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ABSTRACT. Measurements made by an underwater glider deployed near the Ross Ice Shelf were used to
identify the presence of Ice Shelf Water (ISW), which is defined as seawater with its potential tempera-
ture lower than its surface freezing point temperature. Properties logged by the glider included in situ
temperature, electrical conductivity, pressure, GPS location at surfacings and time. For most of the
first 30 recorded dives of its deployment, evidence suggests the glider was prevented from surfacing
due to being under the ice shelf. For dives under the ice shelf, farthest from the ice shelf front, ISW
layers of varying thicknesses and depth locations were observed; between 2 m thick (centred at 231 m
depth) to >93 m thick (centred at >360 m). For dives under the ice shelf, close to the ice shelf front,
either no ISW was observed or ISW layers were centred at shallower depths (116–127 m). Thicker ISW
layers (e.g. up to 250 m thickness centred at 421 m) were observed for some glider dives in open water
in front of the Ross Ice Shelf. No in situ supercooling (water colder than the pressure-dependent freezing
point temperature) was observed.
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INTRODUCTION

Ice shelves and Ice Shelf Water (ISW)

Antarctic ice shelves are floating portions of land-based ice
sheets. More than 60% of the Antarctic coast sits alongside
ice shelves (Bindschadler and others, 2011). The ocean
forms a cavity between the ice shelf and the sea floor
(Fig. 1). Basal melting occurs beneath all ice shelves, and ice
shelves have come to be characterised as ‘cold cavity’ or
‘warm cavity’, depending on whether inflow of High Salinity
Shelf Water (HSSW) or Circumpolar Deep Water (CDW),
respectively, is the dominant process causing basal melting
(e.g. Hattermann and others, 2012; Rignot and others, 2013).
The ‘cold cavity’ and ‘warm cavity’ definitions essentially
equate to ‘mode 1’ and ‘mode 2’ of the three-mode character-
isation of basal melting described by Jacobs and others (1992).

Warm cavity ice shelves such as Pine Island Glacier ice
shelf have experienced rapid melting in warm ocean
waters (Jacobs and others, 1996, 2011). Cold cavity ice
shelves, such as the Ross Ice Shelf being studied here, also
experience basal melting, but in this case the heat causing
ice melt is due to the pressure dependence of the freezing
point and is often accompanied by refreezing at other parts
of the ice shelf (Engelhardt and Determann, 1987) or adja-
cent sea ice (Jeffries and others, 1993; Gow and others,
1998). Figure 1 illustrates major processes occurring under
a cold cavity ice shelf. HSSW reaches the deeper parts of
the ice shelf near the grounding line and melts ice; the result-
ing cold, fresh water mixes into the upper part of the HSSW to
form ‘Ice Shelf Water’. In this paper, as in others (Jacobs and
others, 1985, 1970), we shall define ISW as sea water that has

the potential temperature below the surface freezing point
temperature, and will refer to ISW as exhibiting ‘potential
supercooling’, in line with Mahoney and others (2011) and
earlier papers such as Foldvik and Kvinge (1974). As
buoyant (due to low salinity) ISW rises along the underside
of the ice shelf, and as the pressure decreases, the in situ
freezing point temperature rises so that the ISW can
become in situ supercooled (as defined in the section In
situ supercooled sea water and ISW, below). Ice can then
nucleate, forming small frazil crystals in the water column
that form marine ice under the ice shelf or platelet ice
under the sea ice (Langhorne and others, 2015).

Few direct observations of this process exist under ice
shelves; for a rare example of such observations, see
images of accreted marine ice at the bottom of boreholes
through the Amery Ice Shelf in Craven and others (2009).
For the Ross Ice Shelf, ISW observations from transects
along the ice shelf front were reported by Jacobs and others
(1985) and Smethie and Jacobs (2005). A single observation
of ISW ∼460 km south of the Ross Ice Shelf front was
obtained from the J9 site beneath the Ross Ice Shelf (Jacobs
and others, 1979: Coordinates for station NW77-25 from
Jaocbs and Haines, 1982, used to calculate this distance).
In addition, in Arzeno and others (2014), their figures 3 and
7 indicate ISW was present. Jacobs and others (1985) classi-
fied ISW into ‘Deep Ice Shelf Water’ (DISW) and ‘Shallow Ice
Shelf Water’ (SISW), with a sub-category SISWB for measure-
ments made beneath the Ross Ice Shelf at location J-9. SISW
has characteristics (lower salinity, and therefore lower
density) indicating that it forms from melting processes near
the ice shelf front, whereas DISW has characteristics
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(higher salinity, and therefore higher density) indicative of
formation through basal melting of the ice shelf at depth.

