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Linear Maps
on Selfadjoint Operators
Preserving Invertibility,
Positive Definiteness, Numerical Range

Chi-Kwong Li, Leiba Rodman, and Peter Šemrl

Abstract. Let H be a complex Hilbert space, and H(H) be the real linear space of bounded selfad-

joint operators on H. We study linear maps φ : H(H) → H(H) leaving invariant various properties

such as invertibility, positive definiteness, numerical range, etc. The maps φ are not assumed a priori

continuous. It is shown that under an appropriate surjective or injective assumption φ has the form

X 7→ ξTXT∗ or X 7→ ξTXt T∗, for a suitable invertible or unitary T and ξ ∈ {1,−1}, where Xt

stands for the transpose of X relative to some orthonormal basis. Examples are given to show that the

surjective or injective assumption cannot be relaxed. The results are extended to complex linear maps

on the algebra of bounded linear operators on H. Similar results are proved for the (real) linear space

of (selfadjoint) operators of the form αI + K, where α is a scalar and K is compact.

1 Introduction

In the last few decades, many researchers have devoted their effort in studying linear

preserver problems on the algebra Mn of n × n complex matrices. These problems

concern the characterization of linear maps φ : Mn → Mn leaving invariant vari-
ous properties or functions of matrices such as invertibility, positive definiteness, the
spectral norm, etc. Those linear preservers φ typically have simple structures, namely,
φ has the form

X 7→ MXN or X 7→ MXt N,

for some M,N ∈ Mn with special properties; here Xt is the transpose of X. Many

interesting techniques have been developed to prove such results; see [25] for some
general background.

In the last few years, many researchers have studied linear preservers φ on more

general algebras. In particular, a lot of attention has been paid to Kaplansky’s prob-
lem [17] of characterization of linear maps preserving invertibility, and to the closely
related problem concerning spectrum preserving maps [1]–[5], [8]–[10], [16], [27].
We refer to [3] for some historical remarks. A recent result of Sourour [27] states that

every bijective invertibility preserving linear map on B(X), the algebra of all bounded
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linear operators on a Banach space X, is a Jordan automorphism of B(X) composed
by a left multiplication with an invertible operator.

In this paper we develop some techniques in proving linear preserver results on
the real linear space H(H) of selfadjoint operators acting on a complex Hilbert space
H. The results are extended to linear maps on B(H). Similar results are proved for
the complex linear space BK(H) ⊂ B(H) of operators of the form αI + K, where

α is a scalar and K is compact, and for the real linear space HK(H) of selfadjoint
operators in BK(H).

Let V be one of the spaces H(H), B(H), HK(H), or BK(H). When we say that
φ : V → V is linear, it naturally means that φ is real linear if V = H(H) or HK(H),

and φ is complex linear if V = B(H) or BK(H).

In Section 2, we study linear maps φ : V → V preserving the set of orthogonal
projections, the spectrum, and the numerical range. Special cases of the results have

been mentioned or used by other researchers. We organize and extend the results so
that they can be used to treat other problems including those in our later sections.
In Section 3, we characterize injective linear maps φ : V → V that map the set of
positive definite operators onto itself. This extends a result of Schneider [26] to the

infinite dimensional setting. In Section 4, we study linear maps on H(H) preserving
invertibility. Note that there is an essential difference between our problem and the
problem of characterization of invertibility preserving maps on associative algebras.
Namely, in the latter case one can always assume that an invertibility preserving map

φ is unital, since otherwise one can replace φ by X → φ(1)−1φ(X). Such a reduction
is not possible in our problem because H(H) is not closed under multiplication.
Examples are given to show that the injective or surjective assumptions imposed on
φ in our theorems are essential.

2 Orthogonal Projections, Spectrum, Numerical Range Preservers

Given X ∈ B(H), let σ(X) be the spectrum of X, and let

W (X) = {(Xv, v) : v ∈ H, (v, v) = 1}

be the numerical range of X. The closure of W (X) is denoted by W (X). It is well
known that if X ∈ H(H), then W (X) is the convex hull of σ(X). A selfadjoint oper-
ator X ∈ B(H) will be called positive definite (resp., negative definite) if min{λ : λ ∈
σ(X)} > 0 (resp., max{λ : λ ∈ σ(X)} < 0).

