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Abstract

Two-sided inequalties for the ratio of modified Bessel functions of first kind are given, which
provide sharper upper and lower bounds than had been known earlier. Wronskian type in-
equalities for Bessel functions are proved, and in the sequel alternative proofs of Turan-type
inequalities for Bessel and modified Bessel functions are also discussed. These then lead to a
two-sided inequality for Bessel fuctions. Also incorporated in the discussion is an inequality for
the ratio of two Bessel functions for 0 < x < 1. Verifications of these inequalities are pointed
out numerically.
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Introduction

Inequalites for the ratio of modified Bessel functions of the first and second
kind are available in the literature. For instance, the inequality for the ratio
Kv(x)/Iv{x) has been used by Rosenthal [6] and Ross [7] in determining
the stability of fluid motion. In Section 1 we investigate inequalities for the
ratio of modified Bessel functions using Soni's [10] and Nasell's [5] inequal-
ities. The results obtained by us improve the lower and upper bounds for
Iv{x)/Iv(y) of Ross [8]. In Section 2, a proof of a Turan type inequality for
Bessel functions (Szasz [11]) is considered. This then leads to a two-sided
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inequality for the Bessel functions. The section is concluded by showing the
connection between Wronskian type and Turan type inequalities. In Sec-
tion 3, Turan type inequalities are proved for modified Bessel functions by
considering an identity and NasselFs inequality. Inductive families of these
inequalities give ancillary inequalites for Bessel and modified Bessel func-
tions. Finally in Section 4 we derive additional inequalities for the Bessel
functions and for the ratio of two Bessel functions. The results are then
verified numerically for certain values of parameters and variables involved.

1. /„(*)//„GO inequalities

The modified Bessel function of first kind

W = Y
ro=0 '

is real valued for v real on the domain x > 0 and it is positive for v > -1
on the same domain. The inequality

(1.1) 0 < Iv+l(x) < lv(x), where u > ~ and x > 0

was established by Soni [10]. Jones [3] proved the stronger inequality I^x) <
Iv{x), while Cochran [1] established the inequality dlv{x)/dv < 0, both for
H > v > 0 and x > 0.

Nasell [5] easily proved a result that strengthens (1.1) for v > 0, namely

(1.2) (l + £ ) Iv+l{x) < /„(*); v > - 1 and x > 0.

Nasell [5, (11)] bounded Iv{x)/Iv+l(x) from above. But application of
this to Iv{x)/Iv{y) does not improve the inequality [8, (4)] of Ross. This nat-
urally suggests investigation of inequality (1.1). Using the recurrence relation
(Watson [13, (4)])

(1-3) zl'v{z)-ulv{z) = zlv+l{z),

we put (1.1) in the form

Integrating (1.4) for 0 < z < x and exponentiating we have, on checking

'n + i)<e •
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1
2
3

V

0.25
1.50
6.00

X

0.1
0.5
1.5

y

0.2
1.3
2.1

Ross's inequality

lower
bound

0.7608745
0.1071776
0.0728878

upper
bound

0.9293342
0.5308544
0.2419961

inequality
(1.5)

upper
bound

0.84102128
0.2385283
0.1328103

inequality
(1.6)

lower
bound

0.8102128
0.1775399
0.1156637

Similarly, integration over 0 < z < y - x, and exponentiation yields

(i 5 ) **
yj A,W \y.

where y > x >0,v > —%, which extends Ross's inequality to —\ < v < 0.
A further extension of the inequality for v lying in ( - 1 , -\] is possible,

by the same method. Proceeding from (1.2) and (1.3), we are led similarly
to the improved lower bound

*y< w
y) L(y)'

(1.6)

where y > x > 0, v > —I. See Table 1 for sample values.
The inequality

IJx)
eK(y) (J)'- y>x>0, v > - x ,

is obtained in the same manner using the relation in Watson [13, (20) and(4)].