In situ supercooled sea water and ISW
In situ supercooled sea water is sea water that is cooler than
its in situ freezing point temperature, which is a function of
salinity and pressure (UNESCO, 1978; IOC and others,
2010) and yet remains in a liquid state (e.g., Smith and
others, 2001; Skogseth and others, 2009). ISW is sea water
that has potential temperatures below the surface freezing
point temperature; ISW may become in situ supercooled if
it ascends sufficiently in the water column (e.g., Leonard
and others, 2006; Mahoney and others, 2011).

ISW has been detected in open water and below sea ice
using conductivity-temperature-depth sensors (CTDs) (Lewis
and Perkin, 1983; Mahoney and others, 2011), and conduct-
ivity-temperature sensors (CTs) (Smith and others, 2001;
Leonard and others, 2011). Due to logistical constraints, mea-
surements directly beneath ice shelves are rare. Supercooled
sea water is an occasional phenomenon that occurs at spe-
cific places in the polar regions. In Antarctica both potential
and in situ supercooling are particularly linked to ice shelf
processes (Lewis and Perkin, 1986).

The Ross Sea setting
In this paper, we describe oceanographic measurements that
identify the presence or absence of ISW and in situ super-
cooled sea water near and beneath the Ross Ice Shelf. The
measurements were made by an underwater glider that trav-
elled beneath the ice shelf front. Late November, December
and January, the operational period of the glider, are months
when one would expect to observe surface freshening near
the ice shelf front in the Ross Sea, due to a seasonal increase
in melting under the outer portion of the ice shelf (Arzeno
and others, 2014) and sea ice melt (Jacobs and others,
1985). The glider was deployed into the Ross Sea Polynya,
which is a region that has zero to low sea-ice concentration
locally year-round (Bromwich and others, 1998; Reddy and
others, 2007).

At the Coulman High location (see Fig. 2) discussed by
Arzeno and others (2014), multi-year current meter measure-
ments from under the Ross Ice Shelf have now been obtained
(Craig Stewart, pers. comm., 2016). During the months April–
November in 2011–14, the currents observed at pressures of
399, 577 and 778 dbar were northwestward, carrying water
out of the cavity. In the summer months December–March,

mean flow was southwards, into the ice shelf cavity, for
these same pressures. The mean flow at 232 dbar, which is
near the base of the ice shelf front, was westwards, closely
aligned with the terminal face, throughout the year (Craig
Stewart, pers. comm., 2016). Arzeno and others (2014) pub-
lished data from an earlier mooring deployment at Coulman
High, which included current data from late November 2010
to mid-January 2011, i.e., the same period as the glider col-
lected its data. As the glider was operating during the
austral summer, the available data implies the glider would
not necessarily encounter an outflow of ISW from under
the Ross Ice Shelf. However, the current data presented in
Arzeno and others (2014) are depth averaged, and therefore
it cannot be inferred directly from that paper what the cur-
rents near the ice shelf front depth were over this time period.

METHODS

Equation of State of Seawater 1980 (EOS-80) used in
preference to Thermodynamic Equation of Seawater
2010 (TEOS-10)
The International Thermodynamic Equation of Seawater
TEOS-10 (IOC and others, 2010; McDougall and Barker,
2011) replaced the previously accepted marine science
description of sea-water properties, EOS-80 (UNESCO,
1981). Some authors have used TEOS-10 (and Conservative
Temperature) to examine ISW beneath other ice shelves
(e.g., McDougall and others, 2014); however, to our knowl-
edge, no papers published to date examining ISW beneath
the Ross Ice Shelf have used TEOS-10. Our preliminary ana-
lysis with CTD casts from other research indicated that in situ
supercooling is larger (∼0.003 K) when using TEOS-10 com-
pared with EOS-80. Absolute Salinities calculated using
TEOS-10 have higher numerical values than measured
Practical Salinities; see section 2.8 of IOC and others
(2010) for details. To allow intercomparison with earlier
work from beneath the Ross Ice Shelf, in particular Jacobs
and others (1985), we have used EOS-80 in this paper.