Lemma 1 Let V be H(H), B(H), HK(H), or BK(H). The following conditions are

equivalent for a linear map φ : V → V:

(i) W
(

φ(X)
)

= W (X) for all X ∈ V.

(ii) For any selfadjoint X ∈ V and t ∈ R, the operator tI − X is positive definite if and

only if tI − φ(X) is.

Proof Suppose (i) holds. Then, clearly, φ(I) = I and for every X ∈ V the operator
φ(X) is selfadjoint if and only if X is selfadjoint. For any selfadjoint X ∈ V, W (X)
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is the convex hull of σ(X); tI − X is positive definite if and only if t > maxσ(X);

−tI + X is positive definite if and only if t < minσ(X). Since W (X) = W
(

φ(X)
)

,
condition (ii) follows. Conversely, suppose (ii) holds. If V = H(H) or HK(H),
then condition (ii) certainly ensures σ(X) and σ

(

φ(X)
)

have the same convex hull.
Suppose V = B(H) or BK(H). Let A = X+iY with selfadjoint X and Y . Observe that

the compact convex set W (A) lies in the half plane {x+i y ∈ C : x, y ∈ R, y ≤ kx+b},
where k, b ∈ R, if and only if the selfadjoint operator tI + kX − Y is positive definite
for any t > b. By condition (ii), this is true if and only if tI + kφ(X)−φ(Y ) is positive

definite for all t > b. Thus, W
(

φ(A)
)

and W (A) always belong to the same half
planes, and therefore the two convex sets must be equal. Hence, condition (i) holds.

We have the following linear preserver result.

Theorem 2 Let V be one of H(H), B(H), HK(H), or BK(H). The following state-

ments are equivalent for a surjective linear map φ : V → V:

(a) φ maps the set of selfadjoint elements into itself and

σ
(

φ(X)
)

= σ(X) for all selfadjoint X ∈ V.

(b) φ is continuous (in the norm topology), maps the set of selfadjoint elements into

itself, and is such that σ
(

φ(X)
)

= σ(X) for all orthogonal projections X ∈ V.

(c) W
(

φ(X)
)

= W (X) for all X ∈ V.

(d) W
(

φ(X)
)

= W (X) for all X ∈ V.

(e) There is a unitary U ∈ B(H) such that φ is of the form

(1) X 7→ U XU ∗ or X 7→ U XtU∗,

where Xt is the transpose of X with respect to some fixed orthonormal basis.

The equivalence of (a) and (e) in Theorem 2 extends a result of Marcus and Moyls

(Theorem 4 in [19]) to the infinite dimensional case. Note that Omladič [22] also
studied linear mappings φ on B(H) that preserve numerical ranges. The surjectivity
assumption in Theorem 2 is essential. Otherwise, we can identify H ⊕H with H, and
define φ : V → V by φ(X) = X ⊕ X acting on H. Then φ satisfies (a)–(d), but not

(e). On the other hand, many parts of the theorem are valid without the surjectivity
assumption, as it will become apparent in the proof, namely,

(2) (e) ⇒ (a), (b), (c), (d); (a) ⇒ (b) ⇒ (d); (c) ⇒ (d).

Note also that if H is finite dimensional, then one can omit the surjectivity hypothesis

in Theorem 2. To verify this, use (2) and observe that if (d) holds true, then φ is
injective, and therefore (because dim H <∞) also surjective.