2. Wronski and Turan inequalities for Jv(x)

The Bessel functions Jv(x) of order v is defined for v > - 1 by the
power series

(2.1)

Szasz [11] proved the inequality

(2.2) AJx) = J2
v{x) - Jv_x(x)Jv+x{x) > J2

v{x

Now Jv(x) satisfies the recurrence relation

(2.3) xJv_l{x)-uJv{x)=xfv{x),

1).
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from which a simplified proof of (2.2) can be found. From

(2.4) /„(*) = I > + l){2/x)vJv(x) = /„(-*) , v > 0, x real,

and from (2.3) follows the difference-differential equation

(2-5) K(x) = ^[fv_l(x)-fv(x)].

Again let

(2-6) Fv(x) = f2(x) - fv_x{x)fv+l{x),

which like Av(x) can be written as a 2 x 2 determinant. Expressions of the
form <j)a<f>b - <t>c<t>d, where a + b = c + d, can be classified as Turan type, and
those of the form (j>a4>'b - 4>'a4>b as Wronskian type. Thus (2.2) and (2.6) are
of Turan type.

Now (2.5) and (2.6) easily imply that

(2.7)

and that the critical points of x2v+2Fv(x) satisfy x = 0 or fv{x) = 0 or
/ > ) = 0. When fv{x) = Q,

Fv{x) = -fv_x{x)fv+l{x) = Av{vtl)fi_x(x) > 0.

When f'v{x) - 0, (2.5) implies Fv(x) = fi(x) > 0. Hence

Fv{x) = ̂ {v + \){2lx)2v ^(x) - v-±±Jv_x{x)Jv+^ > 0,

which implies (2.2) for x > 0.
An upper bound for \{x) also follows from one for Fu(x). Obviously

(2.7) can be rewritten as

(2.8) (Ki) + f;i)y
From (2.2) and (2.8), 2{v + l)Fv(x)/x is positive and so

(2-9) Fv{x)<^{\-f2
v{x)).

From (2.9) and (2.4), (2.5), (2.6), we have

(2.10) Av(x) < 1(1 - (2/x)2vT*(v + l)J2(x)) + j

where v > 0, x is real.

https://doi.org/10.1017/S1446788700032791 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032791


[5] Bessel functions 337

An easy induction on (2.2) yields

Jv+k{x)Jv_k{x) - /„_*_,
(2.H) 2A;+1 .

>
where 0 < k < [v] = n, 0 < v - \v\ < 1.

Summation over the differences in (2.11) leads to

(2.12) J2
v{x) - Jv+n(x)Jv_n{x) > £ v

2^lxJv+k{x)Jv_k{x),
k=0

where v > 0 , x is real and n > 1.
Thiruvenkatachar and Najundiah [12] have proved Av(x) > 0 by arguing

that sga[(x2Av(x))'] = sgnx. On the other hand, Skovgaard discusses the
positivity of \(x) through real zeros of Jv{x). Using the recurrences for
JAx), it follows readily that

(2.13) [x\x]' = 2xJ2(x).

Lommel's result (Watson [13, (5.51)])

J0

U2
v{t)dt =

0 n=0

trivially implies

(2.14) Av(x) > *&-pljf+l(x), i/ > - 1 , -oo < x < oo,

which strengthens (2.2) for small x . Finally note that using [13, page 480],
we can write Av(x) as

O\V A (r\--L W XJ'V{X)
[ j * * W ~ x \Jl(x)\ \(xJl(x))'

Further define the Wronskian

(2.16) GAx) = Jv{x)fv+l{x) - Jl(x)jv+l(x).

Then
x2G'v(x) = x2Jv{x)j"+X(x) - x2Jv+l{x)j"{x).

This can be written as

(2.17) [xGv(x)]' = ( ^ ^ ) Jv(x)Jv+x{x),

which implies that Gv{x) > 0, since relative extrema of xGv(x) occur when
either Jv(x) = 0 or Jv+l(x) = 0. If Jv{x) = 0, then [13, 3.2, (4)] implies
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Gv{x) = J2
+X(x); if Jv+X{x) = 0, (2.16) and [13, 3.2, (2)] implies Gu(x) =

jJ2(x). Hence Gv{x) > 0 for v > 0, -oo < x < oo and x ̂  0; Gv{0) =
0. But writing the values of J'v{x) and J'v+X{x) successively from (2.3) and
also from [13, 3.2, (4)], (2.16) leads to the Turan forms:

(2.18) G(x)--J(x)J,Ax)--

and

(2.19) \:JSx)Jv+M) = Jv+l(x)
Jv{x)

Now (2.2), (2.3), (2.17), (2.18) and (2.19) imply the inequalities

(2.20) ; " - ' W

and

(2.21)
Ju+Ax)

V

where v > 0, -oo < x < oo, x ̂  0.