Practical Salinity, SP, a ratio of a sea-water sample’s elec-
trical conductivity to that of standard sea water’s conductiv-
ity, has long been the salinity scale used in oceanography
(UNESCO, 1981). The ITS-90 temperature scale was an
update from ITS-68, and was simply a scalar correction
such that T68= 1.00024 × T90 (IOC and others, 2010).
However, since in this work we are using the UNESCO
(1978) freezing point temperature equation, we need to use
ITS-68 to allow for correctly posed supercooling evaluations.

Fig. 1. Schematic cross-section of a cold-cavity ice shelf, showing the connections between sea-ice formation, water mass formation
processes and ice shelf cavity processes.
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ITS-90 values were therefore converted to ITS-68 values.
Potential Temperature, θ, is the temperature that the sea
water would be if it was raised adiabatically to the surface,
and was used to analyse potential supercooling. Potential
supercooling is defined as the Potential Temperature minus
the surface freezing point temperature (the temperature at
which the water would freeze at the sea surface), while in
situ supercooling is defined as the in situ temperature
minus the in situ freezing point temperature. In both cases,
we take the magnitude of potential or in situ supercooling
to be defined as the water potential or in situ temperature

minus the surface or in situ freezing point temperature, i.e.,
the water is potential or in situ supercooled if the respective
difference is negative.

Seaglider measurements
Over the 2010/11 austral summer, two Seagliders (Eriksen
and others, 2001) were deployed in the Ross Sea (Queste
and others, 2015). These autonomous devices carried out
hundreds of dives each, measuring both physical and bio-
geochemical properties of the sea water during each dive.

Fig. 2. Glider positions for the period 29 November 2010–30 January 2011 as reported by GPS, overlaid on a NASA MODIS visible band
image from (a) 28 November 2010, and (b) 6 December 2010. Blue dots show new GPS locations, i.e., indicate that the glider transmitted
a new GPS location for this dive, while red dots indicate repeated GPS locations, i.e., indicate that the glider had the previous transmitted
GPS location recorded as its (erroneous) position. Dive 100 is indicated by the yellow dot, and dive 130 by a light green dot. The location
of Coulman High is indicated by a dark green dot. Map projection is WGS 84/Antarctic Polar Stereographic. MODIS imagery was
provided by the Land, Atmosphere Near real-time Capability for EOS (LANCE) system operated by the NASA/GSFC/Earth Science Data
and Information System (ESDIS) with funding provided by NASA/HQ.
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The locations for SG503, the glider of interest in this study,
are shown in Figures 2 and 3. The primary reason for deploy-
ing these gliders was to analyse dissolved oxygen dynamics
during a phytoplankton bloom (Queste and others, 2015).
Operating gliders in a phytoplankton bloom runs the risk of
fouling of the CTD, which would have resulted in salinity
biases tied to changes in conductivity cell volume as
matter clogs the sensor. These biases are often short lived
and the glider’s flight and surfacing manoeuvres are often suf-
ficient to clear the conductivity cell. However, no evidence
of biofouling was observed in the analysed data. Similarly,
operating gliders in a region with frazil ice present can lead
to salinity biases (false fresher water and therefore lower
density signals) due to icing of the electrodes or due to
changes in the internal volume of the conductivity cell,
with the latter being harder to detect. There was no evidence
of frazil ice being present at the locations and times where
the glider operations took place. While the manifestation of
frazil directly beneath sea ice, known as sub-ice platelet
layers, has been observed in parts of the Ross Sea, the under-
water glider measurements described here were in a region
where we are not aware of any prior reports of sub-ice plate-
let layer observations (Langhorne and others, 2015).