Proof The only non-trivial implication in (2) is (b) ⇒ (d). We prove (b) ⇒ (d) ⇒
(e).
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Suppose (b) holds. Then it is clear that φ(I) = I. For any selfadjoint X ∈ V

with finite spectrum, we can write X =

∑n
j=1 t jP j , where t1 ≥ · · · ≥ tn are the

eigenvalues of X and Pi 6= 0 are orthogonal projections such that they sum up to I

and PiP j = P jPi = 0 whenever i 6= j. It follows that

φ(X) =

n
∑

j=1

t jφ(P j) = tnI +

n
∑

j=1

(t j − tn)φ(P j) ≥ (t1 − tn)φ(P1) + tnI,

and since φ(P1) 6= 0, we have maxσ
(

φ(X)
)

≥ t1. Now, for any t ≥ t1,

tI − φ(X) = φ(tI − X) =

n
∑

j=1

(t − t j)φ(P j )

is positive semidefinite. Thus, maxσ
(

φ(X)
)

≤ t1. As a result, we see that

maxσ
(

φ(X)
)

= t1 = maxσ(X). Similarly, we can show that minσ
(

φ(X)
)

=

minσ(X). Hence W (X) = W
(

φ(X)
)

. Since the set of all selfadjoint operators with a
finite spectrum is dense in the set of selfadjoint operators in V, by the continuity of φ,

we have W
(

φ(X)
)

= W (X) for all X ∈ H(H) or HK(H). If V = B(H) or BK(H),

by Lemma 1, we again have W
(

φ(X)
)

= W (X) for all X ∈ V. Hence condition (d)
holds.

Suppose now (d) holds. Since

‖X‖ = max{|λ| : λ ∈ W (X)} = max{|λ| : λ ∈ σ(X)} for X ∈ H(H),

we see that φ is continuous. Since W (X) = {1} if and only if X = I, we see that φ is
unital. Suppose V = H(H) or HK(H). We extend φ to the complex linear map on

B(H) or on BK(H) by

φ(X + iY ) = φ(X) + iφ(Y ), X,Y ∈ H(H) or X,Y ∈ HK(H).

Clearly, φ(X∗) =

(

φ(X)
) ∗

. Since φ preserves the closure of the numerical range

for selfadjoint operators, by Lemma 1 the extended map φ will preserve the closure
of the numerical range on B(H) or BK(H). Note that the closure of the numerical
range of X ∈ B(H) or BK(H) is just the norm numerical range considered in [24].
By Theorem 3.1 in [24], there exists a unitary U ∈ B(H) such that φ has the form

(1).

If V = H(H) or B(H), the continuity assumption in (b) can be dropped. We
need the following lemma to prove this claim. Define ρ = 8 if H is infinite dimen-
sional, ρ = 9 if H is finite dimensional of even dimension, and ρ = 10 if H is finite
dimensional of odd dimension.

https://doi.org/10.4153/CMB-2003-022-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-022-3


220 Chi-Kwong Li, Leiba Rodman, and Peter Šemrl

Lemma 3 For every operator T ∈ H(H), and for every δ > 0, there exist ρ orthogonal

projections P j ∈ H(H), j = 1, . . . , ρ, such that T admits a representation

(3) T =

ρ
∑

j=1

α jP j , α j ∈ R,

where

max
1≤ j≤ρ

|α j | ≤ (15 + δ)‖T‖.

Proof We assume (without loss of generality) that T is a nonzero contraction, i.e.,

0 < ‖T‖ ≤ 1.
Assume first that H is infinite dimensional. We compile arguments from [15] and

[23]. The proof of Theorem 1 in [15] shows that for every selfadjoint contraction A

there exist B1,B2 ∈ B(H) such that

(4) A = (B∗
1 B1 − B1B∗

1 ) + (B∗
2 B2 − B2B∗

2 ) and ‖B1‖2 ≤ ‖A‖, ‖B2‖2 ≤ ‖A‖.

Now we follow the proof of Theorem 3 in [23]. We use the notation of that proof
except that we replace H by M since in our paper the symbol H denotes the underly-
ing Hilbert space. Using (4) we choose first λ >

√
2‖T‖1/2 ≥ ‖K + L‖1/2 and then

µ > ‖T‖ + 2λ2 ≥ ‖M‖. Applying the inequalities

‖C‖ ≤ ‖T‖ + 2λ2 + 2µ, ‖C1‖ ≤ ‖C‖, ‖C2‖ ≤ ‖C‖,

we finally choose

σ > ‖T‖ + 2λ2 + 2µ.