3. Turan inequality for modified Bessel functions

Thiruvenkatachar and Najundiah have proved

(3-1) 0<Su(x)<ll(x)/(v + l),

where

(3-2) Sv{x) = I2
v{x) - Iv_x(x)Iv+x(x),

by comparing the coefficients in the Cauchy product [12, (3.5)]

(3.3) Ix{x)IM{>

where
1

n=Q

We examine an alternate derivation of (3.1) and provide a mild extension via
Nasell's inequality (1.2). Recall that Iv{x) satisfies the following recurrence
relations

(3.4)
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(3-5) tiW-^iW = 7W'

Putting values of Iv_x{x) and Iv+1(x) in (3.2) in terms of Iv(x) and l'v(x),
we have

(3.6) W _&>(,#£>)'.
x \ Iu(x)J

Using the factorisation [13, page 498], we have

j 2 '

where ±jv n is the nth zero of Jv{x)/xv, we have, from the logarithmic
derivative, that

(3.7) (xIfjx\) "

and hence
•2

(3.8) Sv(x) = 4 / 2 (x ) f ; 2
Jv'"2 2 > 0 , i / > 0 , - o o < x < o o .

From [13, 15.3,(5)], j u x > [y(y + 2))1/2 for aU v > 0. From tables [13,
pages 748-751], j0 , > 2 . 4 , ; , , > 3 . 8 , ;2 > 1 > 5, ; 3 , > 6 , jA , > 7.5, and
for i/ > 4,

4 1

Hence
^ - < —l— for all i/ > 0.

Thus

(3.9) S_M<< MJ_<&).

A slightly more general form of (3.9) may be written as

(3.10) ~ 2fcfe-17 ^

leading in particular to the summed inequality
(3.11)

*<ll(x)-Iv+n(x)Iv_H{x)

^VTkJ

k=l
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In (3.9), the upper bound admits improvement when x > 1, for from (1.2)
we have

(3.12)

or equivalently

(3.13)

Combining (3.12) and (3.13), we have

(3.14) O<sv(x)<i;^ll(x), i / > 0 , x > 0 ,

which admits a further extension in the form

o < iv+k_M)K-k+M) - U W U W
(3.15) 2 f c - l T . . . . ,

1 < k <[v]+ 1, v > 0 , x > 0 ,

which yields the summed inequality

o </*(*)-/„_„(*)/„+„(*)
— 1

/ W t o » ^ > 0, X > 0, « > 1.(„ + k + X ~

4. Bessel inqualities in 0 < x < 1

The inequality

(4.1) •/„(*) >/„+!(*) , f o r O < x < l , i / > - ^ ,

can be deduced from the series (Erdelyi [2, page 14], see (3))

(4 2) / (x) - n-

Inequality (4.1) admits further improvement in the interval 0 < JC < 1, v >
0. We observe from (2.1) that the expression f(/1/(x)) - Ju+l(x) is an

alternating series of decreasing terms if 0 < x < (4v(v + 2)/{v + I))1''2, and
consequently the inequality

(4.3) Jv+l(x) < \jv{
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Hence by J'v{x) = -Jv+l{x) + vJv{x)/x,

0 < < _

Integrating between the limits (xx, y), one gets

(4.4) (ŷ J -W \y
The numerical computation appended below verifies these ratios under

suitable restrictions, and gives bounds of ratios not otherwise readily avail-
able.

For example

•5947 < y-75( '5 ) = -6642 < -7172,

and

•7377 < • J 7 5 | ' ^ = -7430 < -7470.

Also

•3536<44TT < - 4 2 6 4 >

and

•4141 < ^j^r < 4763.
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