Glider SG503 was deployed east of Ross Island on 29
November 2010 and recovered on 30 January 2011.
SG503 was thought to have strayed under the Ross Ice
Shelf in the early part of the deployment, before it travelled
north and then east, twice carrying out a bowtie-shaped for-
mation (Fig. 2). The investigation in this paper focused
mainly on the early data (dives 1–130) collected by SG503.
The data from SG502 was not used as it did not get swept
under the Ross Ice Shelf, this paper’s area of interest.

The properties logged by SG503 that are of particular inter-
est to this investigation were in situ temperature (ITS-90, which
we convert to ITS-68; see the section Equation of State of
Seawater 1980 (EOS-80) used in preference to
Thermodynamic Equation of Seawater – 2010 (TEOS-10)),
electrical conductivity, pressure, GPS location and time. The
glider was programmed to surface at the end of each dive to
communicate with a satellite and accurately log its position
using its on-board GPS. Raw data from the glider were pro-
cessed using the UEA Seaglider Toolbox (bitbucket.org/bas-
tienqueste/uea-seaglider-toolbox, last accessed 10 March
2017). Conductivity data were corrected for thermal hysteresis
using the method described in Garau and others (2011) using
the Seaglider flight model regressed following a method

Fig. 3. Glider GPS positions (red and blue dots, as in Fig. 2) and contours of ice shelf draft (thickness minus elevation, corrected to the geoid)
derived from the Bedmap2 dataset (Fretwell and others, 2013). The most northerly blue dot on this figure corresponds to dive 78. Coastlines
and ice shelf edge (shown in dashed black) are from the SCAR Antarctic Digital Database (Scientific Committee on Antarctic Research, 2016).
Coulman High is marked as a green dot.
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adapted from Frajka-Williams and others (2011).
Uncertainties in temperatures and Practical Salinities were
estimated by assuming that the glider CTD package had
undergone 12 months of use since calibration and had
drifted by 0.006°C and 0.07, respectively, in accordance
with the manufacturer’s specifications (http://www.seabird.
com/glider-payload-ctd, accessed 13 March 2017). The tem-
peratures encountered by the glider were within the manufac-
turer’s stated measurement range but out of their calibration
range, leading to larger uncertainty estimates than for instru-
ments from the same manufacturer used by Smith and others
(2001) and Leonard and others (2006). The error in surface
freezing point temperature was then estimated by taking the
stated uncertainty for the equation from UNESCO (1978) of
0.003°C and applying the treatment of random errors as
described by Barry (1991). This method takes the partial deri-
vatives of the freezing point temperature equation with respect
to S and takes the square root of the sum of the squares of each
of the components of the derivative. The maximum and
minimum observed salinities were used as input values to
this equation. The resulting estimate of uncertainty in surface
freezing point temperature was 0.007°C. Drift in the pressure
sensor and effects of these on potential temperature and in
situ freezing point temperature calculations were assumed to
be minimal, so that the uncertainties in potential temperature
and in situ freezing point temperature were assumed to be
the same as for temperature and surface freezing point tem-
perature, i.e., 0.006°C and 0.007°C, respectively.

Glider data acquisition and processing
Of the first 100 dives carried out by SG503, only 25 ascended
to within 1 m of the sea surface (Fig. 4). Note that the mea-
surements from the first dive were not logged properly, so
subsequent analysis is of profiles from dive 2 onwards. For
most of the first 31 dives, the glider rose to a reasonably con-
sistent depth, between 80 m and 95 m below the sea surface,
which suggests it was under something obstructing its ascent.
The only object nearby that was likely to have obstructed the
glider’s ascent is the Ross Ice Shelf which, near the location
of the glider’s deployment (Fig. 3), has an ice draft that is

comparable with the minimum depth for these dives. The
analysis of water properties in this paper is therefore
divided into two groups: (i) dives that were definitely under
the ice shelf and dives thought to be in open water near
the ice shelf front and (ii) dives that occurred in open water
away from the ice shelf front. Dives thought to be under
sea ice are excluded from the analysis. A potential tempera-
ture versus salinity diagram for dives 2–31 of SG503 is shown
in Figure 5, with SISW and DISW boundaries from Jacobs
and others (1985) marked on the plot.