As shown in [23], for every such choice of λ, µ, ν, representation (3) holds with

α j ∈ {±λ2,±σ,±µ}.

Clearly, max1≤ j≤ρ |α j | = σ. Now for a fixed ε > 0, let λ =

√
2‖T‖1/2 + ε, µ =

‖T‖ + 2(
√

2‖T‖1/2 + ε)2 + ε, σ = (15 + δ)‖T‖. Then

σ > ‖T‖ + 2(
√

2‖T‖1/2 + ε)2 + 2
(

‖T‖ + 2(
√

2‖T‖1/2 + ε)2 + ε
)

= ‖T‖ + 2λ2 + 2µ

for sufficiently small ε.
Now assume that dim H = n is finite. By a result of Fong [13], (4) holds with

B1 = B2 provided the trace of A is zero. Thus, if trace T = 0 is zero, and n is even,
we repeat the arguments for the infinite dimensional H. If the trace of T is not zero,
we subtract (trace T/n)I from T, and reduce the problem to the already solved case

at the expense of increasing ρ by 1. If n is odd, we write T = λx∗x + T0, where x is a
normalized eigenvector of T corresponding to an eigenvalue λ, and T0 is a restriction
of T to the orthogonal complement of Span x; thereby the problem is reduced to an
even dimensional H, again at the expense of increasing ρ by 1.
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Corollary 4 If φ is a linear map on B(H) or on H(H) that maps the set of selfadjoint

elements into itself and is such that φ is uniformly bounded on the set of orthogonal

projections, then φ is continuous. Moreover, ‖φ‖ ≤ 15ρQ if φ is defined on H(H), and

‖φ‖ ≤ 30ρQ if φ is defined on B(H), where

Q = sup{‖φ(X)‖ : X orthogonal projection}.

Proof If φ is defined on H(H), everything follows from Lemma 3. If φ is defined
on B(H), write C = A + iB ∈ B(H), where A,B ∈ H(H), and using Lemma 3 we
obtain:

‖φ(A + iB)‖ ≤ ‖φ(A) + iφ(B)‖ ≤ ‖φ(A)‖ + ‖φ(B)‖
≤ 15ρQ‖A‖ + 15ρQ‖B‖ ≤ 30ρQ‖C‖.

Note that the result of Corollary 4 fails for linear maps on BK(H) or on HK(H).
Indeed, assume that H is an infinite dimensional Hilbert space. Write HK(H) =

HF(H)⊕V , where HF(H) is the linear space of operators of the form tI + F with t a
real scalar and F a finite rank selfadjoint operator, and where the linear space V is any

complement of HF(H) in HK(H). Define a real linear map φ : HK(H) → HK(H)
by φ(A) = A whenever A ∈ HF(H) and φ(A) = −A whenever A ∈ V . This linear
map is obviously discontinuous. However, φmaps orthogonal projections in HK(H)
into themselves. A similar example can be set up for BK(H).

3 Positive Definiteness Preservers

Denote by B(H)+ the convex cone of positive definite operators on H. We have the

following result extending a theorem of Schneider [26] to the infinite dimensional
case.

Theorem 5 Let V be one of B(H), H(H), BK(H), or HK(H), and let φ : V → V be

a linear map. Then φ is injective and satisfies φ
(

V∩B(H)+
)

= V∩B(H)+ if and only

if there exists an invertible T ∈ B(H), with the additional property that TT∗ ∈ HK(H)
if V is one of BK(H) or HK(H), such that φ has the form

(5) X 7→ TXT∗ or X 7→ TXt T∗,

where Xt is the transpose of X with respect to some fixed orthonormal basis of H.

