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An important step in the proof of Kostrikin's fundamental theorem [2] on finite
groups of prime exponent is the following result.

THEOREM 1. Let L be a Lie algebra of characteristic p satisfying the t-th Engel
condition for some t<p, and suppose that L is generated by elements that are right-Engel of
length 2. Then L is locally nilpotent.

The main thrust of [2] is the proof of this result without the condition on generation:
in that form, it implies the truth of the restricted Burnside problem for exponent p. What I
want to do here is to present some evidence suggesting that Theorem 1 might be valid
without the assumption that L satisfy an Engel condition, but keeping the generation
condition. The evidence is not strong enough to state this as a conjecture, but it is enough
to state it as a problem.

The fact that L is an algebra over a field seems to be fairly unimportant in our
context. What matters is that the additive group L+ should fail to have involutions. In the
first result, we use the abbreviation "RE 2

- e l e r n e n t " f°r "right-Engel element of length 2",
so that x is RE2 if and only if [y, x, x] = 0 for all y in L.

THEOREM 2. Let L be a Lie ring whose additive group L+ is 2-free. If L is generated by
2, 3 or 4 RE2-elements, then L is nilpotent of class at most 2, 3, 5 respectively.

I have been unable to prove such a result even for five generators, but I believe
something along these lines will hold for arbitrary generating numbers. The proof of
Theorem 2 depends on the following simple Lemma, due essentially to Kostrikin [2].

LEMMA 3. Let L be a Lie ring with L+ 2-free, and let c be an RE2-element of L. Then
[y, c, u, c] = 0 and [u, c, x, y, c] = [u, c, y, x, c] for all x, y, u in L.

Proof. Since [g, c, c] = 0 for all g in L, we have

0 = [y, [u, c, c]] = [y, [u, c], c]-[y, c, [u, c]]

= [y, u, c, c]-[y, c, u, c]

-[y, c, u, c] + [y, c, c, u]

= -2[y, c, u, c],

so that [y, c, u, c] = 0 since there are no involutions. Using this, we have

0 = [u, c, [x, y], c] = [u, c, x, y, c]-[u, c, y, x, c].

Now we proceed to the proof of Theorem 2. Throughout we use the fact that the nth
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term yn(L) of the lower central series of L is the ideal closure of all left-normed products
of weight n in the generators of L.

For two generators, everything is clear. Now suppose that L is generated by
RE2-elements a, b, c. Possible non-trivial products of weight 4 are, essentially, [a, b, c, a],
[a, b, c, c], [a, b, c, b]. The last two are zero by definition of RE2-elements and the first
part of Lemma 3, while

[a, b, c, a] = -[b, a, c, a] = 0,

also by Lemma 3.
Suppose finally that we have four RE2-generators a, b, c, d. By \vhat we have proved

so far, there is essentially only one choice for a (possibly!) non-trivial product of weight 4,
viz [a, b, c, d]. Again by Lemma 3, a typical product of weight 5 is

[a, b, c, d, b].

Adding a further d or b at the end produces the zero element, by Lemma 3. So finally, we
have to consider [a, b, c, d, b, c] and [a,>, c, d, b, a]. Using both parts of Lemma 3 we get

[a, b, c, d, b, c] = [a, b, d, c, b, c] = 0,

and the other product is similarly zero since it is

-[b, c, a, d, b, a]-[c, a, b, d, b, a] = -[b, c, a, b, d, a] = [c, b, a, b, d, a] = 0.

As I mentioned previously, I have been unable to extend this to higher generating
numbers. On the other hand, our next result is further evidence, as well as reinforcing the
connection between solubility and nilpotency for Lie-type considerations. In fact, very
slight variations of the proof will yield that locally soluble Engel Lie rings are locally
nilpotent, and also the same result for groups (Gruenberg [1]).

THEOREM 4. Let L be a soluble Lie ring with L+ 2-free and suppose that L is generated
. by finitely many RE2-elements. Then L is nilpotent.

The proof depends on the following lemmas. We use the notation

for the derived series and upper central series of a Lie ring L.

LEMMA 5. If L is generated by RE2-elements and L+ is 2-free, then S^L)* is generated
by RE2-elements.

Proof. All we need to do is to prove that the product of two RE2-e l e r n e n t s is an
RE2-e\en\Qi\t. This follows easily from Lemma 3; for any RE2-elements x, y and any
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element u,

["> [*> y]> [x, y]] = [u, x, y, [x, y]]-[w, y, x, [x, y]]

= [u, x, y, x, y]-[u, x, y, y, x]

- [u, y, x, x, y] + [u, y, x, y, x] = 0.

The next result is well-known and its analogue in group theory much used; we omit
the proof.

LEMMA 6. Let L be a Lie ring, H an ideal annihilating S^L). Then for all heH, all
xl,...,xn in L and permutations TT of {1,2,..., n},

\_n, xt, x 2 , . . . , xn\ = [n, xl7r, x27r,..., xn7T\.

We can now prove Theorem 4 by induction on the solubility length of L. Suppose
first that L is metabelian, and let g1,..., gk be a generating set for L consisting of
RE2-elements. Then [x, &, g;] = 0 for all x in L, and Lemma 6 with H= S^L) gives that
IK &,, gi2,..., &k<J = 0 for any i,, i2,..., ik+l and each h in H, since some gtj must be
repeated. Thus every element of Si(L) is in the (k + l)-st term of the upper central series
of L, so that L is nilpotent of class at most k + 2. (In fact, this part of the proof works
when the generating elements are right Engel of any length).

Now suppose that L is of solubility length n § 2 and that Theorem 4 has been proved
for lower solubility lengths. We shall first show that S^L) is nilpotent.

By induction, L/5n_!(L) is nilpotent, so that yc(L)^8n_1(L) for some c, and
Si(L)/5n_1(L) is finitely generated. Since 8{(L) is generated by RE2-elements> there is a
finite generating set x1( x 2 , . . . , x, of SX(L) modulo Sn-i(L) consisting of RE2-elements.
Now yc(L) is the ideal closure of finitely many elements hu h2,..., hd, each of which is an
RE2-element (namely, a product of weight c in the original generators of L). Thus by
induction the elements

Xi, x 2 , . . . , Xj, h i , . . . , hd

of St(L) generate a nilpotent subring, of class e, say. Hence every product

[hi, fl, f2, • • • , fel

with /j either an xf or an element of 8n_1(L), is trivial. Thus hf e £e(<5iU-)), so that

which means that 8i(L) is nilpotent.
Next, put K = L/[8n_l(L), 8j(L)]. Then 8n.i(K) is an abelian ideal annihilating

so that every element of 5n_i(K) is in some term of the upper central series of K. But
yc(K)^8n^.l(K) and yc(K) is the ideal closure of finitely many elements, so again yc(K) is
in some term of the upper central series of K. But 7c(K)gSn_,(K) and yc(K) is the ideal
closure of finitely many elements, so again yc(K) is in some term of the upper central
series of K. Thus K is nilpotent, and [8n_l(L), S^L)] contains some term of the lower
central series of L. Continuing in this way, we can prove that [8n_!(L), 8X(L),..., Sj(L)],
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with any number of repeats of 8{(L), contains some term of the lower central series of L.
Since 8X{L) is nilpotent, this means that L is nilpotent, and the induction is complete.
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