Note that in Figure 4, the blue cross near 80 m is from dive
26, which is a dive that started at the surface before becom-
ing trapped under the ice shelf and therefore ending at depth.
A unique GPS fix is therefore attributed to that dive from
when it was at the surface, along with the depth where it fin-
ished the upward part of its dive cycle (also known as the
‘climb’). ‘New GPS location’ indicates that the glider trans-
mitted a new GPS location for this dive, while ‘Repeated
GPS location’ indicates that the glider had the previous trans-
mitted GPS location recorded as its (erroneous) position.
Dives 24 and 25 both end at the surface (although the start
of Dive 24 is at depth), so those two dives have both a
unique GPS fix and a surface depth associated with them.

At the end of each dive the glider must change its buoy-
ancy in order to commence the next dive. There was a
notable difference in the turning behaviour when comparing
dives in open water near and away from the ice shelf with
dives under the Ross Ice Shelf (Fig. 6). When the glider is
functioning properly in open water, it rises to the surface
and stops recording dive data while changing its buoyancy
and carrying out communications, before diving again
(Eriksen and others, 2001). The data transmission process is
automated (i.e., not controlled by the glider pilot): the
glider has a number of call tries pre-programmed in. If it
fails to connect that number of times, it dives again. If it con-
nects but does not transfer everything, it resets the counter
and tries again. It also tries to send whatever past data has
not been sent. Figure 6a,b shows the pause in data collection
while the glider was at the surface in open water away from
the ice shelf; the time between dives was ∼7.5 min, which is
a standard call. When the glider appears to have exited the
ice shelf cavity after having been trapped there for ∼1.8
days (Fig. 6c), the time between dives was longer, 17–19
min, presumably due to having more data to transmit.
When the glider appears to have been trapped under the
ice shelf, it took much less time before the data collection
ceased and its buoyancy changed (Fig. 6d); the time
between dives was ∼2 minutes, which is the time taken to
try a few calls and fail.

MODIS imagery (Fig. 2) was used to attempt to discern the
nature of the sea surface during the period when SG503 was
prevented from reaching the surface (see Fig. 4). Cloud-free
images of this region were only available on 28 November
and 6 December 2010. Although the glider’s surface track
appears to be seaward of the obvious pack ice to the west,
there may have been some flooded thin ice remaining above
the glider path that is not well resolved by the MODIS sensors.

The glider typically travelled between ∼1 km and 2 km
between dives when the GPS was functioning correctly
(blue dots). The GPS data suggest that the glider travelled
farther north than expected; see Figure 2, where the red
dots to the north of the eastward blue trajectory are ∼60
km north of their expected location. We interpret these pos-
ition estimates as GPS malfunctions, which may have been

Fig. 4. The shallowest depth reached by glider SG503 when
attempting to surface for its first 140 dives. Dives 1–100 occurred
in the period 29 November to 6 December 2010, with dive 140
occurring on 10 December 2010.
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due to sea-ice cover or, based on experience on the iSTAR
Ocean2Ice campaign (Heywood and others, 2016), contam-
ination of GPS signals from ice on the antenna or a few cm of
water interfering with the signal transmission. The suspect
coordinates are therefore very low accuracy positions, accur-
ate to tens of km.

RESULTS

Measurements under the ice shelf
For the first 30 logged dives, when the glider appears to have
been under the ice shelf, water was not in situ supercooled at
any depth (Fig. 7a). However, water that exhibited potential
supercooling (ISW), when allowing for the uncertainties, was
found over various depth ranges for dives 4–23 (Fig. 7b), i.e.,
the dives under the ice shelf that were likely further from the
ice shelf front. Analysis of the thickness of ISW layers (where
present) for dives as shown in Figure 8 was by taking the dif-
ference between the depths at which the lower bound of the
surface Tf (P= 0) (surface freezing point temperature: black
lines) and the upper bound of θ (potential temperature) inter-
sected; for example for dive 12 this is 375.7 m−320.0 m=
55.7 m and 304.4 m-231.5 m= 72.9 m. These thicknesses
were then rounded to the nearest metre. The stated thick-
nesses of ISW layers are, therefore, lower limits. Each dive
record contains both the downward and upward portion of
the dive, and since the glider is moving horizontally as
well as vertically, the same water mass is not necessarily
being sampled within one ‘dive’. For clarity, Figures 7a,b
and 8 only show data from downwards dives. Upwards
dives showed very similar characteristics. Note that the
glider did reach the surface at the end of dives 24 and 25.
This indicates that the glider exited the ice shelf cavity
briefly for those dives, then re-entered the ice shelf cavity
temporarily before finally exiting for the remainder of its
deployment.