Notice that a priori φ is not assumed to be continuous. It turns out that under the
hypotheses of the theorem, continuity of φ is guaranteed. The assumption that φ is
injective is essential in Theorem 5. Otherwise, one can consider φ : V → V defined

by φ(X) = S∗XS, where S : H → H is the shift operator defined by Se j = e j+1 for
j = 1, 2, . . . , for a fixed orthonormal basis {e1, e2, . . . , } of H (assuming that H is
separable and infinite dimensional). Then φ

(

V ∩ B(H)+
)

= V ∩ B(H)+, but φ is
not of the form (5).

https://doi.org/10.4153/CMB-2003-022-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-022-3


222 Chi-Kwong Li, Leiba Rodman, and Peter Šemrl

If H is finite dimensional, then the condition φ
(

V ∩ B(H)+
)

= V ∩ B(H)+ is
equivalent to the condition that φmaps the set of positive semidefinite matrices onto

itself (this latter condition was used in [26]), and every such linear map is automati-
cally bijective and of course continuous.

Proof The “if” direction is clear. For the converse, first note that the cases when

V = B(H) or V = BK(H) are easily reduced to the cases when V = H(H) or
V = HK(H), respectively, by considering the restriction of φ to H(H) or to HK(H),
as the case may be.

We first show that φ is surjective. For any Y ∈ V, we can write Y = B1 − B2

for some B1,B2 ∈ V ∩ B(H)+. Then there exists A1,A2 ∈ V ∩ B(H)+ such that
φ(A1) = B1 and φ(A2) = B2. Thus, for X = A1 − A2, we have φ(X) = Y . As a
result, we see that φ is bijective. Hence A ∈ V is positive definite if and only if φ(A)
is positive definite.

Let P = φ(I). We may assume that P = I; otherwise, replace φ by the map-
ping A 7→ P−1/2φ(A)P−1/2. Notice that the spectral theorem for compact selfadjoint
operators easily implies that

P ∈ HK(H) ∩ B(H)+ ⇒ P−1/2 ∈ HK(H) ∩ B(H)+.

Now, for any operator A ∈ V, tI − A is positive definite if and only if tI − φ(A) is
positive definite. By Lemma 1, φ preserves the closure of numerical range of A ∈
V, i.e., the property (d) of Theorem 2 holds. By the equivalence of (d) and (e) of
Theorem 2, the result follows.

4 Invertibility preservers

Theorem 6 Let φ : H(H) → H(H) be a bijective real linear operator that maps the

set of invertible selfadjoint operators into itself. Then there exist an invertible T ∈ B(H),

and a number ξ ∈ {1,−1} such that φ has the form

(6) X 7→ ξTXT∗ or X 7→ ξTXt T∗,

where Xt denotes the transpose of X with respect to some fixed orthonormal basis of H.

Proof Since φ is surjective there exists A ∈ H(H) such that φ(A) = I. We first
show that there is no loss of generality in assuming that A is invertible. Indeed, if this
is not the case, then by the spectral theorem for selfadjoint operators there exists a

projection P ∈ H(H) such that A1 = PAP is positive semidefinite, A2 = (I−P)A(I−
P) is negative semidefinite, and A = A1 + A2. If B = P − (I − P), then A + εB

is invertible for every positive real number ε. For an ε small enough the operator
φ(A +εB) = I +εφ(B) = R is positive definite. Replacing φ by X 7→ R−1/2φ(X)R−1/2

we get a bijective linear invertibility preserving map φ such that φ(A) = I for an
invertible A ∈ H(H).

Next, we prove that φ is continuous. We continue to assume that A ∈ H(H) is
invertible such that φ(A) = I. Let X be any operator from H(H) and t a real number
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with |t| > ‖X‖‖A−1‖. Then a (not necessarily selfadjoint) operator tI − XA−1 is
invertible, and consequently, tA − X is invertible. By the invertibility preserving

property tI − φ(X) is invertible. Hence, the spectrum of φ(X) is contained in the
interval

[

−‖X‖ ‖A−1‖, ‖X‖ ‖A−1‖
]

, which further yields that ‖φ‖ ≤ ‖A−1‖.

Since φ(I) is invertible it is either positive definite, or negative definite, or there

exists a unitary operator U : H → H such that U ∗φ(I)U has a matrix representation

(7)

[

P 0
0 −Q

]

with respect to a nontrivial orthogonal decomposition of H, where P and Q are pos-

itive definite. We will show that the third possibility cannot occur.

