative rings, *Canad. Math. Bull.* 11 (1968), 23-30.

3. LIU SHAO XUE, LUO YUN LUN, TANG AI PING, XIAO JIE and GUO JIN YUN, Some results on modules and rings, Bull. Soc. Math. Belg. Sér. B 39 (1987), 181-193.

4. I. V. L'vov, A. V. Sidorow, Stabilization of Kurosh chains, Mat. Zametki 36 (1984), 815-821 (in Russian).

5. E. R. PUCZYLOWSKI, On a question concerning strong radicals of associative rings, *Quaestiones Math.* 10 (1987), 321-338.

6. A. D. SANDS, On ideals in over-rings, Publ. Math. Debrecen 35 (1988), 273-279.

7. A. D. SANDS, Radicals and one-sided ideals, Proc. Roy. Soc. Edinburgh Sect. A 103 (1986), 241-251.

8. A. SULINSKI, T. ANDERSON and N. DIVINSKY, Lower radical properties of associative and alternative rings, J. London Math. Soc. 41 (1966), 417-424.

9. J. F. WATTERS, On the lower radical construction for algebras, preprint.

Institute of Mathematics University of Warsaw Bialystok Division Akademicka 2 15–267 Bialystok Poland 107