For this set of dives, ISW was identified in layers ranging
from a thin, 2 m thick, single layer centred at 231 m depth
for dive 6, (Fig. 8) to a layer that was >93 m thick centred
at >360 m depth for dive 15 (Fig. 8; note that quality con-
trolled data for this dive ceased at 402 m). There was

Fig. 5. Potential temperature versus salinity plot for dives 2–31 of glider SG503 (blue crosses). Potential density contours (black lines) are
referenced to 0 dbar. The thick red line is the surface freezing point temperature, while cyan error bars give error in surface freezing point
temperature calculations (partly due to the errors in measuring salinity, and partly due to the error in the freezing point temperature
equation itself – see the section Seaglider measurements). The ranges of potential temperature and salinity for SISW, SISWB (magenta
boxes) and DISW (red box) are averages plus or minus 1σ for the Ross Sea from Jacobs and others (1985).

Fig. 6. Change in depth of SG503 in different locations. (a) and (b)
Open water dives away from the ice shelf, where panel (a) shows
full depth and panel (b) shows the top 120 m; (c) Dives both near
the ice shelf and beneath the ice shelf; (d) Dives under the Ross
Ice Shelf. The panels show: (a) and (b) dives 200–205; (c) the end
of dive 22 to the start of dive 28, where the end of dive 24, dive
25 and the start of dive 26 are in open water near the ice shelf; (d)
dives 2–4.
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sometimes more than one ISW layer identified within one
downwards part of a dive, such as for dive 12 (Fig. 8). All
ISW layers for dives 20–23 were between 13 m and 28 m
thick and were centred at depths of between 115 m and
128 m. There was no discernible ISW observed for dives
24 (Fig. 8) to 31 (Fig. 7b).

Measurements in open water
Dives 100–130 are exemplar dives of when the glider was
assumed to have been in open water (see Fig. 2 for locations),
as the glider was no longer restricted in reaching the surface
(Fig. 4), and the water temperatures near the sea surface were
warmer (Fig. 9). Note that SG503 did not collect any data
from the dives 119–122. No in situ supercooled water was
encountered at all during dives 100–130. ISW was not dis-
cernible for dives 105–118 (Fig. 9). For dives 124–127, a
single layer of ISW was observed, ranging from 134 m
thick, centred at 455 m depth for dive 127, to 250 m thick
centred at 421 m depth for dive 125. Dives 100 and 128–
130 were characterised by the presence of multiple layers
of ISW at various depths.

DISCUSSION AND CONCLUSIONS
The observations reported in this paper are from the austral
summer when sea ice is melting in front of the shelf and
solar irradiation is heating the surface water. Since the ISW
exiting the ice shelf cavity is DISW and the water column
is stratified, it will not directly influence the surface water.

Figure 5 is the potential temperature versus salinity
diagram for dives 2–31 of SG503 with SISW and DISW
boundaries from Jacobs and others (1985) marked on the
plot. The ISW observed for dives 2–31 lies closest to (but
not within) the one standard deviation DISW classification
of Jacobs and others (1985), with none close to the SISW cat-
egory. Within two standard deviations, most of the data lie
within the DISW category of Jacobs and others, but none
within SISW. All of the ISW observed for dives 2–31 therefore
formed from interaction of HSSW with the Ross Ice Shelf at
depth, rather than from melting processes at the ice shelf
front associated with SISW.