In order to do this we argue by contradiction, and suppose that U ∗φ(I)U has the
form (7). We first prove that if invertible A ∈ H(H) satisfies φ(A) = I, then A

is neither positive definite nor negative definite. Assume on the contrary that A is
positive definite. Then φ

(

tA + (1− t)I
)

is a continuous path from U
[

P 0
0 −Q

]

U∗ to I,
such that every point on this path is an invertible selfadjoint operator. Since σ(I) =

{1}, the result from [21] on the variation of the spectrum implies that every operator

on this path is positive definite, contradicting the fact that the endpoint of this path
is U

[

P 0
0 −Q

]

U∗. In the same way we see that A is not negative definite. Hence, there

exists an invertible S ∈ B(H) such that A = S
[

I 0
0 −I

]

S∗. Then ψ : H(H) → H(H)
defined by ψ(X) = φ(SXS∗) is a bijective real linear operator preserving invertibility
and having the property that ψ

([

I 0
0 −I

])

= I. For any
[

0 X∗

X 0

]

, the operator

[

I X∗

X −I

]

=

[

I 0
X I

] [

I 0
0 −I − XX∗

] [

I X∗

0 I

]

is invertible. It follows that

I + tψ

([

0 X∗

X 0

])

= ψ

([

I tX∗

tX −I

])

is invertible for every real number t which further yields that the spectrum of

ψ
([

0 X∗

X 0

])

contains only 0, or equivalently, ψ
([

0 X∗

X 0

])

= 0, contradicting the bi-
jectivity assumption. Thus, A cannot be indefinite either.

Hence, we have proved that φ(I) is either positive definite or negative definite.
Applying the fact that every positive definite operator has a positive definite square

root we may assume without loss of generality that either φ(I) = I, or φ(I) = −I,
and after multiplying φ by −1, if necessary, we may assume that φ(I) = I. If P is any
orthogonal projection, then tI−P is invertible whenever t 6= 0, 1, and so is tI−φ(P).
It follows that φ(P) is an orthogonal projection. Since φ(P) /∈ {0, I} if P /∈ {0, I},

condition (b) of Theorem 2 holds. By the equivalence of (b) and (e) in Theorem 2,
the result follows.

The following result analogous to Theorem 6 holds for HK(H).
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Theorem 7 Let φ : HK(H) → HK(H) be a bijective real linear operator that maps

invertible selfadjoint operators in HK(H) into invertible operators. Then there exist a

bounded invertible linear operator T : H → H such that TT∗ ∈ HK(H), and a number

ξ ∈ {1,−1}, such that φ has the form

X 7→ ξTXT∗ or X 7→ ξTXt T∗

where Xt denotes the transpose of X with respect to some fixed orthonormal basis of H.

Proof First, we note the following easily proved properties:

(a) If X ∈ BK(H) is invertible in B(H), then X−1 ∈ BK(H);
(b) If X ∈ HK(H) is positive definite, then

√
X ∈ HK(H).

The proof of Theorem 7 proceeds by essentially repeating the arguments from
the proof of Theorem 6, with obvious changes, and using the properties (a) and (b)
above. The only non-obvious part is the claim proved in the first paragraph of the

proof of Theorem 6, namely, that we can assume that A = φ−1(I) is invertible. Since
A ∈ HK(H), the spectral theorem for compact selfadjoint operators shows that A+εI

is invertible for infinitely many real values of ε in every neighborhood of zero. Now
choose ε small enough so that A+εI is invertible and φ(A+εI) = I +εφ(I) is positive

definite.
The condition TT∗ ∈ HK(H) follows from the property that TXT∗ ∈ HK(H)

for every X ∈ HK(H).

Note that the assumption that φ is surjective is essential in Theorems 6 and 7.
Otherwise, assuming H is infinite dimensional, we can identify H with H ⊕ H, and
define φ by φ(X) = X⊕X (acting on H). Then φmaps the set of invertible selfadjoint
operators into itself, but φ is not of the form (6). The surjectivity is essential if H =

C2; the linear map

φ

[

t x

x∗ s

]

=

[

t x

x∗ −t

]

, t, s ∈ R, x ∈ C.

will map the set of invertible selfadjoint operators on C2 into itself, but φ is not of

the form (6). If dim H ≥ 3 is finite, then Theorem 6 holds without the bijectivity
assumption by the result in [6, 18]; see [6, Theorem 10] for the odd dimension cases,
and see [6, Lemma 7] and [18, Theorem 2.2] for the even dimension cases. In this
regards the following open problem is of interest.

Problem 8 Suppose dim H is infinite. Are Theorems 6 and 7 valid under the weaker

hypothesis that φ is surjective, rather than bijective?

Problem 8 has an affirmative answer for Theorem 6 under some additional as-
sumptions on φ or H.

Theorem 9 Let φ : H(H) → H(H) be a surjective linear operator that maps the set

of invertible selfadjoint operators into itself. Then φ has the form (6) if any one of the

following conditions holds.
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(a) φ(I) is positive definite or negative definite.

(b) H is separable.

We need a lemma to prove Theorem 9.

Lemma 10 Let H = H1 ⊕ H⊥
1 be an orthogonal decomposition of the Hilbert space

H, and assume that one of the subspaces H1 or H⊥
1 is finite dimensional. Then, if an

invertible operator T ∈ H(H) is partitioned
[

X1 X∗

X X2

]

conformally with the orthogonal

decomposition H = H1⊕H⊥
1 , then there exists a bounded linear operator Y : H1 → H⊥

1

such that

(8)

[

X1 Y ∗

Y −X2

]

is invertible as well.

Proof Say, H⊥
1 has dimension n < ∞ (if H1 is finite dimensional, just replace (8)

with its negative). Thus, X2 is in fact a Hermitian n × n matrix. There exists an

invertible matrix S such that

(9) S∗X2S =

[

X22 0
0 ±I

]

,

where X22 is a p × p Hermitian matrix which is congruent to −X22, and I is the
(n − p) × (n − p) identity matrix. Partition S∗X =

[

X11
X12

]

, where X11 : H1 → Cp,
X12 : H1 → Cn−p. So, we may assume that

T =





X1 X∗
11 X∗

12

X11 X22 0

X12 0 ±I



 ,

where the third row and the third column may be absent. We will consider only the
case that the (3, 3)-entry is I.

Now let R be invertible such that R∗X22R = −X22. Then





I 0 0
0 R∗ 0
0 0 I



 T





I 0 0
0 R 0
0 0 I





=





X1 X∗
11R X∗

12

R∗X11 −X22 0
X12 0 I





is invertible and we are done if the third row and the third column are absent. If this

is not the case, then denote

Z =

[

X1 X∗
11R

R∗X11 −X22

]

and W = [X12 0].

Schur complements show that Z−W ∗W is invertible. Consider the analytic operator
valued function F(z) = Z + zW ∗W , z ∈ C. The values of F(z) are Fredholm oper-
ators, and F(−1) is invertible. By Gohberg’s theorem [14], F(z) is invertible for all
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z excepting a discrete set of values. In particular, F(α) is invertible for some α > 0.
Applying Schur complements once again we see that





X1 X∗
11R

√
αX∗

12

R∗X11 −X22 0√
αX12 0 −I





is invertible, as desired.

Proof of Theorem 9 We first consider (a). Without loss of generality, we may as-
sume that φ(I) is positive definite; otherwise, replace φ by the mapping X 7→ −φ(X).