For those dives under the ice shelf and farthest from the ice
shelf front, ISW layers were observed that were from 2 m
thick (centred at 231 m depth) to >93 m thick (centred at a
depth >360 m). For dives under the ice shelf and close to
the ice shelf front, either no ISW was observed or ISW
layers were centred at shallower depths (116–127 m).
Thicker ISW layers (e.g. up to 250 m thick centred at 421 m
depth) were observed for some subsequent glider dives
in open water in front of the Ross Ice Shelf in early
December 2010.

The profiles of temperature from the glider revealed layers
of ISW beneath the Ross Ice Shelf (Fig. 7b), which are
extremely rare measurements. Combined with measure-
ments of currents from under the ice shelf (Arzeno and
others, 2014; M. Williams, pers. comm) and our additional
observations of ISW north of the ice front, we conclude
that some ISW leaves the cavity under the Ross Ice Shelf
between Ross Island and Coulman High (see locations on
Fig. 3). In McMurdo Sound, west of Ross Island, ISW
coming from underneath the McMurdo Ice Shelf is the pre-
cursor for growth of platelet ice (e.g. Gow and others,
1982; Crocker and Wadhams, 1989; Jeffries and others,
1993; Smith and others, 2001; Leonard and others, 2006;
Mahoney and others, 2011; Smith and others, 2012). No
one has measured (or at least reported any measurements)
showing ISW immediately south of the McMurdo Ice Shelf
front. Robinson and others (2010) observed ISW beneath
the McMurdo Ice Shelf, but to the east of the ice shelf front
and they stated that the flow direction was away from the

Fig. 7. (a) In situ freezing point temperatures (Tf: black lines,
calculated from measured salinity and pressure) and in situ
temperature (T: red lines, each of which always lie to the right of
the corresponding black line) for dives 2–31 of glider SG503,
where dive 2 has the correct temperature scale and subsequent
dives are displaced 0.4°C to the right of each other to allow
comparisons. Approximate uncertainties in Tf and T are ±0.007°C
and ±0.006°C, respectively. All in situ temperatures are higher
than the in situ freezing point temperatures for these dives,
indicating that no in situ supercooling was present for these dives.
The data have been quality controlled, resulting in removal of data
from the very top and bottom of most dives, as well as some
central parts. (b) Tf (P= 0) (surface freezing point temperature:
black lines, calculated from measured salinity) and θ (potential
temperature: red lines) for dives 2–31 of glider SG503, where dive
2 has the correct temperature scale and subsequent dives are
displaced 0.4°C to the right of each other to allow comparisons.
Approximate uncertainties in Tf (P= 0) and θ are ±0.007°C and
±0.006°C, respectively. ISW is present where potential
supercooling exists, i.e., where potential temperatures are lower
than surface freezing point temperatures (see Fig. 8 for zoomed in
examples). The data have been quality controlled, resulting in
removal of data from the very top and bottom of most dives, as
well as some central parts.
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McMurdo Ice Shelf. Although the observations presented
here are not south of the McMurdo Ice Shelf front, the indica-
tion that our measurements are of DISW means that they ori-
ginated from further south under deeper ice. If so, then it is
plausible that a branch of DISW could also head under
McMurdo Ice Shelf and into McMurdo Sound. This supports
the conclusions of the modelling work of Hughes and others
(2015) that the ISW plume observed reaching the sea surface

in McMurdo Sound originates under the main part of the Ross
Ice Shelf, where the ice base is much deeper than under
McMurdo Ice Shelf. Since the Ross Ice Shelf is thicker than
the McMurdo Ice Shelf at its ice front, this means that the
ISW has to exit the ice shelf cavity at a deeper depth than
in McMurdo Sound.

Although it was a foreseen possibility that the glider would
be swept into the ice shelf cavity, due to deployment through
towing with an ROV to near the ice shelf front then releasing
the glider, it was not the intention of the original project to
have this happen. However, this paper has shown that a
glider can obtain very useful data on water mass properties
under the ice shelf. Efforts to establish communications and
positioning for gliders under ice shelves and sea ice
(Webster and others, 2014, 2015) in the future will increase
the usefulness of such glider measurements. Future investiga-
tions of the evolution of ISW plumes as they exit the ice shelf
would particularly benefit from such dedicated glider
transects.
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