Furthermore, we may assume that φ(I) = I; otherwise, replace φ by the mapping
X 7→ φ(I)−1/2φ(X)φ(I)−1/2. We need to show that φ is injective. So, we may as-
sume that H is infinite-dimensional. As in the proof of Theorem 6 we see that φ
is continuous and maps orthogonal projections into orthogonal projections. Us-

ing an idea from [7] we will show that φ(X2) = φ(X)2 for every X ∈ H(H) with
a finite spectrum. Such an X can be written as X =

∑n
k=1 tiPi where the ti ’s are

real numbers and Pi are orthogonal projections summing up to I and satisfying
PiP j = P jPi = 0 whenever i 6= j. Since Pi + P j is a projection if i 6= j, we have
(

φ(Pi) + φ(P j)
) 2

= φ(Pi) + φ(P j). This yields φ(Pi)φ(P j ) + φ(P j)φ(Pi) = 0. Using
this equation we get the desired relation φ(X2) = φ(X)2. The set of all selfadjoint op-
erators with a finite spectrum is dense in H(H), and so, by the continuity ofφwe have

φ(X2) = φ(X)2 for every X ∈ H(H). So, φ is a Jordan homomorphism. Using a re-
sult of Martindale [20] we can extend φ to a ring homomorphism (additive and mul-
tiplicative map)ϕ : B(H) → B(H). In particular, ϕ(iI)ϕ(H) = ϕ(iH) = ϕ(H)ϕ(iI)
for every selfadjoint operator H. Thus, ϕ(iI) commutes with every selfadjoint oper-

ator and is therefore a scalar operator. It is now easy to conclude that ϕ(iI) = ±iI.
Hence, ϕ is linear or conjugate-linear. Using also the fact that the range of ϕ contains
all selfadjoint operators we see that ϕ is surjective. Obviously, it is continuous. We
prove that ϕ is injective in the following.

Assume on the contrary that the kernel of ϕ is a nontrivial closed ideal in B(H).
All nontrivial closed ideals in B(H) have the form Jα, where α is any infinite cardinal
less than or equal to the dimension of B(H), which is defined as follows: Jα con-
sists of those X ∈ B(H) whose range does not contain any closed subspaces of H of

dimension α (see [12] for details). Thus, Ker ϕ = Jα for some α, and ϕ induces a
continuous ∗-isomorphism (or conjugate linear isomorphism) between Banach alge-
bras B(H) and B(H)/Jα. If α = ℵ0, then Jℵ0

is the ideal of compact operators, and
we have a contradiction, because the set of invertibles in B(H) is connected, whereas

the set of invertibles in B(H)/Jℵ0
is disconnected. If α > ℵ0, we also have a contra-

diction, because for every closed ideal J/Jα of the algebra B(H)/Jα the invertibles
in the factor algebra B(H)/J are connected (by the result of Corollary 3 of [11]),
whereas the algebra B(H) has a closed ideal, namely Jℵ0

, such that the invertibles in

the factor algebra B(H)/Jℵ0
form a disconnected set. Our proof of (a) is complete.

Next, we turn to (b). Repeating the first part of the proof of Theorem 6, we may
assume that φ(A) = I for some invertible A ∈ H(H). By (a), it suffices to show that
φ(I) is not indefinite. Arguing by contradiction, as in the proof of Theorem 6 we
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obtain that there exist a nontrivial orthogonal decomposition H = H1 ⊕ H⊥
1 , and a

surjective linear map ψ : H(H) → H(H) that preserves invertibility and is such that

ψ
([

I 0
0 −I

])

= I, and

(10) ψ

([

0 X∗

X 0

])

= 0 for every X : H1 → H⊥
1 .

Clearly, dim H1 6= dim H⊥
1 ; otherwise, an invertible operator of the form

[

0 X∗

X 0

]

would exist, a contradiction with the invertibility preserving property of ψ. Hence,
one of H1 or H⊥

1 must be finite dimensional.

Define ψ̃ : H(H) → H(H) by

ψ̃

([

X1 X

X∗ X2

])

= ψ

([

X1 0
0 −X2

])

.

Then ψ̃(I) = I. Because of (10), and because of the surjectivity of ψ, the linear map
ψ̃ is surjective as well. Since ψ maps invertible operators into invertible operators, by

Lemma 10, the map ψ̃ also has this property. Now by the result in part (a), ψ̃ must
be bijective, a contradiction.

We are indebted to the anonymous referee for pointing out the argument used in
the second paragraph of the proof of Theorem 9 leading to an improvement of the
result. We also thank Professor R. Loewy for some helpful correspondence.
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